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Automatic Sequences

Definition (Automaton - DFA)

A:(Q,Z:{O,...,k—1},5,(7077')

Example (Thue-Morse sequence)
0 0
1

s —(0}_Yon)
1

n=22=(10110);, up=1
u = (u,),=0 = 01101001100101101001011001101001 . . .

V.
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Examples of Automatic Sequences

@ Periodic sequences.
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Examples of Automatic Sequences

@ Periodic sequences.

@ g-additive function modulo m: u, = f(n) mod m

= f(gj(n)) and £(0) = 0.

j>0

@ g-block-additive function modulo m: u, = f(n) mod m

= Z f(ej(n),...,egj+r(n)) and £(0,...,0) =0.

Jj=0
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Properties of Automatic Sequences

@ For every automatic sequence u there exists the logarithmic

density
1
E S N
5 lun=al

1<n<N

logdens(u, a) = ,Jinoo log(N)
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Properties of Automatic Sequences

@ For every automatic sequence u there exists the logarithmic

density
1
E S N
5 lun=al

1<n<N

logdens(u, a) = ,Jinoo log(N)

@ The subword complexity px of an automatic sequence is (at
most) linear.

o Every subsequence (u,,4p)n>0 along an arithmetic progression
of an automatic sequence (u,),>o is again automatic.

o Let u®M(n),...,uY(n) be automatic sequences. Then
u(n) = f(u®(n),...,uY(n)) is again automatic.
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General Idea

@ Start with an automatic sequence u, that is uniformly
distributed on the output alphabet.
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General Idea

@ Start with an automatic sequence u, that is uniformly
distributed on the output alphabet.

o Consider a relatively sparse subsequence u,,, that has the same
asymptotic frequencies. (The size of the gaps needs to increase
sufficiently fast.)

@ This subsequence should be pseudo-random (or normal) on the
output alphabet.
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Thue-Morse sequence along Piatetski-Shapiro

sequence | n©|

Thue-Morse sequence (t,)n>0:
011010011001011010010110011010011001011001101. ...
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Thue-Morse sequence along Piatetski-Shapiro

sequence | n©|

Thue-Morse sequence (t,)n>0:
011010011001011010010110011010011001011001101. ...

Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2015+)
l1<c<3/2:

1=

#{O§n<N:thcJ:0}z >
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Subsequences along | n¢|

Theorem (Deshouillers, Drmota and Morgenbesser, 2012)

Let u, be a k-automatic sequence (on an alphabet .A) and
1<c<7/5.

Then for each a € A the asymptotic density dens(uj,c|,a) of ain
the subsequence u,c exists if and only if the asymptotic density of a
in u, exists and we have

dens(ujpe|, a) = dens(up, a).
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Thue-Morse sequence along squares

Thue-Morse sequence (t,),>0:
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Thue-Morse sequence along squares

Thue-Morse sequence (t,),>0:
011010011001011010010110011010011001011001101. ..
Mauduit and Rivat (2009):

#{0<n<N:tp=0}r~

N
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Thue-Morse sequence along squares

Thue-Morse sequence (t,),>0:
011010011001011010010110011010011001011001101. ..
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N

Solution of a Conjecture of Gelfond (1968).
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Subsequences along squares

Theorem (M., 2017+)

Let u, be a k-automatic sequence (on an alphabet .A) generated by
a strongly connected automaton such that a initial state is mapped
to itself under 0. Then for each a € A the asymptotic density

dens(uy,2, a)

exists (and can be computed).
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Thue-Morse sequence along primes

Thue-Morse sequence (t,),>0:
011010011001011010010110011010011001011001101. ..
Mauduit and Rivat (2010):

m(N)
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Subsequences along primes

Theorem (M., 2017+)

Let u, be a k-automatic sequence (on an alphabet .A) generated by
a strongly connected automaton such that a initial state is mapped
to itself under 0. Then for each a € A the asymptotic density

dens(up,, a)

exists, where p, denotes the n-th prime number (and can be
computed).
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Sarnak Conjecture for automatic sequences

Theorem (M., 2016)

Let u, be a complex-valued automatic sequence.
Then we have

where p(n) denotes the Mobius function.

This generalizes several results by Dartyge and Tenenbaum
(Thue-Morse); Mauduit and Rivat (Rudin-Shapiro); Tao
(Rudin-Shapiro); Drmota (invertible); Ferenczi, Kulaga-Przymus,
Lemanczyk, and Mauduit (invertible); Deshoulliers, Drmota and M.
(synchronizing).
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Thue-Morse sequence along squares

p,((z) ... subword complexity of (t,2),>0.
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Thue-Morse sequence along squares

p,(< ). subword complexity of (t2)n>0-

Conjecture (Allouche and Shallit, 2003)

(2) _ 2k

Equivalently: every block B € {0,1}* k > 1, appears in (£y2)n0-
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Thue-Morse sequence along squares

p,(< ). subword complexity of (t2)n>0-

Conjecture (Allouche and Shallit, 2003)

(2) _ 2k

Equivalently: every block B € {0,1}* k > 1, appears in (£y2)n0-

(Moshe, 2007): p®) = 2k,
But what can be said about the frequency of a given block?
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Definition

