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Sarnak conjecture

Möbius function

The Möbius function is defined by

µ(n) =

 (−1)k
if n is squarefree and
k is the number of prime factors

0 otherwise

A sequence u is orthogonal to the Möbius function µ(n) if∑
n≤N

µ(n)un = o(
∑
n≤N

|un|) (N →∞).

Old Heuristic - Mobius Randomness Law

Any ”reasonably defined”bounded sequence independent of µ is
orthogonal to µ.
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Sarnak conjecture

Orthogonality to µ

Results

Constant sequences ⇔ PNT

Periodic sequences ⇔ PNT in arithmetic Progressions

Quasiperiodic sequences f (n) = F (αn mod 1) - Davenport

Nilsequences - Green and Tao

Horocycle Flows - Bourgain, Sarnak and Ziegler

Bounded depth circuits - Green

Some special examples/classes of automatic sequences
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Clemens Müllner Automatic sequence/Sarnak conjecture 23. Sept 2016 3 / 42



Sarnak conjecture

Orthogonality to µ

Results

Constant sequences ⇔ PNT

Periodic sequences ⇔ PNT in arithmetic Progressions

Quasiperiodic sequences f (n) = F (αn mod 1) - Davenport

Nilsequences - Green and Tao

Horocycle Flows - Bourgain, Sarnak and Ziegler

Bounded depth circuits - Green

Some special examples/classes of automatic sequences
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Clemens Müllner Automatic sequence/Sarnak conjecture 23. Sept 2016 3 / 42



Sarnak conjecture

Orthogonality to µ

Results

Constant sequences ⇔ PNT

Periodic sequences ⇔ PNT in arithmetic Progressions

Quasiperiodic sequences f (n) = F (αn mod 1) - Davenport

Nilsequences - Green and Tao

Horocycle Flows - Bourgain, Sarnak and Ziegler

Bounded depth circuits - Green

Some special examples/classes of automatic sequences
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Sarnak conjecture

Sarnak Conjecture

Definition

A dynamical system is said to be determinist, if its topological
entropy is 0.

Conjecture (Sarnak conjecture, 2010)

Every bounded complex sequence u = (un)n>0 that is obtained by a
deterministic dynamical system is orthogonal to the Möbius function
µ(n).
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Sarnak conjecture

Chowla Conjecture

Conjecture (Chowla)

Let 0 ≤ a1 < a2 < . . . < at and k1, k2, . . . , kt in {1, 2} not all even,
then as N →∞∑

n≤N

µk1(n + a1)µk2(n + a2) · · ·µkt (n + at) = o(N).

Theorem (Sarnak)

The Chowla Conjecture implies the Sarnak Conjecture.
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Sarnak conjecture Orthogonality to µ(n) vs. Sarnak conjecture

Sarnak Conjecture

Dynamical System (X ,T ) related to u

u = (un)n≥0 . . . bounded complex sequence

Tu = (un+1)n≥0 . . . shift operator

X = {T k(u) : k ≥ 0}

We say that u satisfies the Sarnak conjecture if all sequences
a = (an)n≥0 ∈ X are orthogonal to µ(n).
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Automatic Sequences

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that
σ(E ) ⊆ E k . Then if w is a fixed point of σ, i.e. σ(w) = w, then w
is a k-automatic sequence.

Example (Thue-Morse)

E = {0, 1}
σ(0) = 01
σ(1) = 10

01101001100101101001011001101001 . . .
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Automatic Sequences

Deterministic Finite Automata

Definition (Automaton - DFA)

A = (Q,Σ = {0, . . . , k − 1}, δ, q0, τ)

Example (Thue-Morse sequence)

a/0start b/1

0 0

1

1

n = 22 = (10110)2, u22 = 1

u = (un)n≥0 = 01101001100101101001011001101001 . . .
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Automatic Sequences

Different Points of View

(un)n≥0 = 01101001100101101001011001101001 . . .

Substitution

Fixpoint of the following
substitution:

0→ 01

1→ 10

Automaton

a/0start b/1

0 0

1

1
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Automatic Sequences

Properties of Automatic Sequences

For every automatic sequence u there exists the logarithmic
density

logdens(u, a) = lim
N→∞

1

log(N)

∑
1≤n≤N

1

n
1[un=a].

The subword complexity pk of an automatic sequence is (at
most) linear.The dynamical system (X ,T ) related to an
automatic sequence has zero topological entropy.

Every subsequence (uan+b)n≥0 along an arithmetic progression
of an automatic sequence (un)n≥0 is again automatic.

Let u(1)(n), . . . , u(j)(n) be automatic sequences. Then
u(n) = f (u(1)(n), . . . , u(j)(n)) is again automatic.
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Automatic Sequences

Results

Theorem 1 (M., 2016)

Every automatic sequence (an)n≥0 fulfills the Sarnak Conjecture

Theorem 2 (M., 2016)

Let A = (Q ′,Σ, δ′, q′0, τ) be a strongly connected DFAO such that
Σ = {0, . . . , k − 1} and δ′(q′0, 0) = q′0. Then the frequencies of the
letters for the prime-subsequence (ap)p∈P exist, i.e.

densP(u, α) = lim
N→∞

1

π(N)

∑
1≤p≤N

1[up=α].

