Multiplicative automatic sequences

Clemens Müllner

Joint work with Jakub Konieczny and Mariusz Lemańczyk

Tuesday, May 19, 2020

Background

Disjointedness of additive and multiplicative structures

Theorem (Solymosi - 2009)

For any finite set $A \subset \mathbb{R}$,

$$\max |A \cdot A|, |A + A| \gg |A|^{4/3 - o(1)}$$

Conjecture (Chowla)

Let $\lambda(n) = (-1)^k$, where k is the number of prime factors of n. Then for all $a_1 < a_2 < \ldots < a_m$

$$\sum_{n\leq N}\lambda(n+a_1)\cdot\lambda(n+a_2)\cdots\lambda(n+a_m)=o(N).$$

• □ ▶ • # # ▶ • = ▶ •

Background

Disjointedness of additive and multiplicative structures

Theorem (Solymosi - 2009)

For any finite set $A \subset \mathbb{R}$,

$$\max \left| A \cdot A \right|, \left| A + A \right| \gg \left| A \right|^{4/3 - o(1)}$$

Conjecture (Chowla)

Let $\lambda(n) = (-1)^k$, where k is the number of prime factors of n. Then for all $a_1 < a_2 < \ldots < a_m$

$$\sum_{n\leq N}\lambda(n+a_1)\cdot\lambda(n+a_2)\cdots\lambda(n+a_m)=o(N).$$

Sarnak Conjecture

The Möbius function is defined by

$$\mu(n) = \begin{cases} (-1)^k & \text{if } n \text{ is squarefree and} \\ k \text{ is the number of prime factors} \\ 0 & \text{otherwise} \end{cases}$$

Definition: A dynamical system is said to be determinist, if its topological entropy is 0.

Conjecture (Sarnak - 2010)

For every complex sequence $u = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system,

$$\sum_{n\leq N} u_n \mu(n) = o(N).$$

Sarnak Conjecture

The Möbius function is defined by

$$\mu(n) = \left\{ egin{array}{cc} (-1)^k & ext{if n is squarefree and} \\ k ext{ is the number of prime factors} \\ 0 & ext{otherwise} \end{array}
ight.$$

Definition: A dynamical system is said to be determinist, if its topological entropy is 0.

Conjecture (Sarnak - 2010)

For every complex sequence $u = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system,

$$\sum_{n\leq N}u_n\mu(n)=o(N).$$

Sarnak Conjecture

The Möbius function is defined by

$$\mu(n) = \left\{ egin{array}{cc} (-1)^k & ext{if n is squarefree and} \ k ext{ is the number of prime factors} \ 0 & ext{otherwise} \end{array}
ight.$$

Definition: A dynamical system is said to be determinist, if its topological entropy is 0.

Conjecture (Sarnak - 2010)

For every complex sequence $u = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system,

$$\sum_{n\leq N}u_n\mu(n)=o(N).$$

Multiplicative functions

Definition (Multiplicative function)

A function $f : \mathbb{N} \to \mathbb{C}$ is called *(completely) multiplicative* if f(nm) = f(n)f(m) for all n, m that are coprime (for all n, m)

Examples: μ, λ

Definition (Dirichlet character)

We call $\chi : \mathbb{Z} \to \mathbb{C}$ a Dirichlet character if

1 There exists k > 0 such that $\chi(n) = \chi(n+k)$ for all n.

3 If gcd(n, k) > 1 then $\chi(n) = 0$; if gcd(n, k) = 1 then $\chi(n) \neq 0$.

3 $\chi(nm) = \chi(n)\chi(m)$ for all n, m.

< ロト < 同ト < ヨト < ヨト

Multiplicative functions

Definition (Multiplicative function)

A function $f : \mathbb{N} \to \mathbb{C}$ is called *(completely) multiplicative* if f(nm) = f(n)f(m) for all n, m that are coprime (for all n, m)

Examples: μ, λ

Definition (Dirichlet character)

We call $\chi : \mathbb{Z} \to \mathbb{C}$ a Dirichlet character if

1 There exists k > 0 such that $\chi(n) = \chi(n+k)$ for all n.

3 If gcd(n, k) > 1 then $\chi(n) = 0$; if gcd(n, k) = 1 then $\chi(n) \neq 0$.

3 $\chi(nm) = \chi(n)\chi(m)$ for all n, m.

< ロト < 同ト < ヨト < ヨト

Multiplicative functions

Definition (Multiplicative function)

A function $f : \mathbb{N} \to \mathbb{C}$ is called *(completely) multiplicative* if f(nm) = f(n)f(m) for all n, m that are coprime (for all n, m)

Examples: μ, λ

Definition (Dirichlet character)

We call $\chi: \mathbb{Z} \to \mathbb{C}$ a Dirichlet character if

• There exists k > 0 such that $\chi(n) = \chi(n+k)$ for all n.

3 If
$$gcd(n, k) > 1$$
 then $\chi(n) = 0$; if $gcd(n, k) = 1$ then $\chi(n) \neq 0$.

3 $\chi(nm) = \chi(n)\chi(m)$ for all n, m.

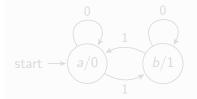
A B b A B b

Deterministic Finite Automata

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



 $n = 22 = (10110)_2, \qquad u(22) = 1$

 $u = (u(n))_{n \ge 0} = 011010011001011010010110011001..$

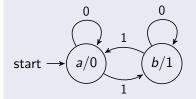
Automatic Sequences

Deterministic Finite Automata

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



$n = 22 = (10110)_2, \qquad u(22) = 1$

 $u = (u(n))_{n \ge 0} = 011010011001011010010110011001...$

Clemens Müllner

Multiplicative automatic sequences

19. 05. 2020 5 / 33

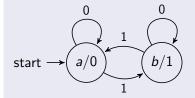
Automatic Sequences

Deterministic Finite Automata

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



 $n = 22 = (10110)_2, \qquad u(22) = 1$

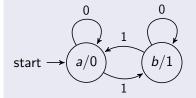
 $u = (u(n))_{n \ge 0} = 011010011001011001011001011001...$

Deterministic Finite Automata

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

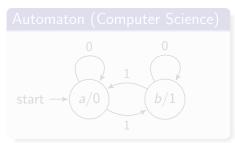


$$n = 22 = (10110)_2, \qquad u(22) = 1$$

 $u = (u(n))_{n \ge 0} = 01101001100101101001011001011001\dots$

Different Points of View I

$(u(n))_{n\geq 0} = 0110100110010110100101100101100101\dots$



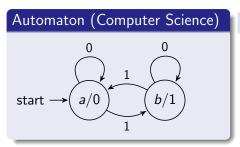
Substitution (Dynamics)

Coding of the fixpoint of a substitution:

$$a \rightarrow ab$$
 $a \mapsto 0$
 $b \rightarrow ba$ $b \mapsto 1$

Different Points of View I

$(u(n))_{n\geq 0} = 0110100110010110100101100101100101\dots$



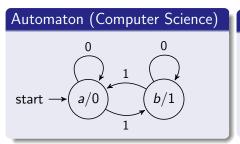
Substitution (Dynamics)

Coding of the fixpoint of a substitution:

$$a \rightarrow ab$$
 $a \mapsto 0$
 $b \rightarrow ba$ $b \mapsto 1$

Different Points of View I

$(u(n))_{n\geq 0} = 01101001100101100101100101100101...$



Substitution (Dynamics)

Coding of the fixpoint of a substitution:

$$a \rightarrow ab$$
 $a \mapsto 0$

$$b
ightarrow ba$$
 $b
ightarrow 1$

Different Points of View II

$(u(n))_{n\geq 0} = 01101001100101101001011001011001\dots$

Formal Power Series (Algebra)

Algebraicity over
$$F_q(X)$$
.

$$t(X) := \sum_{n \ge 0} u(n)X^n$$

$$X + (1+X)^2 t(X) + (1+X)^3 t(X)^2 = 0$$

Finite Kernel

The λ -kernel of a sequence a(n) is defined as

 $\{(a(n\lambda^k+r))_{n\geq 0}:k\geq 0,0\leq r<\lambda^k\}.$

Different Points of View II

 $(u(n))_{n\geq 0} = 01101001100101101001011001011001\dots$

Formal Power Series (Algebra)

Algebraicity over
$$F_q(X)$$
.
 $t(X) := \sum_{n \ge 0} u(n)X^n$
 $X + (1+X)^2 t(X) + (1+X)^3 t(X)^2 = 0$

Finite Kernel

The λ -kernel of a sequence a(n) is defined as

 $\{(a(n\lambda^k+r))_{n\geq 0}:k\geq 0,0\leq r<\lambda^k\}.$

• □ ▶ • • □ ▶ • • □ ▶ • • □

Different Points of View II

 $(u(n))_{n\geq 0} = 01101001100101101001011001011001\dots$

Formal Power Series (Algebra)