A sequence (u,)n>0 € {0, 1} is normal if for any k € N and any
B = (bo,...,bk1) € {0,1}%, we have

1
lim —#{I < N up = bo, ey Uipk—1 = bk—l} =%

N—oo N 2 '
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Definition

A sequence (u,)n>0 € {0, 1} is normal if for any k € N and any
B = (bo,...,bk1) € {0,1}%, we have

1
lim —#{I < N up = bo, ey Uipk—1 = bk—l} =%

N—oo N 2

There are only few (known) explicit examples of normal sequences.
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Normal subsequences of the Thue-Morse sequence

Theorem (Drmota + Mauduit + Rivat, 2013+)

The sequence (t,2) is normal.
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Normal subsequences of the Thue-Morse sequence

Theorem (Drmota + Mauduit + Rivat, 2013+)

The sequence (t,2) is normal.

Theorem (M. + Spiegelhofer, 2015+)
Suppose that 1 < ¢ < 3/2. Then the sequence (t|,|) is normal.
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Normal subsequences

Theorem (M., 2017+)

Let f(n) be a block-additive function and u, = f(n) mod m an
automatic sequence which is uniformly distributed on the alphabet
{0,...,m — 1} along arithmetic subsequences.

Then the sequence (u|c|)n>0 is normal for all c with 1 < ¢ < 4/3.
Furthermore, (u,2),>0 is normal.
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Conjecture (1)

Suppose that ¢ > 1 and ¢ ¢ Z. Then for every automatic sequence
u, (on an alphabet A) the asymptotic density dens(ujnc|,a) of

a € A in the subsequence (uj,|) exists if and only if the asymptotic
density of a in u, exists and we have up to periodic behavior

,\I'Lmoo#{” <N, Uipe| = bo, . . ., U (n4k-1)c] = bkfl}

= dens(u,, by) - - - dens(uy, bx_1)

for every k > 1 and for all by, ..., b1 € A.
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Conjecture (2)

Let P(x) be a positive integer valued polynomial and u,, an
automatic sequence generated by a strongly connected automaton.
Then, for every a € A the densities 6, = dens(up(n), a) exists and
we have (up to periodic behavior)

,\I'Lfnoo#{” < N, up(ny = bo, ..., Up(ntk—1) = b—1}

= 6b0"‘5bk,1

for every k > 1 and for all by, ..., b1 € A.
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Let u, be an automatic sequence and ¢(n) a positive sequence such
that ¢(n)/n is non-decreasing.

What can be said about uj4(n),?
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Let u, be an automatic sequence and ¢(n) a positive sequence such
that ¢(n)/n is non-decreasing.

What can be said about uj4(n),?

@ We cannot expect general results for exponentially growing
sequences ¢(n).

o If ¢(n) = an + b with integers a, b. Then ug(,) is again an
automatic sequence.

o If ¢(n) = nlog,(n) then t ) behaves like the Thue-Morse
sequence t,, but the density for blocks of length 2 does not
exist. (Deshouillers + Drmota + Morgenbesser (2012))
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@ Rewrite the statement in terms of exponential sums.
E.g. dens(t,2,0) = 1/2 holds if

D e (%”2))‘ = o(N),

n<N

where e(x) = exp(2mix).
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@ Rewrite the statement in terms of exponential sums.
E.g. dens(t,2,0) = 1/2 holds if

e () ‘ ~ o(N),

n<N

where e(x) = exp(2mix).
@ Use independence of , high” and , low" digits.
@ Statement involving the discrete Fourier transform
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@ Rewrite the statement in terms of exponential sums.
E.g. dens(t,2,0) = 1/2 holds if

e () ‘ ~ o(N),

n<N

where e(x) = exp(2mix).
@ Use independence of , high” and , low" digits.
@ Statement involving the discrete Fourier transform

Fulh.a) = 35 3 elasa) — hu2 )

u<2A

@ Continuation of the example:
[Fa(h, 1/2)] < 27" [Fa_m(h, 1/2)],

for some m and n > 0.
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Representation of automatic sequences

Example (Rudin-Shapiro)

0 0
start — g
0 0
i 1
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Representation of automatic sequences

Example (Rudin-Shapiro)

0id

. start —>
0 0

0lid| |1]id

1|(12)
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Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally
induced transducer 74.
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Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally
induced transducer T4. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Example:
0](12)
1o start —(_ 4o, 91+ G
start —> 1](23)
0
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Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally
induced transducer T4. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Example:
0](12)
1 start —(_ g0, 91, G5
0](12)
start
r —> 1] id 1](23)
0
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Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally
induced transducer T4. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Example:
0](12)
19 start —(_ g0, 91, G5
0](12)
start —
0
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Fibonacci Base

Theorem (Drmota, M., Spiegelhofer, 2017+)

Let s,(n) be the Zeckendorf sum-of-digits function and m(n) a
bounded multiplicative function. Then we have

> (-1)%m(n) = o(N) (N — o).

n<N
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Fibonacci Base

Theorem (Drmota, M., Spiegelhofer, 2017+)

Let s,(n) be the Zeckendorf sum-of-digits function and m(n) a
bounded multiplicative function. Then we have

> (-1)%m(n) = o(N) (N — o).

n<N

This implies that the Zeckendorf sum-of-digits function is

orthogonal to the Mdbius function.
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