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Background

Disjointedness of additive and multiplicative

structures

Theorem (Solymosi - 2009)

For any finite set A ⊂ R,

max |A · A| , |A + A| � |A|4/3−o(1) .

Conjecture (Chowla)

Let λ(n) = (−1)k , where k is the number of prime factors of n.
Then for all a1 < a2 < . . . < am∑

n≤N

λ(n + a1) · λ(n + a2) · · ·λ(n + am) = o(N).
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Background

Sarnak Conjecture

The Möbius function is defined by

µ(n) =

 (−1)k
if n is squarefree and
k is the number of prime factors

0 otherwise

Definition: A dynamical system is said to be determinist, if its
topological entropy is 0.

Conjecture (Sarnak - 2010)

For every complex sequence u = (un)n>0 that is obtained by a
deterministic dynamical system,∑

n≤N

unµ(n) = o(N).
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Background

Multiplicative functions

Definition (Multiplicative function)

A function f : N→ C is called (completely) multiplicative if
f (nm) = f (n)f (m) for all n,m that are coprime (for all n,m)

Examples: µ, λ

Definition (Dirichlet character)

We call χ : Z→ C a Dirichlet character if

1 There exists k > 0 such that χ(n) = χ(n + k) for all n.

2 If gcd(n, k) > 1 then χ(n) = 0; if gcd(n, k) = 1 then χ(n) 6= 0.

3 χ(nm) = χ(n)χ(m) for all n,m.
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Automatic Sequences

Deterministic Finite Automata

Definition (Automaton - DFA)

A = (Q,Σ = {0, . . . , k − 1}, δ, q0, τ)

Example (Thue-Morse sequence)

a/0start b/1

0 0

1

1

n = 22 = (10110)2, u(22) = 1

u = (u(n))n≥0 = 01101001100101101001011001101001 . . .
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Automatic Sequences

Different Points of View I

(u(n))n≥0 = 01101001100101101001011001101001 . . .

Automaton (Computer Science)

a/0start b/1

0 0

1

1

Substitution (Dynamics)

Coding of the fixpoint of a
substitution:

a→ ab a 7→ 0

b → ba b 7→ 1
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Automatic Sequences

Different Points of View II

(u(n))n≥0 = 01101001100101101001011001101001 . . .

Formal Power Series (Algebra)

Algebraicity over Fq(X ).
t(X ) :=

∑
n≥0

u(n)X n

X + (1 + X )2t(X ) + (1 + X )3t(X )2 = 0

Finite Kernel

The λ-kernel of a sequence a(n) is defined as

{(a(nλk + r))n≥0 : k ≥ 0, 0 ≤ r < λk}.
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Automatic Sequences

Being automatic in different bases

Question

Can a sequence be automatic in multiple bases?

Lemma

Let λ, k ∈ N. A sequence is λ-automatic if and only if it is
λk-automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence (a(n))n≥0 is both µ and λ automatic, where
log(µ)/ log(λ) /∈ Q. Then (a(n))n≥0 is eventually periodic.
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Automatic Sequences

Simple examples and Properties

Lemma

Let (a(n))n≥0 be eventually periodic. Then it is λ-automatic for
every λ ∈ N.

Proof: Follows from considering the λ-kernel.

Lemma

Let a1(n), a2(n) be, λ-automatic sequences, then so is
(a1(n) · a2(n)).

Proof: We look at the corresponding λ-kernels:

{(a1(nλk + r) · a2(nλk + r) : k ∈ N, 0 ≤ r < λk}
⊂ {(a1(nλk + r) : k ∈ N, 0 ≤ r < λk}
· {(a2(nλk + r) : k ∈ N, 0 ≤ r < λk}.
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Automatic Sequences

Disjointedness of automatic and multiplicative

sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also
true for the associated dynamical systems.) If the automatic
sequence is primitive, then we also have a prime number theorem.

Theorem (Lemańczyk, M. - 2020?)

Let a be a primitive automatic sequence. Then it is orthogonal to
any bounded, aperiodic, multiplicative function u : N→ C, i.e.∑

n≤N

a(n)u(n) = o(N).
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Automatic Sequences

Naive Question

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet
characters).
Non-trivial counter-example: a(n) = (−1)ν2(n).

Definition (aperiodic sequence)

We call a sequence u aperiodic if for all k , ` ∈ N

1

N

∑
n≤N

u(kn + `)→ 0.
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Clemens Müllner Multiplicative automatic sequences 19. 05. 2020 11 / 33



Automatic Sequences

Naive Question

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet
characters).
Non-trivial counter-example: a(n) = (−1)ν2(n).