Algebraicity over
$$F_q(X)$$
.
 $t(X) := \sum_{n \ge 0} u(n)X^n$
 $X + (1+X)^2 t(X) + (1+X)^3 t(X)^2 = 0$

Finite Kernel

The λ -kernel of a sequence a(n) is defined as

$$\{(a(n\lambda^k+r))_{n\geq 0}:k\geq 0,0\leq r<\lambda^k\}.$$

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}$. A sequence is λ -automatic if and only if it is λ^k -automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $\log(\mu)/\log(\lambda) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

< □ > < □ > < □ > < □ > < □ > < □ >

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}$. A sequence is λ -automatic if and only if it is λ^k -automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $\log(\mu)/\log(\lambda) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

< □ > < □ > < □ > < □ > < □ > < □ >

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}.$ A sequence is $\lambda\text{-automatic}$ if and only if it is $\lambda^k\text{-automatic}.$

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $\log(\mu)/\log(\lambda) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

・ロト ・四ト ・ヨト ・ヨト

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}.$ A sequence is $\lambda\text{-automatic}$ if and only if it is $\lambda^k\text{-automatic}.$

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $\log(\mu)/\log(\lambda) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

イロト イヨト イヨト イヨト

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n), a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

$$egin{aligned} &\{(a_1(n\lambda^k+r)\cdot a_2(n\lambda^k+r):k\in\mathbb{N}, 0\leq r<\lambda^k\}\ &\subset\{(a_1(n\lambda^k+r):k\in\mathbb{N}, 0\leq r<\lambda^k\}\ &\cdot\{(a_2(n\lambda^k+r):k\in\mathbb{N}, 0\leq r<\lambda^k\}\} \end{aligned}$$

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n), a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

$$egin{aligned} &\{(a_1(n\lambda^k+r)\cdot a_2(n\lambda^k+r):k\in\mathbb{N}, 0\leq r<\lambda^k\}\ &\subset\{(a_1(n\lambda^k+r):k\in\mathbb{N}, 0\leq r<\lambda^k\}\ &\cdot\{(a_2(n\lambda^k+r):k\in\mathbb{N}, 0\leq r<\lambda^k\}\} \end{aligned}$$

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma Let $a_1(n), a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n)).$

$$egin{aligned} &\{(a_1(n\lambda^k+r):k\in\mathbb{N},0\leq r<\lambda^k\}\ &\subset\{(a_1(n\lambda^k+r):k\in\mathbb{N},0\leq r<\lambda^k\}\ &\cdot\{(a_2(n\lambda^k+r):k\in\mathbb{N},0\leq r<\lambda^k)\} \end{aligned}$$

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n), a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

Proof: We look at the corresponding λ -kernels:

 $\{(a_1(n\lambda^k + r) \cdot a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\} \\ \subset \{(a_1(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\} \\ \cdot \{(a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\} \}$

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n), a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

$$\begin{aligned} \{(a_1(n\lambda^k+r)\cdot a_2(n\lambda^k+r):k\in\mathbb{N}, 0\leq r<\lambda^k\}\\ &\subset \{(a_1(n\lambda^k+r):k\in\mathbb{N}, 0\leq r<\lambda^k\}\\ &\cdot \{(a_2(n\lambda^k+r):k\in\mathbb{N}, 0\leq r<\lambda^k\}.\end{aligned}$$

Disjointedness of automatic and multiplicative sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also true for the associated dynamical systems.) If the automatic

Theorem (Lemańczyk, M. - 2020?)

Let *a* be a primitive automatic sequence. Then it is orthogonal to any bounded, aperiodic, multiplicative function $u : \mathbb{N} \to \mathbb{C}$, i.e.

$$\sum_{n < N} a(n)\overline{u}(n) = o(N).$$

Disjointedness of automatic and multiplicative sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also true for the associated dynamical systems.) If the automatic sequence is primitive, then we also have a prime number theorem.

Theorem (Lemańczyk, M. - 2020?)

Let *a* be a primitive automatic sequence. Then it is orthogonal to any bounded, aperiodic, multiplicative function $u : \mathbb{N} \to \mathbb{C}$, i.e.

$$\sum_{n < N} a(n)\overline{u}(n) = o(N).$$

Disjointedness of automatic and multiplicative sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also true for the associated dynamical systems.) If the automatic sequence is primitive, then we also have a prime number theorem.

Theorem (Lemańczyk, M. - 2020?)

Let *a* be a primitive automatic sequence. Then it is orthogonal to any bounded, aperiodic, multiplicative function $u : \mathbb{N} \to \mathbb{C}$, i.e.

$$\sum_{n\leq N}a(n)\overline{u}(n)=o(N).$$

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters). Non-trivial counter-example: $a(n) = (-1)^{\nu_2(n)}$.

Definition (aperiodic sequence)

We call a sequence u aperiodic if for all $k, \ell \in \mathbb{N}$

$$\frac{1}{N}\sum_{n\leq N}u(kn+\ell)\to 0.$$

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters).

Non-trivial counter-example: $a(n) = (-1)^{\nu_2(n)}$.

Definition (aperiodic sequence)

We call a sequence u aperiodic if for all $k, \ell \in \mathbb{N}$

$$\frac{1}{N}\sum_{n\leq N}u(kn+\ell)\to 0.$$

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters). Non-trivial counter-example: $a(n) = (-1)^{\nu_2(n)}$.

Definition (aperiodic sequence)

We call a sequence u aperiodic if for all $k, \ell \in \mathbb{N}$

$$\frac{1}{N}\sum_{n\leq N}u(kn+\ell)\to 0.$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters).

Non-trivial counter-example: $a(n) = (-1)^{\nu_2(n)}$.

Definition (aperiodic sequence)

We call a sequence u aperiodic if for all $k, \ell \in \mathbb{N}$

$$\frac{1}{N}\sum_{n\leq N}u(kn+\ell)\to 0.$$

Automatic Sequences

Disjointedness of multiplicative sequences and algebraic generating series

Theorem (Bell, Bruin and Coons - 2012)

Let *K* be a field of characteristic 0, let $f : \mathbb{N} \to K$ be a multiplicative function, and its generating series $F(z) = \sum_{n \ge 1} f(n)z^n$ is algebraic over K(z). Then either *f* is finitely supported or there is a natural number *k* and a periodic multiplicative function $\chi : \mathbb{N} \to K$ such that $f(n) = n^k \chi(n)$ for all *n*. Automatic Sequences

Disjointedness of multiplicative sequences and algebraic generating series

Theorem (Bell, Bruin and Coons - 2012)

Let K be a field of characteristic 0, let $f : \mathbb{N} \to K$ be a multiplicative function, and its generating series $F(z) = \sum_{n \ge 1} f(n)z^n$ is algebraic over K(z). Then either f is finitely supported or there is a natural number k and a periodic multiplicative function $\chi : \mathbb{N} \to K$ such that $f(n) = n^k \chi(n)$ for all n.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a : \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f : \mathbb{N} \to \mathbb{C}$ such that f(p) = a(p)for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

The conjecture is true. Moreover, there exists h, λ such that a is λ -automatic and coincides with χ on integers that are coprime to $h\lambda$, where χ is either zero or a Dirichlet character.

- χ is a Dirichlet character: *dense case*
- $\chi = 0$: sparse case.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a : \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f : \mathbb{N} \to \mathbb{C}$ such that f(p) = a(p)for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

The conjecture is true. Moreover, there exists h, λ such that a is λ -automatic and coincides with χ on integers that are coprime to $h\lambda$, where χ is either zero or a Dirichlet character.

• χ is a Dirichlet character: *dense case*

• $\chi = 0$: sparse case.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a : \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f : \mathbb{N} \to \mathbb{C}$ such that f(p) = a(p)for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

The conjecture is true. Moreover, there exists h, λ such that a is λ -automatic and coincides with χ on integers that are coprime to $h\lambda$, where χ is either zero or a Dirichlet character.

• χ is a Dirichlet character: *dense case*

• $\chi = 0$: sparse case.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a : \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f : \mathbb{N} \to \mathbb{C}$ such that f(p) = a(p)for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

The conjecture is true. Moreover, there exists h, λ such that a is λ -automatic and coincides with χ on integers that are coprime to $h\lambda$, where χ is either zero or a Dirichlet character.

- χ is a Dirichlet character: *dense case*
- $\chi = 0$: sparse case.

Theorem 1 (Konieczny, Lemańczyk, M. - 2020+)

A sequence $a : \mathbb{N} \to \mathbb{C}$ is multiplicative and automatic if and only if there exists a prime p such that a is p-automatic and of the form

$$a(n) = f_1(\nu_p(n)) \cdot f_2(n/p^{\nu_p(n)}), \qquad (1)$$

where f_1 is eventually periodic and f_2 is multiplicative, eventually periodic and vanishes at all multiples of p.