Remark: All block-additive (i.e. digital) functions are covered by
Theorem 2 and they are ”usually” uniformly distributed.
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Automatic Sequences Synchronizing Automata

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

∃w0 : δ(q,w0) = a ∀q.

Example

astart b

c
0

0

0

1
1

1

w0 = 010.
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Automatic Sequences Synchronizing Automata

Synchronizing Automata

Theorem (Deshouillers + Drmota + M.)

Let u = (un)n > 0 be generated by a synchronizing automaton.
Then for every α the density

dens(u, α) = lim
N→∞

1

N

∑
1≤n≤N

1[un=α]

exists. Furthermore, the densities for the following subsequences exist

(up)p∈P

(uP(n))n∈N

Theorem (Deshouillers + Drmota + M.)

Let u = (un)n > 0 be generated by a synchronizing automaton. Then
u = (un)n>0 is orthogonal to the Möbius function µ(n).
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Then for every α the density

dens(u, α) = lim
N→∞

1

N

∑
1≤n≤N

1[un=α]

exists. Furthermore, the densities for the following subsequences exist

(up)p∈P

(uP(n))n∈N
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Automatic Sequences Transition Matrix

q1start q2

q3

0

0

0

1

1

1

2

22
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22

M0 =

 1 0 0
0 1 0
0 0 1


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Automatic Sequences Transition Matrix

q1start q2

q3

0

0

0

1

1

1

2

22

M0 =

 1 0 0
0 1 0
0 0 1

 ;M1 =

 0 1 0
1 0 0
0 0 1

 ;M2 =

 0 0 1
1 0 0
0 1 0



11 = (102)3 : M2 ◦M0 ◦M1

 1
0
0

 =

 0
0
1


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Automatic Sequences Transition Matrix

q1start q2

q3

0

0

0

1

1

1

2

22

M0 =

 1 0 0
0 1 0
0 0 1

 ;M1 =

 0 1 0
1 0 0
0 0 1

 ;M2 =

 0 0 1
1 0 0
0 1 0


T (n) := Mε0(n)Mε1(n) · · ·Mε`−1(n)

u(n) = f (T (n)e1) e1 = (1 0 0)T
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Automatic Sequences Invertible Automata

Definition

An automaton is called invertible if all transition matrices
M0, . . . ,Mk−1 are invertible and if M = M0 + . . . + Mk−1 is
primitive.

Remark:
If the matrix M = M0 + . . . + Mk−1 is primitive then the densities

dens(u, a) = lim
N→∞

1

N

∑
1≤n≤N

1[un=a]

exist.
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Automatic Sequences Invertible Automata

Results for Invertible Automata

Suppose that an automatic sequence u = (un)n≥0 is generated by an
invertible automaton.

Theorem [Drmota, Ferenczi +
Kulaga-Przymus+Lemanczyk+Mauduit]

u is orthogonal to µ(n).

Theorem[Drmota]

The frequency of each letter of the subsequence (up)p∈P exists.
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Automatic Sequences Structure of strongly connected automata

Example (Rudin-Shapiro)

astart b

c d

1

0

1

0

0

1

0

1

a, bstart

c , d

0 | id

1 | id0 | id

1 | (12)

Theorem [Mauduit + Rivat, Tao]

The Rudin-Shapiro Sequence is orthogonal to the Möbius function.
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Automatic Sequences Naturally Induced Transducer

Definition (Naturally Induced Transducer)

Let A = (Q ′,Σ, δ′, q′0) be a strongly connected automata. We call
TA = (Q,Σ, δ, q0,∆, λ) a naturally induced transducer iff

1 ∃n0 ∈ N : Q ⊆ (Q ′)n0

2 TA is synchronizing

3 “attach to each transition δ(q, a) a permutation λ(q, a)“.

4 δ′(q, a) = λ(q, a) · δ(q, a)

5 some minimality/technical conditions
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Clemens Müllner Automatic sequence/Sarnak conjecture 23. Sept 2016 23 / 42



Automatic Sequences Naturally Induced Transducer

Definition (Naturally Induced Transducer)

Let A = (Q ′,Σ, δ′, q′0) be a strongly connected automata. We call
TA = (Q,Σ, δ, q0,∆, λ) a naturally induced transducer iff

1 ∃n0 ∈ N : Q ⊆ (Q ′)n0

2 TA is synchronizing

3 “attach to each transition δ(q, a) a permutation λ(q, a)“.