Definition (aperiodic sequence)

We call a sequence u aperiodic if for all k , ` ∈ N

1

N

∑
n≤N

u(kn + `)→ 0.

Clemens Müllner Multiplicative automatic sequences 19. 05. 2020 11 / 33



Automatic Sequences

Naive Question

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet
characters).
Non-trivial counter-example: a(n) = (−1)ν2(n).

Definition (aperiodic sequence)

We call a sequence u aperiodic if for all k , ` ∈ N

1

N

∑
n≤N

u(kn + `)→ 0.
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Automatic Sequences

Disjointedness of multiplicative sequences and

algebraic generating series

Theorem (Bell, Bruin and Coons - 2012)

Let K be a field of characteristic 0, let f : N→ K be a
multiplicative function, and its generating series
F (z) =

∑
n≥1 f (n)zn is algebraic over K (z).

Then either f is finitely supported or there is a natural number k
and a periodic multiplicative function χ : N→ K such that
f (n) = nkχ(n) for all n.
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Automatic Sequences

BBC-Conjecture

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence a : N→ C there exists
an eventually periodic function f : N→ C such that f (p) = a(p)
for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

The conjecture is true. Moreover, there exists h, λ such that a is
λ-automatic and coincides with χ on integers that are coprime to
hλ, where χ is either zero or a Dirichlet character.

χ is a Dirichlet character: dense case

χ = 0: sparse case.
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Automatic Sequences

Result

Theorem 1 (Konieczny, Lemańczyk, M. - 2020+)

A sequence a : N→ C is multiplicative and automatic if and only if
there exists a prime p such that a is p-automatic and of the form

a(n) = f1(νp(n)) · f2(n/pνp(n)), (1)

where f1 is eventually periodic and f2 is multiplicative, eventually
periodic and vanishes at all multiples of p.
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Automatic Sequences

Previous Results

Schlage-Puchta (2003): A criterion for multiplicative sequences
to not be automatic.

Coons (2010): Non-automaticity of special multiplicative
functions

Li (2017): completely multiplicative automatic sequences,
nonvanishing prime numbers

Allouche, Goldmakher (2018): completely multiplicative, never
vanishing automatic sequences

Li (2019): characterizing completely multiplicative automatic
sequences

Klurman, Kurlberg; Konieczny (2019): showed a stronger
version of BBC-conjecture
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Automatic Sequences

Simple example

Lemma

Let (a(n))n≥0 be multiplicative and p-automatic. Then

a(n) = a(pνp(n)) · a(n/pνp(n)),

where α 7→ a(pα) is eventually periodic.

Proof: The first part follows by multiplicativity.
As the p-kernel is finite, there exists k1, k2 ∈ N such that
a(npk1) = a(npk2) for all n ∈ N.
Choose n = pα.

Corollary

Theorem 1 is true for eventually periodic multiplicative sequences
(for every p).
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Automatic Sequences

f1

Lemma

Let f1 be eventually periodic with f1(0) = 1. Then a1(n) = f1(νp(n))
is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

{(f1(νp(npk + r)))n≥0 : k ∈ N, 0 ≤ r < pk}
= {f1(νp(n) + k)n≥0 : k ∈ N} ∪ {f1(νp(r))n≥0 : r ∈ N}

Multiplicativity: If (m, n) = 1 then either p - m or p - n. Thus, we
have νp(mn) = max(νp(m), νp(n)) and f1(mn) = f1(m)f1(n).
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Automatic Sequences

f2

Lemma

Let f2 be eventually periodic. Then a2(n) = f2(n/pνp(n)) is
p-automatic and multiplicative.

Proof: We consider once again the p-kernel:

{(a2(npk + r))n≥0 : k ∈ N, 0 ≤ r < pk}
= {(a2(npk))n≥0 : k ∈ N}
∪ {(a2(npk + r))n≥0 : k ∈ N, 0 < r < pk}

= {(f2(n))n≥0} ∪ {(f2(np` + s))n≥0 : ` ∈ N, 0 < s < p`}.

Let (m, n) = 1. Then also (m/pνp(m), n/pνp(n)) = 1. Thus, a2 is also
multiplicative.
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Automatic Sequences

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus m = m1m2 where
(m1,m2).Then χ = χm1 · χm2 , where χmi

(n) is a Dirichlet character
of modulus mi and χmi

(n) = χ(ni) with

ni ≡ n mod mi

ni ≡ 1 mod m/mi .