Previous Results

- Schlage-Puchta (2003): A criterion for multiplicative sequences to not be automatic.
- Coons (2010): Non-automaticity of special multiplicative functions
- Li (2017): completely multiplicative automatic sequences, nonvanishing prime numbers
- Allouche, Goldmakher (2018): completely multiplicative, never vanishing automatic sequences
- Li (2019): characterizing completely multiplicative automatic sequences
- Klurman, Kurlberg; Konieczny (2019): showed a stronger version of BBC-conjecture

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and *p*-automatic. Then

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),$$

where $\alpha \mapsto a(p^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity. As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $n = p^{\alpha}$.

Corollary

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and *p*-automatic. Then

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),$$

where $\alpha \mapsto a(p^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity.

As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $n = p^{\alpha}$.

Corollary

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and *p*-automatic. Then

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),$$

where $\alpha \mapsto a(p^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity. As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $n = n^{\alpha}$

Corollary

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and *p*-automatic. Then

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),$$

where $\alpha \mapsto a(p^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity. As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $n = p^{\alpha}$.

Corollary

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and *p*-automatic. Then

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),$$

where $\alpha \mapsto a(p^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity. As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $n = p^{\alpha}$.

Corollary

Theorem 1 is true for eventually periodic multiplicative sequences (for every p).

Clemens Müllner

Multiplicative automatic sequences

19. 05. 2020 16 / 33

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is *p*-automatic and multiplicative.

Proof: We consider again the *p*-kernel,

$$\{ (f_1(\nu_p(np^k + r)))_{n \ge 0} : k \in \mathbb{N}, 0 \le r < p^k \} \\ = \{ f_1(\nu_p(n) + k)_{n \ge 0} : k \in \mathbb{N} \} \cup \{ f_1(\nu_p(r))_{n \ge 0} : r \in \mathbb{N} \}$$

Multiplicativity: If (m, n) = 1 then either $p \nmid m$ or $p \nmid n$. Thus, we have $\nu_p(mn) = \max(\nu_p(m), \nu_p(n))$ and $f_1(mn) = f_1(m)f_1(n)$.

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is *p*-automatic and multiplicative.

Proof: We consider again the *p*-kernel,

 $\{ (f_1(\nu_p(np^k + r)))_{n \ge 0} : k \in \mathbb{N}, 0 \le r < p^k \} \\ = \{ f_1(\nu_p(n) + k)_{n \ge 0} : k \in \mathbb{N} \} \cup \{ f_1(\nu_p(r))_{n \ge 0} : r \in \mathbb{N} \}$

Multiplicativity: If (m, n) = 1 then either $p \nmid m$ or $p \nmid n$. Thus, we have $\nu_p(mn) = \max(\nu_p(m), \nu_p(n))$ and $f_1(mn) = f_1(m)f_1(n)$.

< ロト < 同ト < ヨト < ヨト

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is *p*-automatic and multiplicative.

Proof: We consider again the *p*-kernel,

$$\{ (f_1(\nu_p(np^k + r)))_{n \ge 0} : k \in \mathbb{N}, 0 \le r < p^k \} \\ = \{ f_1(\nu_p(n) + k)_{n \ge 0} : k \in \mathbb{N} \} \cup \{ f_1(\nu_p(r))_{n \ge 0} : r \in \mathbb{N} \}$$

Multiplicativity: If (m, n) = 1 then either $p \nmid m$ or $p \nmid n$. Thus, we have $\nu_p(mn) = \max(\nu_p(m), \nu_p(n))$ and $f_1(mn) = f_1(m)f_1(n)$.

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is *p*-automatic and multiplicative.

Proof: We consider again the *p*-kernel,

$$\{ (f_1(\nu_p(np^k + r)))_{n \ge 0} : k \in \mathbb{N}, 0 \le r < p^k \} \\ = \{ f_1(\nu_p(n) + k)_{n \ge 0} : k \in \mathbb{N} \} \cup \{ f_1(\nu_p(r))_{n \ge 0} : r \in \mathbb{N} \}$$

Multiplicativity: If (m, n) = 1 then either $p \nmid m$ or $p \nmid n$. Thus, we have $\nu_{\rho}(mn) = \max(\nu_{\rho}(m), \nu_{\rho}(n))$ and $f_1(mn) = f_1(m)f_1(n)$.

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is *p*-automatic and multiplicative.

Proof: We consider again the *p*-kernel,

$$\{ (f_1(\nu_p(np^k + r)))_{n \ge 0} : k \in \mathbb{N}, 0 \le r < p^k \} \\ = \{ f_1(\nu_p(n) + k)_{n \ge 0} : k \in \mathbb{N} \} \cup \{ f_1(\nu_p(r))_{n \ge 0} : r \in \mathbb{N} \}$$

Multiplicativity: If (m, n) = 1 then either $p \nmid m$ or $p \nmid n$. Thus, we have $\nu_p(mn) = \max(\nu_p(m), \nu_p(n))$ and $f_1(mn) = f_1(m)f_1(n)$.

Lemma

Let f_2 be eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is *p*-automatic and multiplicative.

Proof: We consider once again the *p*-kernel:

$$egin{aligned} &\{(a_2(np^k+r))_{n\geq 0}: k\in \mathbb{N}, 0\leq r< p^k\}\ &=\{(a_2(np^k))_{n\geq 0}: k\in \mathbb{N}\}\ &\cup\{(a_2(np^k+r))_{n\geq 0}: k\in \mathbb{N}, 0< r< p^k\}\ &=\{(f_2(n))_{n\geq 0}\}\cup\{(f_2(np^\ell+s))_{n\geq 0}: \ell\in \mathbb{N}, 0< s< p^\ell\}. \end{aligned}$$

Let (m, n) = 1. Then also $(m/p^{\nu_p(m)}, n/p^{\nu_p(n)}) = 1$. Thus, a_2 is also multiplicative.

Lemma

Let f_2 be eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is *p*-automatic and multiplicative.

Proof: We consider once again the *p*-kernel:

$$\begin{aligned} \{(a_2(np^k + r))_{n \ge 0} &: k \in \mathbb{N}, 0 \le r < p^k\} \\ &= \{(a_2(np^k))_{n \ge 0} : k \in \mathbb{N}\} \\ &\cup \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 < r < p^k\} \\ &= \{(f_2(n))_{n \ge 0}\} \cup \{(f_2(np^\ell + s))_{n \ge 0} : \ell \in \mathbb{N}, 0 < s < p^\ell\}. \end{aligned}$$

Let (m, n) = 1. Then also $(m/p^{\nu_p(m)}, n/p^{\nu_p(n)}) = 1$. Thus, a_2 is also multiplicative.

Lemma

Let f_2 be eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is *p*-automatic and multiplicative.

Proof: We consider once again the *p*-kernel:

$$\begin{aligned} \{(a_2(np^k + r))_{n \ge 0} &: k \in \mathbb{N}, 0 \le r < p^k\} \\ &= \{(a_2(np^k))_{n \ge 0} : k \in \mathbb{N}\} \\ &\cup \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 < r < p^k\} \\ &= \{(f_2(n))_{n \ge 0}\} \cup \{(f_2(np^\ell + s))_{n \ge 0} : \ell \in \mathbb{N}, 0 < s < p^\ell\}. \end{aligned}$$

Let (m, n) = 1. Then also $(m/p^{\nu_p(m)}, n/p^{\nu_p(n)}) = 1$. Thus, a_2 is also multiplicative.

Lemma

Let f_2 be eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is *p*-automatic and multiplicative.

Proof: We consider once again the *p*-kernel:

$$\begin{aligned} \{(a_2(np^k + r))_{n \ge 0} &: k \in \mathbb{N}, 0 \le r < p^k\} \\ &= \{(a_2(np^k))_{n \ge 0} : k \in \mathbb{N}\} \\ &\cup \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 < r < p^k\} \\ &= \{(f_2(n))_{n \ge 0}\} \cup \{(f_2(np^\ell + s))_{n \ge 0} : \ell \in \mathbb{N}, 0 < s < p^\ell\}. \end{aligned}$$

Let (m, n) = 1. Then also $(m/p^{\nu_p(m)}, n/p^{\nu_p(n)}) = 1$. Thus, a_2 is also multiplicative.

Lemma

Let f_2 be eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is *p*-automatic and multiplicative.

Proof: We consider once again the *p*-kernel:

$$\begin{split} \{(a_2(np^k + r))_{n \ge 0} &: k \in \mathbb{N}, 0 \le r < p^k\} \\ &= \{(a_2(np^k))_{n \ge 0} : k \in \mathbb{N}\} \\ &\cup \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 < r < p^k\} \\ &= \{(f_2(n))_{n \ge 0}\} \cup \{(f_2(np^\ell + s))_{n \ge 0} : \ell \in \mathbb{N}, 0 < s < p^\ell\}. \end{split}$$

Let (m, n) = 1. Then also $(m/p^{\nu_p(m)}, n/p^{\nu_p(n)}) = 1$. Thus, a_2 is also multiplicative.