4 δ′(q, a) = λ(q, a) · δ(q, a)

5 some minimality/technical conditions
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Automatic Sequences Naturally Induced Transducer

Examples

Example (Synchronizing Automaton)

astart b

0

0,1

1

astart b

0 | id
0| id
1| id

1| id
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Automatic Sequences Naturally Induced Transducer

Examples

Example (Invertible Automaton)

q1start q2

q3

0

0

0

1

1

1

2

22

q1, q2, q3start

0 | id
1 | (12)
2| (123)
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Automatic Sequences Naturally Induced Transducer

Theorem

For every strongly connected automaton A, there exists a naturally
induced transducer TA. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Example:

q′0start

q′1 q′2

q′3 q′4

01

0

1

0

1

0

1 0,1
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Theorem

For every strongly connected automaton A, there exists a naturally
induced transducer TA. All other naturally induced transducers can
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Example:
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Automatic Sequences Naturally Induced Transducer

Theorem

For every strongly connected automaton A, there exists a naturally
induced transducer TA. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Example:

q′0start

q′1 q′2

q′3 q′4

01

0

1

0

1

0

1 0,1
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′
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′
4
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Automatic Sequences Naturally Induced Transducer

Definition

Denote by

T (q,w1 . . .wr ) := λ(q,w1) ◦ λ(δ(q,w1),w2) ◦ . . .
◦ λ(δ(q,w1 . . .wr−1),wr ).

Lemma

Let A be a strongly connected automaton and TA a naturally
induced transducer. Then,

δ′(q′0,w) = π1(T (q0,w) · δ(q0,w))

holds for all w ∈ Σ∗.
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Automatic Sequences Properties of naturally induced transducers

Are some naturally induced transducers better than others?

(Oversimplified) Example

a b

c d

1

0

1

0

0,1 0,1

a, b

c , d

0 | id

1 | id0 | id
1 | id

a, b

d , c

0 | id

1 | (12)0 | (12)
1 | (12)
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Automatic Sequences Properties of naturally induced transducers

All elements of ∆ appear as values of T (q0, .) for
”
good“ naturally

induced transducer.
Do all elements of ∆ appear simultaneously as values of T (q0,w)
for w ∈ Σn for a single n, where n is large?

Example

a b

0,1

0,1
a, b

0 | (12)
1 | (12)
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Automatic Sequences Properties of naturally induced transducers

Do all elements of ∆ appear simultaneously as values of T (q0,w)
for w ∈ Σn for a single n, where n is large?
The key point is to avoid periodic behavior.

Example

a b

00,01,10,11 00,01,10,11

a, b

00 | id, 01 | id
10 | id, 11 | id
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Automatic Sequences Properties of naturally induced transducers

Continuous functions from a compact group to C

Definition (Representation)

Let G be a finite group and k ∈ N. A Representation of rank k is
a continuous homomorphism D : G → Ck×k .

Lemma

Let f be a continuous function from G to C. There exists r ∈ N
and unitary, irreducible representations D(`) = (d

(`)
i ,j )i ,j<k` along with

c` ∈ C such that

f (g) =
∑
`<r

c`d
(`)
i`,j`

(g)

holds for all g ∈ G .
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Lemma

Suppose that∑
n<N
...

D(T (n))µ(n) = o(N)

holds for all irreducible unitary representations of G . Then
u = (un)n≥0 is orthogonal to µ(n).

Clemens Müllner Automatic sequence/Sarnak conjecture 23. Sept 2016 39 / 42



Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

We follow the method of Mauduit and Rivat that they use for
studying the Rudin-Shapiro sequence.

(Adopted) Definition

Let U(n) be a sequence of unitary matrices. We say that U has the
Fourier property if there exists η > 0 and c such that for all λ, α
and t∥∥∥∥∥ 1

kλ

∑
m<kλ

U(mkα)e(mt)

∥∥∥∥∥ ≤ ck−ηλ.
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Let D be a unitary and irreducible representation of G .

(Adopted) Theorem

Suppose that D ◦ T has the Fourier property. Then we have for any
real θ∥∥∥∥∥∑

n<N

µ(n)D(T (n))e(θn)

∥∥∥∥∥� c1(k)(logN)c2(k)N1−η′

(Adopted) Theorem

Suppose that D ◦ T has the Fourier property. Then we have for any
real θ∥∥∥∥∥∑

n<N

Λ(n)D(T (n))e(θn)

∥∥∥∥∥� c1(k)(logN)c3(k)N1−η′
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Suppose that D ◦ T has the Fourier property. Then we have for any
real θ∥∥∥∥∥∑

n<N

µ(n)D(T (n))e(θn)

∥∥∥∥∥� c1(k)(logN)c2(k)N1−η′

(Adopted) Theorem

Suppose that D ◦ T has the Fourier property. Then we have for any
real θ∥∥∥∥∥∑

n<N

Λ(n)D(T (n))e(θn)

∥∥∥∥∥� c1(k)(logN)c3(k)N1−η′
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Möbius
function.
One has to work more carefully to extract the main term.
The actual frequencies can be made explicit and are determined by
the behavior of the automatic sequence along arithmetic
progressions.

Primes vs all natural Numbers

a b c

0

1,2

0,2

1

0,2

1
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function.
One has to work more carefully to extract the main term.
The actual frequencies can be made explicit and are determined by
the behavior of the automatic sequence along arithmetic
progressions.

Primes vs all natural Numbers

a b c

0

1,2

0,2

1

0,2

1
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