Corollary

Let χ be a Dirichlet character of modulus m. Then

χ(n) =
∏
p|m

χpνp(m)(n).
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Clemens Müllner Multiplicative automatic sequences 19. 05. 2020 19 / 33



Automatic Sequences

Dense case

Assumption: νp(hλ) = 1 for all p | hλ!
Thus, χ =

∏
p|hλ χp.

Proposition

Let a(n) be a dense multiplicative automatic sequence. Then

a(n) =
∏
p|hλ

χp

(
n

pνp(n)

)
· a(pνp(n))

χ(p)νp(n)
,

where χ(p) = χhλ/p(p).
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Automatic Sequences

Proof

a(n) =

∏
p|hλ

a(pνp(n))

 · a( n∏
q|hλ q

νq(n)

)

=

∏
p|hλ

a(pνp(n))

 ·
∏

p|hλ

χp

(
n∏

q|hλ q
νq(n)

)
=

∏
p|hλ

a(pνp(n))

 ·
∏

p|hλ

χp

(
n

pνp(n)

)
∏

q 6=p χp

(
qνq(n)

)


=

∏
p|hλ a(p

νp(n)) · χp

(
n

pνp(n)

)
∏

q|hλ
∏

p 6=q χp(qνq(n))

=
∏
p|hλ

χp

(
n

pνp(n)

)
· a(p

νp(n))

χ(p)νp(n)
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Automatic Sequences

Proposition 1

Let q | h. Then

n 7→ χq

(
n

qνq(n)

)
· a(qνq(n))

χ(q)νq(n)

is periodic.

Proof:

Show that χq is trivial.

Show that γ 7→ a(qνq(n))/χ(q)γ is eventually constant.
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Automatic Sequences

We consider the (finite) λ-kernel of a to find r1 ≡ r2 ≡ 1 mod hλ
such that

a(nλk + r1) = a(nλk + r2) ∀n ∈ N .

Choose n such that

nλk + r1 ≡ sqγ mod qγ+1

nλk + r1 ≡ 1 mod λh/q.

Then

a(nλk + r1) = a(qγ) · χ
(
nλk + r1

qγ

)
= a(qγ) · χq

(
nλk + r1

qγ

)
·
χhλ/q(nλk + r1)

χ(q)γ

= χq (s) · a(qγ)

χ(q)γ
.
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Automatic Sequences

We find that

νq(nλk + r2) = νq(nλk + r1 + r2 − r1) = νq(r2 − r1) = β.

Similarly,

a(nλk + r2) = a(qβ) · χ
(
nλk + r2

qβ

)
= a(qβ) · χq

(
nλk + r2

qβ

)
·
χhλ/q(nλk + r2)

χ(q)β

= χq

(
r2 − r1
qβ

)
· a(qβ)

χ(q)β
.
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Automatic Sequences

We have in total

χq (s) · a(qγ)

χ(q)γ
= χq

(
r2 − r1
qβ

)
· a(qβ)

χ(q)β
,

for all 1 ≤ s < q, γ large enough.
Thus, χq is constant and γ 7→ a(qγ)/χ(q)γ is eventually constant.
�
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Automatic Sequences

Proposition 2

Let λ be composite and p | λ. Then

n 7→ χp

(
n

pνp(n)

)
· a(pνp(n))

χ(p)νp(n)

is periodic.

Proof: Similar to Proposition 1.
Choose k ∈ N and 0 < r1 < r2 < (λ/p)k such that
r1 ≡ r2 ≡ 1 mod p, r1p

k ≡ r2p
k ≡ 1 mod hλ/p and

a(nλk + pkr1) = a(nλk + pkr2) ∀n ∈ N .
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Automatic Sequences

We choose n such that

nλk + r1p
k ≡ spγ+k mod pγ+k+1

nλk + r1p
k ≡ 1 mod hλ/p.

Thus, we find for large enough γ (with β = νp(r2 − r1))

a(nλk + r1p
k) = χp(s) · a(pγ+k)

χ(p)γ+k

a(nλk + r2p
k) = χp

(
r2 − r1
pβ

)
· a(pβ+k)

χ(p)β+k
.
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Automatic Sequences

Proof in the dense case

λ = p: We have

a(n) = χp

(
n

pνp(n)

)
· a(pνp(n))

χ(p)νp(n)

·
∏
q|h

χq

(
n

qνq(n)

)
· a(qνq(n))

χ(q)νq(n)
.