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus $m = m_1 m_2$ where (m_1, m_2) . Then $\chi = \chi_{m_1} \cdot \chi_{m_2}$, where $\chi_{m_i}(n)$ is a Dirichlet character of modulus m_i and $\chi_{m_i}(n) = \chi(n_i)$ with

 $n_i \equiv n \mod m_i$ $n_i \equiv 1 \mod m/m_i$.

Corollary

Let χ be a Dirichlet character of modulus m. Then

$$\chi(n) = \prod_{p \mid p} \chi_{p^{\nu_p(m)}}(n).$$

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus $m = m_1 m_2$ where (m_1, m_2) . Then $\chi = \chi_{m_1} \cdot \chi_{m_2}$, where $\chi_{m_i}(n)$ is a Dirichlet character of modulus m_i and $\chi_{m_i}(n) = \chi(n_i)$ with

$$n_i \equiv n \mod m_i$$

 $n_i \equiv 1 \mod m/m_i.$

Corollary

Let χ be a Dirichlet character of modulus m. Then

$$\chi(n) = \prod_{n \mid m} \chi_{p^{\nu_p(m)}}(n).$$

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus $m = m_1 m_2$ where (m_1, m_2) . Then $\chi = \chi_{m_1} \cdot \chi_{m_2}$, where $\chi_{m_i}(n)$ is a Dirichlet character of modulus m_i and $\chi_{m_i}(n) = \chi(n_i)$ with

$$n_i \equiv n \mod m_i$$

 $n_i \equiv 1 \mod m/m_i.$

Corollary

Let χ be a Dirichlet character of modulus m. Then

$$\chi(n) = \prod_{p \mid m} \chi_{p^{\nu_p(m)}}(n).$$

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Dense case

Assumption: $\nu_p(h\lambda) = 1$ for all $p \mid h\lambda!$ Thus, $\chi = \prod_{\rho \mid h\lambda} \chi_{\rho}$.

Proposition

Let a(n) be a dense multiplicative automatic sequence. Then

$$a(n) = \prod_{p|h\lambda} \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right) \cdot \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}},$$

where $\chi(\overline{p}) = \chi_{h\lambda/p}(p)$.

▲ □ ▶ ▲ 三 ▶ ▲ 三

Dense case

Assumption:
$$\nu_p(h\lambda) = 1$$
 for all $p \mid h\lambda!$
Thus, $\chi = \prod_{p \mid h\lambda} \chi_p$.

Proposition

Let a(n) be a dense multiplicative automatic sequence. Then

$$a(n) = \prod_{p|h\lambda} \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right) \cdot \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}},$$

where $\chi(\overline{p}) = \chi_{h\lambda/p}(p)$.

< 回 ト < 三 ト <

Dense case

Assumption:
$$\nu_p(h\lambda) = 1$$
 for all $p \mid h\lambda!$
Thus, $\chi = \prod_{p \mid h\lambda} \chi_p$.

Proposition

Let a(n) be a dense multiplicative automatic sequence. Then

$$a(n) = \prod_{p|h\lambda} \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right) \cdot \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}},$$

where $\chi(\overline{p}) = \chi_{h\lambda/p}(p)$.

▶ < ∃ ▶ < ∃

$$\begin{aligned} \mathbf{a}(n) &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \mathbf{a}\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right) \\ &= \left(\prod_{p|h\lambda} a(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \chi_p\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right)\right) \\ &= \left(\prod_{p|h\lambda} a(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \frac{\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q\neq p} \chi_p\left(q^{\nu_q(n)}\right)}\right) \\ &= \frac{\prod_{p|h\lambda} a(p^{\nu_p(n)}) \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q|h\lambda} \prod_{p\neq q} \chi_p(q^{\nu_q(n)})} \end{aligned}$$

$$\begin{aligned} \mathbf{a}(n) &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \chi\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right) \\ &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \chi_p\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right)\right) \\ &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \frac{\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q\neq p} \chi_p\left(q^{\nu_q(n)}\right)}\right) \\ &= \frac{\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)}) \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q|h\lambda} \prod_{p\neq q} \chi_p(q^{\nu_q(n)})} \end{aligned}$$

$$\begin{aligned} \mathbf{a}(n) &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \chi\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right) \\ &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \chi_p\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right)\right) \\ &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \frac{\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q\neq p} \chi_p\left(q^{\nu_q(n)}\right)}\right) \\ &= \frac{\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)}) \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q|h\lambda} \prod_{p\neq q} \chi_p(q^{\nu_q(n)})} \end{aligned}$$

$$\begin{aligned} a(n) &= \left(\prod_{p|h\lambda} a(p^{\nu_p(n)})\right) \cdot \chi\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right) \\ &= \left(\prod_{p|h\lambda} a(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \chi_p\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right)\right) \\ &= \left(\prod_{p|h\lambda} a(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \frac{\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q\neq p} \chi_p\left(q^{\nu_q(n)}\right)}\right) \\ &= \frac{\prod_{p|h\lambda} a(p^{\nu_p(n)}) \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q|h\lambda} \prod_{p\neq q} \chi_p(q^{\nu_q(n)})} \end{aligned}$$

$$\begin{aligned} \mathbf{a}(n) &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \chi\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right) \\ &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \chi_p\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right)\right) \\ &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \frac{\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q\neq p} \chi_p\left(q^{\nu_q(n)}\right)}\right) \\ &= \frac{\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)}) \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q|h\lambda} \prod_{p\neq q} \chi_p(q^{\nu_q(n)})} \\ &= \prod_{p|h\lambda} \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right) \cdot \frac{\mathbf{a}(p^{\nu_p(n)})}{\chi(p)^{\nu_p(n)}} \end{aligned}$$

$$\begin{aligned} \mathbf{a}(n) &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \chi\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right) \\ &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \chi_p\left(\frac{n}{\prod_{q|h\lambda} q^{\nu_q(n)}}\right)\right) \\ &= \left(\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)})\right) \cdot \left(\prod_{p|h\lambda} \frac{\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q\neq p} \chi_p\left(q^{\nu_q(n)}\right)}\right) \\ &= \frac{\prod_{p|h\lambda} \mathbf{a}(p^{\nu_p(n)}) \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)}{\prod_{q|h\lambda} \prod_{p\neq q} \chi_p(q^{\nu_q(n)})} \\ &= \prod_{p|h\lambda} \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right) \cdot \frac{\mathbf{a}(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \end{aligned}$$

Proposition 1

Let $q \mid h$. Then

$$\mathbf{n} \mapsto \chi_q\left(\frac{\mathbf{n}}{q^{\nu_q(\mathbf{n})}}\right) \cdot \frac{\mathbf{a}(q^{\nu_q(\mathbf{n})})}{\chi(\overline{q})^{\nu_q(\mathbf{n})}}$$

is periodic.

- Show that χ_q is trivial.
- Show that $\gamma \mapsto a(q^{\nu_q(n)})/\chi(\overline{q})^{\gamma}$ is eventually constant.

Image: A Image: A

< □ > < 凸

Proposition 1

Let $q \mid h$. Then

$$n \mapsto \chi_q\left(\frac{n}{q^{\nu_q(n)}}\right) \cdot \frac{a(q^{\nu_q(n)})}{\chi(\overline{q})^{\nu_q(n)}}$$

is periodic.

Proof:

- Show that χ_q is trivial.
- Show that $\gamma \mapsto a(q^{\nu_q(n)})/\chi(\overline{q})^{\gamma}$ is eventually constant.

Let $q \mid h$. Then

$$n \mapsto \chi_q\left(\frac{n}{q^{\nu_q(n)}}\right) \cdot \frac{a(q^{\nu_q(n)})}{\chi(\overline{q})^{\nu_q(n)}}$$

is periodic.

Proof:

- Show that χ_q is trivial.
- Show that $\gamma \mapsto a(q^{\nu_q(n)})/\chi(\overline{q})^{\gamma}$ is eventually constant.

.

$$a(n\lambda^k+r_1)=a(n\lambda^k+r_2) \qquad \forall n\in\mathbb{N}.$$

Choose *n* such that

$$n\lambda^k + r_1 \equiv sq^{\gamma} \mod q^{\gamma+1}$$

 $n\lambda^k + r_1 \equiv 1 \mod \lambda h/q.$

Then

$$\begin{aligned} \mathsf{a}(n\lambda^{k} + r_{1}) &= \mathsf{a}(q^{\gamma}) \cdot \chi\left(\frac{n\lambda^{k} + r_{1}}{q^{\gamma}}\right) \\ &= \mathsf{a}(q^{\gamma}) \cdot \chi_{q}\left(\frac{n\lambda^{k} + r_{1}}{q^{\gamma}}\right) \cdot \frac{\chi_{h\lambda/q}(n\lambda^{k} + r_{1})}{\chi(\overline{q})^{\gamma}} \\ &= \chi_{q}\left(\mathsf{s}\right) \cdot \frac{\mathsf{a}(q^{\gamma})}{\chi(\overline{q})^{\gamma}}. \end{aligned}$$

→ ∃ →

$$a(n\lambda^k+r_1)=a(n\lambda^k+r_2) \qquad \forall n\in\mathbb{N}.$$

Choose *n* such that

$$n\lambda^k + r_1 \equiv sq^{\gamma} \mod q^{\gamma+1}$$

 $n\lambda^k + r_1 \equiv 1 \mod \lambda h/q.$

Then

$$\begin{split} \theta(n\lambda^{k}+r_{1}) &= a(q^{\gamma}) \cdot \chi\left(\frac{n\lambda^{k}+r_{1}}{q^{\gamma}}\right) \\ &= a(q^{\gamma}) \cdot \chi_{q}\left(\frac{n\lambda^{k}+r_{1}}{q^{\gamma}}\right) \cdot \frac{\chi_{h\lambda/q}(n\lambda^{k}+r_{1})}{\chi(\overline{q})^{\gamma}} \\ &= \chi_{q}\left(s\right) \cdot \frac{a(q^{\gamma})}{\chi(\overline{q})^{\gamma}}. \end{split}$$

< ∃ ►

$$a(n\lambda^k+r_1)=a(n\lambda^k+r_2) \qquad \forall n\in\mathbb{N}.$$

Choose *n* such that

$$n\lambda^k + r_1 \equiv sq^{\gamma} \mod q^{\gamma+1}$$

 $n\lambda^k + r_1 \equiv 1 \mod \lambda h/q.$

Then

$$\begin{aligned} a(n\lambda^{k} + r_{1}) &= a(q^{\gamma}) \cdot \chi\left(\frac{n\lambda^{k} + r_{1}}{q^{\gamma}}\right) \\ &= a(q^{\gamma}) \cdot \chi_{q}\left(\frac{n\lambda^{k} + r_{1}}{q^{\gamma}}\right) \cdot \frac{\chi_{h\lambda/q}(n\lambda^{k} + r_{1})}{\chi(\overline{q})^{\gamma}} \\ &= \chi_{q}(s) \cdot \frac{a(q^{\gamma})}{\chi(\overline{q})^{\gamma}}. \end{aligned}$$

$$a(n\lambda^k+r_1)=a(n\lambda^k+r_2) \qquad \forall n\in\mathbb{N}.$$

Choose *n* such that

$$n\lambda^k + r_1 \equiv sq^{\gamma} \mod q^{\gamma+1}$$

 $n\lambda^k + r_1 \equiv 1 \mod \lambda h/q.$

Then

$$\begin{aligned} \mathsf{a}(n\lambda^{k} + r_{1}) &= \mathsf{a}(q^{\gamma}) \cdot \chi\left(\frac{n\lambda^{k} + r_{1}}{q^{\gamma}}\right) \\ &= \mathsf{a}(q^{\gamma}) \cdot \chi_{q}\left(\frac{n\lambda^{k} + r_{1}}{q^{\gamma}}\right) \cdot \frac{\chi_{h\lambda/q}(n\lambda^{k} + r_{1})}{\chi(\overline{q})^{\gamma}} \\ &= \chi_{q}(s) \cdot \frac{\mathsf{a}(q^{\gamma})}{\chi(\overline{q})^{\gamma}}. \end{aligned}$$

$$a(n\lambda^k+r_1)=a(n\lambda^k+r_2) \qquad \forall n\in\mathbb{N}.$$

Choose *n* such that

$$n\lambda^k + r_1 \equiv sq^{\gamma} \mod q^{\gamma+1}$$

 $n\lambda^k + r_1 \equiv 1 \mod \lambda h/q.$

Then

$$\begin{aligned} \mathsf{a}(n\lambda^{k} + r_{1}) &= \mathsf{a}(q^{\gamma}) \cdot \chi\left(\frac{n\lambda^{k} + r_{1}}{q^{\gamma}}\right) \\ &= \mathsf{a}(q^{\gamma}) \cdot \chi_{q}\left(\frac{n\lambda^{k} + r_{1}}{q^{\gamma}}\right) \cdot \frac{\chi_{h\lambda/q}(n\lambda^{k} + r_{1})}{\chi(\overline{q})^{\gamma}} \\ &= \chi_{q}(s) \cdot \frac{\mathsf{a}(q^{\gamma})}{\chi(\overline{q})^{\gamma}}. \end{aligned}$$

$$\nu_q(n\lambda^k + r_2) = \nu_q(n\lambda^k + r_1 + r_2 - r_1) = \nu_q(r_2 - r_1) = \beta.$$

Similarly,

$$\begin{aligned} \mathsf{a}(n\lambda^{k} + r_{2}) &= \mathsf{a}(q^{\beta}) \cdot \chi\left(\frac{n\lambda^{k} + r_{2}}{q^{\beta}}\right) \\ &= \mathsf{a}(q^{\beta}) \cdot \chi_{q}\left(\frac{n\lambda^{k} + r_{2}}{q^{\beta}}\right) \cdot \frac{\chi_{h\lambda/q}(n\lambda^{k} + r_{2})}{\chi(\overline{q})^{\beta}} \\ &= \chi_{q}\left(\frac{r_{2} - r_{1}}{q^{\beta}}\right) \cdot \frac{\mathsf{a}(q^{\beta})}{\chi(\overline{q})^{\beta}}. \end{aligned}$$

$$\nu_q(n\lambda^k + r_2) = \nu_q(n\lambda^k + r_1 + r_2 - r_1) = \nu_q(r_2 - r_1) = \beta.$$

Similarly,

$$\begin{aligned} \mathbf{a}(n\lambda^{k} + \mathbf{r}_{2}) &= \mathbf{a}(q^{\beta}) \cdot \chi\left(\frac{n\lambda^{k} + \mathbf{r}_{2}}{q^{\beta}}\right) \\ &= \mathbf{a}(q^{\beta}) \cdot \chi_{q}\left(\frac{n\lambda^{k} + \mathbf{r}_{2}}{q^{\beta}}\right) \cdot \frac{\chi_{h\lambda/q}(n\lambda^{k} + \mathbf{r}_{2})}{\chi(\overline{q})^{\beta}} \\ &= \chi_{q}\left(\frac{\mathbf{r}_{2} - \mathbf{r}_{1}}{q^{\beta}}\right) \cdot \frac{\mathbf{a}(q^{\beta})}{\chi(\overline{q})^{\beta}}. \end{aligned}$$

$$\nu_q(n\lambda^k + r_2) = \nu_q(n\lambda^k + r_1 + r_2 - r_1) = \nu_q(r_2 - r_1) = \beta.$$

Similarly,

$$\begin{aligned} a(n\lambda^{k} + r_{2}) &= a(q^{\beta}) \cdot \chi\left(\frac{n\lambda^{k} + r_{2}}{q^{\beta}}\right) \\ &= a(q^{\beta}) \cdot \chi_{q}\left(\frac{n\lambda^{k} + r_{2}}{q^{\beta}}\right) \cdot \frac{\chi_{h\lambda/q}(n\lambda^{k} + r_{2})}{\chi(\overline{q})^{\beta}} \\ &= \chi_{q}\left(\frac{r_{2} - r_{1}}{q^{\beta}}\right) \cdot \frac{a(q^{\beta})}{\chi(\overline{q})^{\beta}}. \end{aligned}$$

$$\nu_q(n\lambda^k + r_2) = \nu_q(n\lambda^k + r_1 + r_2 - r_1) = \nu_q(r_2 - r_1) = \beta.$$

Similarly,

$$\begin{aligned} a(n\lambda^{k} + r_{2}) &= a(q^{\beta}) \cdot \chi\left(\frac{n\lambda^{k} + r_{2}}{q^{\beta}}\right) \\ &= a(q^{\beta}) \cdot \chi_{q}\left(\frac{n\lambda^{k} + r_{2}}{q^{\beta}}\right) \cdot \frac{\chi_{h\lambda/q}(n\lambda^{k} + r_{2})}{\chi(\overline{q})^{\beta}} \\ &= \chi_{q}\left(\frac{r_{2} - r_{1}}{q^{\beta}}\right) \cdot \frac{a(q^{\beta})}{\chi(\overline{q})^{\beta}}. \end{aligned}$$

$$\nu_q(n\lambda^k + r_2) = \nu_q(n\lambda^k + r_1 + r_2 - r_1) = \nu_q(r_2 - r_1) = \beta.$$

Similarly,

$$\begin{aligned} a(n\lambda^{k} + r_{2}) &= a(q^{\beta}) \cdot \chi\left(\frac{n\lambda^{k} + r_{2}}{q^{\beta}}\right) \\ &= a(q^{\beta}) \cdot \chi_{q}\left(\frac{n\lambda^{k} + r_{2}}{q^{\beta}}\right) \cdot \frac{\chi_{h\lambda/q}(n\lambda^{k} + r_{2})}{\chi(\overline{q})^{\beta}} \\ &= \chi_{q}\left(\frac{r_{2} - r_{1}}{q^{\beta}}\right) \cdot \frac{a(q^{\beta})}{\chi(\overline{q})^{\beta}}. \end{aligned}$$

We have in total

$$\chi_q(s) \cdot \frac{a(q^{\gamma})}{\chi(\overline{q})^{\gamma}} = \chi_q\left(\frac{r_2 - r_1}{q^{\beta}}\right) \cdot \frac{a(q^{\beta})}{\chi(\overline{q})^{\beta}},$$

for all $1 \leq s < q, \gamma$ large enough. Thus, χ_q is constant and $\gamma \mapsto a(q^{\gamma})/\chi(\overline{q})^{\gamma}$ is eventually constant.