The first two factors are in the form of (1) and the rest is
periodic (i.e. admits a decomposition as in (1)).
The product of two decompositions (1) gives another
decomposition (1).

λ 6= p: By Proposition 1 & 2, a(n) is periodic.
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Automatic Sequences

Tool for the sparse case

Let u, v ∈ {0, . . . , λ− 1}∗ be words.
Then, uv denotes the concatenation and v k = v . . . v the k-times
concatenation.
For u = (u0 . . . u`),

[u]λ =
∑̀
i=0

uiλ
`−i .

Pumping Lemma

Let f be a λ-automatic sequence. Then there exists n0 ∈ N such
that for all n ≥ n0 there exist words u, v ,w over the alphabet
{0, 1, . . . , λ− 1} (where v is non-empty) such that [uvw ]λ = n and
f ([uv `w ]λ) = f (n) for all ` ≥ 0.
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Automatic Sequences

An application

Theorem (Schützenberger)

Any automatic sequence that is only supported on primes is
eventually zero.

Proof: We argue by contradiction assuming the existence of a
λ-automatic sequence supported on Q ⊂ P, |Q| =∞.
Choose a large prime p ∈ Q. Then the pumping lemma implies that

p = [uvw ]λ

where y is a nonempty word such that [uv `w ]λ ∈ Q for j ≥ 0.
Furthermore:

[uv `w ]λ = [u]λλ
`|v |+|w | + [v ]λλ

|w |λ
`|v | − 1

λ|v | − 1
+ [w ]λ

Choose now ` = p, then by Fermat´s little theorem λp|y | ≡ λ|y |

mod p so that

[uvpw ]λ ≡ [uvw ]λ ≡ 0 mod p.

But [uvpw ]λ > p, a contradiction.
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Automatic Sequences

The sparse case

Claim

If a is sparse and α 7→ a(pα) is not finitely supported. Then a is
p-automatic.

Proof: We have p | hλ as we are in the sparse case.
We only treat the case p | λ. Let i be large enough with a(pi) 6= 0
and write pi = [uvw ]λ. Then the pumping lemma implies that
a([uv `w ]λ) 6= 0 for all ` ≥ 0. We aim to show that [uv `w ]λ is again
a power of p. Therefore, we need to control [uv `w ]λ mod hλ.

[w ]λ ≡ [uv `w ]λ mod λ ∀` ≥ 0.
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Clemens Müllner Multiplicative automatic sequences 19. 05. 2020 31 / 33



Automatic Sequences

The sparse case

Claim

If a is sparse and α 7→ a(pα) is not finitely supported. Then a is
p-automatic.

Proof: We have p | hλ as we are in the sparse case.
We only treat the case p | λ. Let i be large enough with a(pi) 6= 0
and write pi = [uvw ]λ. Then the pumping lemma implies that
a([uv `w ]λ) 6= 0 for all ` ≥ 0. We aim to show that [uv `w ]λ is again
a power of p. Therefore, we need to control [uv `w ]λ mod hλ.

[w ]λ ≡ [uv `w ]λ mod λ ∀` ≥ 0.
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Automatic Sequences

The sparse case

Proof (continued): Similar to before we have
[uv `w ]λ ≡ [uvw ]λ mod h for all ` ≡ 1 mod L for some L ≥ 1. Thus,
[uv 1+Lnw ] has to be a power of p for all n ∈ N,

pk(n) = [u]λλ
(1+Ln)|v |+|w | + [v ]λλ

|w |λ
(1+Ln)|v | − 1

λ|v | − 1
+ [w ]λ

= λ(1+Ln)|v |+|w |
(

[u]λ +
[v ]λ

λ|v | − 1

)
− [v ]λ
λ|v | − 1

+ [w ]λ

Therefore, λ needs to be a power of p.
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Automatic Sequences

Proof in the sparse case

Let P := {p : α 7→ a(pα) is not finitely supported} which is
contained in the set of prime divisors of hλ.

|P | = 0: a is finitely supported - trivial.

|P | ≥ 2: a is eventually periodic by Gelfond´s Theorem - trivial.

|P | = 1: We write

a(n) = a(pνp(n)) · a(n/pνp(n))

= f1(νp(n)) · f2(n/pνp(n)).

It remains to note that f2 is multiplicative and eventually equal
to zero. Furthermore, f1 is eventually periodic as a is
p-automatic.

�
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