- E

We have in total

$$\chi_{q}(s) \cdot \frac{a(q^{\gamma})}{\chi(\overline{q})^{\gamma}} = \chi_{q}\left(\frac{r_{2}-r_{1}}{q^{\beta}}\right) \cdot \frac{a(q^{\beta})}{\chi(\overline{q})^{\beta}},$$

for all $1 \leq s < q, \gamma$ large enough. Thus, χ_q is constant and $\gamma \mapsto a(q^{\gamma})/\chi(\overline{q})^{\gamma}$ is eventually constant.

We have in total

$$\chi_q(s) \cdot \frac{\mathsf{a}(q^{\gamma})}{\chi(\overline{q})^{\gamma}} = \chi_q\left(\frac{\mathsf{r}_2 - \mathsf{r}_1}{q^{\beta}}\right) \cdot \frac{\mathsf{a}(q^{\beta})}{\chi(\overline{q})^{\beta}},$$

for all $1 \leq s < q, \gamma$ large enough. Thus, χ_q is constant and $\gamma \mapsto a(q^{\gamma})/\chi(\overline{q})^{\gamma}$ is eventually constant. \Box

Let λ be composite and $p \mid \lambda$. Then

$$\mathbf{n} \mapsto \chi_p\left(\frac{\mathbf{n}}{\mathbf{p}^{\nu_p(\mathbf{n})}}\right) \cdot \frac{\mathbf{a}(\mathbf{p}^{\nu_p(\mathbf{n})})}{\chi(\overline{p})^{\nu_p(\mathbf{n})}}$$

is periodic.

Proof: Similar to Proposition 1. Choose $k \in \mathbb{N}$ and $0 < r_1 < r_2 < (\lambda/p)^k$ such that $r_1 \equiv r_2 \equiv 1 \mod p, r_1p^k \equiv r_2p^k \equiv 1 \mod h\lambda/p$ and

$$a(n\lambda^k + p^k r_1) = a(n\lambda^k + p^k r_2) \qquad \forall n \in \mathbb{N}.$$

(日)

Let λ be composite and $p \mid \lambda$. Then

$$n \mapsto \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right) \cdot \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}$$

is periodic.

Proof: Similar to Proposition 1.

Choose $k \in \mathbb{N}$ and $0 < r_1 < r_2 < (\lambda/p)^k$ such that $r_1 \equiv r_2 \equiv 1 \mod p, r_1 p^k \equiv r_2 p^k \equiv 1 \mod h\lambda/p$ and

$$a(n\lambda^k + p^k r_1) = a(n\lambda^k + p^k r_2) \qquad \forall n \in \mathbb{N}.$$

.

Let λ be composite and $p \mid \lambda$. Then

$$\mathbf{n} \mapsto \chi_p\left(\frac{\mathbf{n}}{\mathbf{p}^{\nu_p(n)}}\right) \cdot \frac{\mathbf{a}(\mathbf{p}^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}$$

is periodic.

Proof: Similar to Proposition 1. Choose $k \in \mathbb{N}$ and $0 < r_1 < r_2 < (\lambda/p)^k$ such that $r_1 \equiv r_2 \equiv 1 \mod p, r_1 p^k \equiv r_2 p^k \equiv 1 \mod h\lambda/p$ and

$$a(n\lambda^k + p^k r_1) = a(n\lambda^k + p^k r_2) \qquad \forall n \in \mathbb{N}.$$

We choose n such that

$$n\lambda^k + r_1p^k \equiv sp^{\gamma+k} \mod p^{\gamma+k+1}$$

 $n\lambda^k + r_1p^k \equiv 1 \mod h\lambda/p.$

Thus, we find for large enough γ (with $eta=
u_{
m
ho}({
m r_2}-{
m r_1}))$

$$a(n\lambda^{k} + r_{1}p^{k}) = \chi_{p}(s) \cdot \frac{a(p^{\gamma+k})}{\chi(\overline{p})^{\gamma+k}}$$
$$a(n\lambda^{k} + r_{2}p^{k}) = \chi_{p}\left(\frac{r_{2} - r_{1}}{p^{\beta}}\right) \cdot \frac{a(p^{\beta+k})}{\chi(\overline{p})^{\beta+k}}.$$

We choose n such that

$$n\lambda^k + r_1p^k \equiv sp^{\gamma+k} \mod p^{\gamma+k+1}$$

 $n\lambda^k + r_1p^k \equiv 1 \mod h\lambda/p.$

Thus, we find for large enough γ (with $\beta = \nu_{\rho}(r_2 - r_1)$)

$$a(n\lambda^{k} + r_{1}p^{k}) = \chi_{p}(s) \cdot \frac{a(p^{\gamma+k})}{\chi(\overline{p})^{\gamma+k}}$$
$$a(n\lambda^{k} + r_{2}p^{k}) = \chi_{p}\left(\frac{r_{2} - r_{1}}{p^{\beta}}\right) \cdot \frac{a(p^{\beta+k})}{\chi(\overline{p})^{\beta+k}}.$$

We choose n such that

$$n\lambda^k + r_1p^k \equiv sp^{\gamma+k} \mod p^{\gamma+k+1}$$

 $n\lambda^k + r_1p^k \equiv 1 \mod h\lambda/p.$

Thus, we find for large enough γ (with $\beta = \nu_p(r_2 - r_1)$)

$$\begin{aligned} \mathsf{a}(n\lambda^{k} + r_{1}p^{k}) &= \chi_{p}(s) \cdot \frac{\mathsf{a}(p^{\gamma+k})}{\chi(\overline{p})^{\gamma+k}} \\ \mathsf{a}(n\lambda^{k} + r_{2}p^{k}) &= \chi_{p}\left(\frac{r_{2} - r_{1}}{p^{\beta}}\right) \cdot \frac{\mathsf{a}(p^{\beta+k})}{\chi(\overline{p})^{\beta+k}}. \end{aligned}$$

(日) (四) (日) (日) (日)

•
$$\lambda = p$$
: We have

$$a(n) = \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right) \cdot \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}$$
$$\cdot \prod_{q|h} \chi_q\left(\frac{n}{q^{\nu_q(n)}}\right) \cdot \frac{a(q^{\nu_q(n)})}{\chi(\overline{q})^{\nu_q(n)}}.$$

The first two factors are in the form of (1) and the rest is periodic (i.e. admits a decomposition as in (1)). The product of two decompositions (1) gives another decomposition (1).

•
$$\lambda = p$$
: We have

$$a(n) = \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right) \cdot \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}$$
$$\cdot \prod_{q|h} \chi_q\left(\frac{n}{q^{\nu_q(n)}}\right) \cdot \frac{a(q^{\nu_q(n)})}{\chi(\overline{q})^{\nu_q(n)}}.$$

The first two factors are in the form of (1) and the rest is periodic (i.e. admits a decomposition as in (1)). The product of two decompositions (1) gives another decomposition (1).

•
$$\lambda = p$$
: We have

$$a(n) = \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right) \cdot \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}$$
$$\cdot \prod_{q|h} \chi_q\left(\frac{n}{q^{\nu_q(n)}}\right) \cdot \frac{a(q^{\nu_q(n)})}{\chi(\overline{q})^{\nu_q(n)}}$$

The first two factors are in the form of (1) and the rest is periodic (i.e. admits a decomposition as in (1)). The product of two decompositions (1) gives another decomposition (1).

•
$$\lambda = p$$
: We have

$$a(n) = \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right) \cdot \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}$$
$$\cdot \prod_{q|h} \chi_q\left(\frac{n}{q^{\nu_q(n)}}\right) \cdot \frac{a(q^{\nu_q(n)})}{\chi(\overline{q})^{\nu_q(n)}}$$

The first two factors are in the form of (1) and the rest is periodic (i.e. admits a decomposition as in (1)). The product of two decompositions (1) gives another decomposition (1).

Let $u, v \in \{0, \dots, \lambda - 1\}^*$ be words.

Then, uv denotes the concatenation and $v^k = v \dots v$ the k-times concatenation.

For $u = (u_0 \dots u_\ell)$,

$$[u]_{\lambda} = \sum_{i=0}^{\ell} u_i \lambda^{\ell-i}.$$

Pumping Lemma

Let f be a λ -automatic sequence. Then there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ there exist words u, v, w over the alphabet $\{0, 1, \ldots, \lambda - 1\}$ (where v is non-empty) such that $[uvw]_{\lambda} = n$ and $f([uv^{\ell}w]_{\lambda}) = f(n)$ for all $\ell \ge 0$.

< □ > < □ > < □ > < □ >

Let $u, v \in \{0, ..., \lambda - 1\}^*$ be words. Then, uv denotes the concatenation and $v^k = v \dots v$ the k-times concatenation.

For $u = (u_0 \ldots u_\ell)$,

$$[u]_{\lambda} = \sum_{i=0}^{\ell} u_i \lambda^{\ell-i}.$$

Pumping Lemma

Let f be a λ -automatic sequence. Then there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ there exist words u, v, w over the alphabet $\{0, 1, \ldots, \lambda - 1\}$ (where v is non-empty) such that $[uvw]_{\lambda} = n$ and $f([uv^{\ell}w]_{\lambda}) = f(n)$ for all $\ell \ge 0$.

(日)

Let $u, v \in \{0, ..., \lambda - 1\}^*$ be words. Then, uv denotes the concatenation and $v^k = v \dots v$ the k-times concatenation.

For $u = (u_0 \dots u_\ell)$, $[u]_{\lambda} = \sum_{i=0}^{\ell} u_i \lambda^{\ell-i}$.

Pumping Lemma

Let f be a λ -automatic sequence. Then there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ there exist words u, v, w over the alphabet $\{0, 1, \ldots, \lambda - 1\}$ (where v is non-empty) such that $[uvw]_{\lambda} = n$ and $f([uv^{\ell}w]_{\lambda}) = f(n)$ for all $\ell \ge 0$.

< □ > < 同 > < 三 > <

Let $u, v \in \{0, ..., \lambda - 1\}^*$ be words. Then, uv denotes the concatenation and $v^k = v \dots v$ the k-times concatenation.

For $u = (u_0 \dots u_\ell)$, $[u]_{\lambda} = \sum_{i=0}^{\ell} u_i \lambda^{\ell-i}$.

Pumping Lemma

Let f be a λ -automatic sequence. Then there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ there exist words u, v, w over the alphabet $\{0, 1, \ldots, \lambda - 1\}$ (where v is non-empty) such that $[uvw]_{\lambda} = n$ and $f([uv^{\ell}w]_{\lambda}) = f(n)$ for all $\ell \ge 0$.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Schützenberger)

Any automatic sequence that is only supported on primes is eventually zero.

Proof: We argue by contradiction assuming the existence of a λ -automatic sequence supported on $Q \subset \mathbb{P}$, $|Q| = \infty$. Choose a large prime $p \in Q$. Then the pumping lemma implies th

$$p = [uvw]_{\lambda}$$

where y is a nonempty word such that $[uv^{\ell}w]_{\lambda} \in Q$ for $j \ge 0$. Furthermore:

$$[uv^{\ell}w]_{\lambda} = [u]_{\lambda}\lambda^{\ell|\nu|+|w|} + [v]_{\lambda}\lambda^{|w|}\frac{\lambda^{\ell|\nu|}-1}{\lambda^{|\nu|}-1} + [w]_{\lambda}$$

Theorem (Schützenberger)

Any automatic sequence that is only supported on primes is eventually zero.

Proof: We argue by contradiction assuming the existence of a λ -automatic sequence supported on $Q \subset \mathbb{P}$, $|Q| = \infty$.

Choose a large prime $p \in Q$. Then the pumping lemma implies that

$$p = [uvw]_{\lambda}$$

where y is a nonempty word such that $[uv^{\ell}w]_{\lambda} \in Q$ for $j \ge 0$. Furthermore:

$$[uv^{\ell}w]_{\lambda} = [u]_{\lambda}\lambda^{\ell|\nu|+|w|} + [v]_{\lambda}\lambda^{|w|}\frac{\lambda^{\ell|\nu|}-1}{\lambda^{|\nu|}-1} + [w]_{\lambda}$$

Theorem (Schützenberger)

Any automatic sequence that is only supported on primes is eventually zero.

Proof: We argue by contradiction assuming the existence of a λ -automatic sequence supported on $Q \subset \mathbb{P}$, $|Q| = \infty$. Choose a large prime $p \in Q$. Then the pumping lemma implies that

$$p = [uvw]_{\lambda}$$

where y is a nonempty word such that $[uv^{\ell}w]_{\lambda} \in Q$ for $j \ge 0$. Furthermore:

$$[uv^{\ell}w]_{\lambda} = [u]_{\lambda}\lambda^{\ell|\nu|+|w|} + [\nu]_{\lambda}\lambda^{|w|}\frac{\lambda^{\ell|\nu|}-1}{\lambda^{|\nu|}-1} + [w]_{\lambda}$$

Theorem (Schützenberger)

Any automatic sequence that is only supported on primes is eventually zero.

Proof: We argue by contradiction assuming the existence of a λ -automatic sequence supported on $Q \subset \mathbb{P}$, $|Q| = \infty$. Choose a large prime $p \in Q$. Then the pumping lemma implies that

$$p = [uvw]_{\lambda}$$

where y is a nonempty word such that $[uv^{\ell}w]_{\lambda} \in Q$ for $j \ge 0$. Furthermore:

$$[uv^{\ell}w]_{\lambda} = [u]_{\lambda}\lambda^{\ell|\nu|+|w|} + [\nu]_{\lambda}\lambda^{|w|}\frac{\lambda^{\ell|\nu|}-1}{\lambda^{|\nu|}-1} + [w]_{\lambda}$$

Theorem (Schützenberger)

Any automatic sequence that is only supported on primes is eventually zero.

Proof: We argue by contradiction assuming the existence of a λ -automatic sequence supported on $Q \subset \mathbb{P}$, $|Q| = \infty$. Choose a large prime $p \in Q$. Then the pumping lemma implies that

$$p = [uvw]_{\lambda}$$

where y is a nonempty word such that $[uv^{\ell}w]_{\lambda} \in Q$ for $j \ge 0$. Furthermore:

$$[uv^{\ell}w]_{\lambda} = [u]_{\lambda}\lambda^{\ell|\nu|+|w|} + [\nu]_{\lambda}\lambda^{|w|}\frac{\lambda^{\ell|\nu|}-1}{\lambda^{|\nu|}-1} + [w]_{\lambda}$$

Theorem (Schützenberger)

Any automatic sequence that is only supported on primes is eventually zero.

Proof: We argue by contradiction assuming the existence of a λ -automatic sequence supported on $Q \subset \mathbb{P}$, $|Q| = \infty$. Choose a large prime $p \in Q$. Then the pumping lemma implies that

$$p = [uvw]_{\lambda}$$

where y is a nonempty word such that $[uv^{\ell}w]_{\lambda} \in Q$ for $j \ge 0$. Furthermore:

$$[uv^{\ell}w]_{\lambda} = [u]_{\lambda}\lambda^{\ell|\nu|+|w|} + [\nu]_{\lambda}\lambda^{|w|}\frac{\lambda^{\ell|\nu|}-1}{\lambda^{|\nu|}-1} + [w]_{\lambda}$$

The sparse case

Claim

If a is sparse and $\alpha \mapsto a(p^{\alpha})$ is not finitely supported. Then a is p-automatic.

Proof: We have $p \mid h\lambda$ as we are in the sparse case. We only treat the case $p \mid \lambda$. Let *i* be large enough with $a(p^i) \neq 0$ and write $p^i = [uvw]_{\lambda}$. Then the pumping lemma implies that $a([uv^{\ell}w]_{\lambda}) \neq 0$ for all $\ell \geq 0$. We aim to show that $[uv^{\ell}w]_{\lambda}$ is again a power of *p*. Therefore, we need to control $[uv^{\ell}w]_{\lambda} \mod h\lambda$.

 $[w]_{\lambda} \equiv [uv^{\ell}w]_{\lambda} \mod \lambda \quad \forall \ell \geq 0.$

The sparse case

Claim

If a is sparse and $\alpha \mapsto a(p^{\alpha})$ is not finitely supported. Then a is p-automatic.

Proof: We have $p \mid h\lambda$ as we are in the sparse case.

We only treat the case $p \mid \lambda$. Let *i* be large enough with $a(p^i) \neq 0$ and write $p^i = [uvw]_{\lambda}$. Then the pumping lemma implies that $a([uv^{\ell}w]_{\lambda}) \neq 0$ for all $\ell \geq 0$. We aim to show that $[uv^{\ell}w]_{\lambda}$ is again a power of *p*. Therefore, we need to control $[uv^{\ell}w]_{\lambda} \mod h\lambda$.

 $[w]_{\lambda} \equiv [uv^{\ell}w]_{\lambda} \mod \lambda \quad \forall \ell \geq 0.$

Claim

If a is sparse and $\alpha \mapsto a(p^{\alpha})$ is not finitely supported. Then a is p-automatic.

Proof: We have $p \mid h\lambda$ as we are in the sparse case. We only treat the case $p \mid \lambda$. Let *i* be large enough with $a(p^i) \neq 0$ and write $p^i = [uvw]_{\lambda}$. Then the pumping lemma implies that $a([uv^{\ell}w]_{\lambda}) \neq 0$ for all $\ell \ge 0$. We aim to show that $[uv^{\ell}w]_{\lambda}$ is again a power of *p*. Therefore, we need to control $[uv^{\ell}w]_{\lambda} \mod h\lambda$.

Claim

If a is sparse and $\alpha \mapsto a(p^{\alpha})$ is not finitely supported. Then a is p-automatic.

Proof: We have $p \mid h\lambda$ as we are in the sparse case. We only treat the case $p \mid \lambda$. Let *i* be large enough with $a(p^i) \neq 0$ and write $p^i = [uvw]_{\lambda}$. Then the pumping lemma implies that $a([uv^{\ell}w]_{\lambda}) \neq 0$ for all $\ell \geq 0$. We aim to show that $[uv^{\ell}w]_{\lambda}$ is again a power of *p*. Therefore, we need to control $[uv^{\ell}w]_{\lambda} \mod h\lambda$.

Claim

If a is sparse and $\alpha \mapsto a(p^{\alpha})$ is not finitely supported. Then a is p-automatic.

Proof: We have $p \mid h\lambda$ as we are in the sparse case. We only treat the case $p \mid \lambda$. Let *i* be large enough with $a(p^i) \neq 0$ and write $p^i = [uvw]_{\lambda}$. Then the pumping lemma implies that $a([uv^{\ell}w]_{\lambda}) \neq 0$ for all $\ell \geq 0$. We aim to show that $[uv^{\ell}w]_{\lambda}$ is again a power of *p*. Therefore, we need to control $[uv^{\ell}w]_{\lambda} \mod h\lambda$.

Claim

If a is sparse and $\alpha \mapsto a(p^{\alpha})$ is not finitely supported. Then a is p-automatic.

Proof: We have $p \mid h\lambda$ as we are in the sparse case. We only treat the case $p \mid \lambda$. Let *i* be large enough with $a(p^i) \neq 0$ and write $p^i = [uvw]_{\lambda}$. Then the pumping lemma implies that $a([uv^{\ell}w]_{\lambda}) \neq 0$ for all $\ell \geq 0$. We aim to show that $[uv^{\ell}w]_{\lambda}$ is again a power of *p*. Therefore, we need to control $[uv^{\ell}w]_{\lambda} \mod h\lambda$.

Claim

If a is sparse and $\alpha \mapsto a(p^{\alpha})$ is not finitely supported. Then a is p-automatic.

Proof: We have $p \mid h\lambda$ as we are in the sparse case. We only treat the case $p \mid \lambda$. Let *i* be large enough with $a(p^i) \neq 0$ and write $p^i = [uvw]_{\lambda}$. Then the pumping lemma implies that $a([uv^{\ell}w]_{\lambda}) \neq 0$ for all $\ell \geq 0$. We aim to show that $[uv^{\ell}w]_{\lambda}$ is again a power of *p*. Therefore, we need to control $[uv^{\ell}w]_{\lambda} \mod h\lambda$.

$$[w]_{\lambda} \equiv [uv^{\ell}w]_{\lambda} \mod \lambda \quad \forall \ell \geq 0.$$

Proof (continued): Similar to before we have $[uv^{\ell}w]_{\lambda} \equiv [uvw]_{\lambda} \mod h$ for all $\ell \equiv 1 \mod L$ for some $L \ge 1$. Thus, $[uv^{1+Ln}w]$ has to be a power of p for all $n \in \mathbb{N}$,

$$p^{k(n)} = [u]_{\lambda} \lambda^{(1+Ln)|v|+|w|} + [v]_{\lambda} \lambda^{|w|} \frac{\lambda^{(1+Ln)|v|} - 1}{\lambda^{|v|} - 1} + [w]_{\lambda}$$
$$= \lambda^{(1+Ln)|v|+|w|} \left([u]_{\lambda} + \frac{[v]_{\lambda}}{\lambda^{|v|} - 1} \right) - \frac{[v]_{\lambda}}{\lambda^{|v|} - 1} + [w]_{\lambda}$$

Therefore, λ needs to be a power of p.

Proof (continued): Similar to before we have $[uv^{\ell}w]_{\lambda} \equiv [uvw]_{\lambda} \mod h$ for all $\ell \equiv 1 \mod L$ for some $L \ge 1$. Thus, $[uv^{1+Ln}w]$ has to be a power of p for all $n \in \mathbb{N}$,

$$p^{k(n)} = [u]_{\lambda} \lambda^{(1+Ln)|\nu|+|w|} + [\nu]_{\lambda} \lambda^{|w|} \frac{\lambda^{(1+Ln)|\nu|} - 1}{\lambda^{|\nu|} - 1} + [w]_{\lambda}$$
$$= \lambda^{(1+Ln)|\nu|+|w|} \left([u]_{\lambda} + \frac{[\nu]_{\lambda}}{\lambda^{|\nu|} - 1} \right) - \frac{[\nu]_{\lambda}}{\lambda^{|\nu|} - 1} + [w]_{\lambda}$$

Therefore, λ needs to be a power of p.

Proof (continued): Similar to before we have $[uv^{\ell}w]_{\lambda} \equiv [uvw]_{\lambda} \mod h$ for all $\ell \equiv 1 \mod L$ for some $L \ge 1$. Thus, $[uv^{1+Ln}w]$ has to be a power of p for all $n \in \mathbb{N}$,

$$p^{k(n)} = [u]_{\lambda} \lambda^{(1+Ln)|v|+|w|} + [v]_{\lambda} \lambda^{|w|} \frac{\lambda^{(1+Ln)|v|} - 1}{\lambda^{|v|} - 1} + [w]_{\lambda}$$
$$= \lambda^{(1+Ln)|v|+|w|} \left([u]_{\lambda} + \frac{[v]_{\lambda}}{\lambda^{|v|} - 1} \right) - \frac{[v]_{\lambda}}{\lambda^{|v|} - 1} + [w]_{\lambda}$$

Therefore, λ needs to be a power of p.

Let $P := \{p : \alpha \mapsto a(p^{\alpha}) \text{ is not finitely supported} \}$ which is contained in the set of prime divisors of $h\lambda$.

- |P| = 0: *a* is finitely supported trivial.
- |P| ≥ 2: a is eventually periodic by Gelfond´s Theorem trivial.
 |P| = 1: We write

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}) = f_1(\nu_p(n)) \cdot f_2(n/p^{\nu_p(n)}).$$

Let $P := \{p : \alpha \mapsto a(p^{\alpha}) \text{ is not finitely supported} \}$ which is contained in the set of prime divisors of $h\lambda$.

- |P| = 0: *a* is finitely supported trivial.
- |P| ≥ 2: a is eventually periodic by Gelfond's Theorem trivial.
 |P| = 1: We write

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}) = f_1(\nu_p(n)) \cdot f_2(n/p^{\nu_p(n)}).$$

Let $P := \{p : \alpha \mapsto a(p^{\alpha}) \text{ is not finitely supported} \}$ which is contained in the set of prime divisors of $h\lambda$.

- |P| = 0: *a* is finitely supported trivial.
- |P| ≥ 2: a is eventually periodic by Gelfond's Theorem trivial.
 |P| = 1: We write

$$egin{aligned} & a(n) = a(p^{
u_p(n)}) \cdot a(n/p^{
u_p(n)}) \ &= f_1(
u_p(n)) \cdot f_2(n/p^{
u_p(n)}). \end{aligned}$$

Let $P := \{p : \alpha \mapsto a(p^{\alpha}) \text{ is not finitely supported} \}$ which is contained in the set of prime divisors of $h\lambda$.

- |P| = 0: *a* is finitely supported trivial.
- |P| ≥ 2: a is eventually periodic by Gelfond's Theorem trivial.
 |P| = 1: We write

$$egin{aligned} a(n) &= a(p^{
u_p(n)}) \cdot a(n/p^{
u_p(n)}) \ &= f_1(
u_p(n)) \cdot f_2(n/p^{
u_p(n)}). \end{aligned}$$

Let $P := \{p : \alpha \mapsto a(p^{\alpha}) \text{ is not finitely supported} \}$ which is contained in the set of prime divisors of $h\lambda$.

- |P| = 0: *a* is finitely supported trivial.
- |P| ≥ 2: a is eventually periodic by Gelfond's Theorem trivial.
 |P| = 1: We write

$$egin{aligned} a(n) &= a(p^{
u_p(n)}) \cdot a(n/p^{
u_p(n)}) \ &= f_1(
u_p(n)) \cdot f_2(n/p^{
u_p(n)}). \end{aligned}$$