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Möbius function

The Möbius function is defined by

µ(n) =

 (−1)k if n is squarefree and
k is the number of prime factors

0 otherwise

A sequence u is orthogonal to the Möbius function µ(n) if∑
n≤N

µ(n)un = o(
∑
n≤N
|un|) (N →∞).

Old Heuristic - Mobius Randomness Law
Any ”reasonably defined (easy)”bounded sequence independent of µ
is orthogonal to µ.
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Orthogonality to µ

Results
Constant sequences ⇔ PNT
Periodic sequences ⇔ PNT in arithmetic Progressions
Quasiperiodic sequences f (n) = F (αn mod 1) - Davenport
Nilsequences - Green and Tao
Horocycle Flows - Bourgain, Sarnak and Ziegler
Dynamical systems with discrete spectrum
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Clemens Müllner Möbius orthogonality for automatic sequences and beyond 24. 05. 2018 3 / 24



Orthogonality to µ

Results
Constant sequences ⇔ PNT
Periodic sequences ⇔ PNT in arithmetic Progressions
Quasiperiodic sequences f (n) = F (αn mod 1) - Davenport
Nilsequences - Green and Tao
Horocycle Flows - Bourgain, Sarnak and Ziegler
Dynamical systems with discrete spectrum
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Sarnak Conjecture

Definition
A dynamical system is said to be deterministic, if its topological
entropy is 0.

Conjecture (Sarnak conjecture, 2010)
Every bounded complex sequence u = (un)n>0 that is obtained by a
deterministic dynamical system is orthogonal to the Möbius function
µ(n).
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Automatic Sequences

Automatic Sequences

Definition
Let E be a finite set and σ a k-uniform morphism such that
σ(E ) ⊆ E k . Then if w is a fixed point of σ, i.e. σ(w) = w, then w
is a k-automatic sequence.

Example (Thue-Morse)
E = {0, 1}
σ(0) = 01
σ(1) = 10

01101001100101101001011001101001 . . .
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Clemens Müllner Möbius orthogonality for automatic sequences and beyond 24. 05. 2018 5 / 24



Automatic Sequences

Automatic Sequences

Definition
Let E be a finite set and σ a k-uniform morphism such that
σ(E ) ⊆ E k . Then if w is a fixed point of σ, i.e. σ(w) = w, then w
is a k-automatic sequence.

Example (Thue-Morse)
E = {0, 1}
σ(0) = 01
σ(1) = 10

01101001100101101001011001101001 . . .
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Automatic Sequences

Deterministic Finite Automata
Definition (Automaton - DFA)

A = (Q,Σ = {0, . . . , k − 1}, δ, q0, τ)

Example (Thue-Morse sequence)

a/0start b/1

0 0

1

1

n = 22 = (10110)2, u22 = 1

u = (un)n≥0 = 01101001100101101001011001101001 . . .
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Automatic Sequences

Results I

Theorem (M., 2016)
Every automatic sequence (an)n≥0 fulfills the Sarnak Conjecture

Theorem 2 (M., 2016)
Under suitable (weak) conditions one also gets a Prime Number
Theorem for automatic sequence.
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Automatic Sequences Synchronizing Automata

Synchronizing Automata

Definition (Synchronizing Automaton / Word)
∃w0 : δ(q,w0) = a ∀q.

Example

astart b

c
0

0

0

1
1

1

w0 = 010.
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Automatic Sequences Transition Matrix

q1start q2

q3

0

0

0

1
1

1

2

22
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Automatic Sequences Transition Matrix

q1start q2

q3

0

0

0

1
1

1

2

22

M0 =

 1 0 0
0 1 0
0 0 1


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Automatic Sequences Transition Matrix

q1start q2

q3

0

0

0

1
1

1

2

22

M0 =

 1 0 0
0 1 0
0 0 1

 ; M1 =

 0 1 0
1 0 0
0 0 1


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Automatic Sequences Transition Matrix

q1start q2

q3

0

0

0

1
1

1

2

22

M0 =

 1 0 0
0 1 0
0 0 1

 ; M1 =

 0 1 0
1 0 0
0 0 1

 ; M2 =

 0 0 1
1 0 0
0 1 0


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Automatic Sequences Transition Matrix

q1start q2

q3

0

0

0

1
1

1

2

22

M0 =

 1 0 0
0 1 0
0 0 1

 ; M1 =

 0 1 0
1 0 0
0 0 1

 ; M2 =

 0 0 1
1 0 0
0 1 0



11 = (102)3 : M2 ◦M0 ◦M1

 1
0
0

 =

 0
0
1


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Automatic Sequences Transition Matrix

q1start q2

q3

0

0

0

1
1

1

2

22

M0 =

 1 0 0
0 1 0
0 0 1

 ; M1 =

 0 1 0
1 0 0
0 0 1

 ; M2 =

 0 0 1
1 0 0
0 1 0


T (n) := Mε0(n)Mε1(n) · · ·Mε`−1(n)

u(n) = f (T (n)e1) e1 = (1 0 0)T
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Automatic Sequences Invertible Automata

Definition
An automaton is called invertible if all transition matrices
M0, . . . ,Mk−1 are invertible and if M = M0 + . . . + Mk−1 is
primitive.

Remark:
If the matrix M = M0 + . . . + Mk−1 is primitive then the densities

dens(u, a) = lim
N→∞

1
N

∑
1≤n≤N

1[un=a]

exist.
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Automatic Sequences Invertible Automata

Theorem (M., 2016)
For every strongly connected automaton A, there exists a naturally
induced transducer TA. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Example:

q′0start

q′1 q′2

q′3 q′4

01

0
1

0

1
0

1 0,1

q′0, q′1, q′2start

q′0, q′3, q′4

0|(12)

1|(23)0|(12)
1| id
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Automatic Sequences Invertible Automata

Techniques

Use and adopt a framework of Mauduit and Rivat developed for the
Rudin-Shapiro sequence.

Carry Property: The contribution of high and low digits is

”independent“.
Fourier Property:
We say that U has the Fourier property if there exists η > 0
and c such that for all λ, α and t∥∥∥∥∥∥ 1

kλ
∑

m<kλ
U(mkα)e(mt)

∥∥∥∥∥∥ ≤ ck−ηλ.
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Clemens Müllner Möbius orthogonality for automatic sequences and beyond 24. 05. 2018 17 / 24



Automatic Sequences Invertible Automata

Zeckendorf Representation

Fibonacci numbers
F0 = 0,F1 = 1 and Fk+2 = Fk+1 + Fk for k ≥ 0.

Fn = ϕn − (−ϕ)−n
√

5
,

where, ϕ is the golden ratio.

Zeckendorf Representation
Every positive integer n admits a unique representation

n =
∑
i≥2

εi(n)Fi ,

where, εi(n) ∈ {0, 1} and εi = 1⇒ εi+1 = 0.
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Zeckendorf sum-of-digits Function

Definition
We denote by

sϕ(n) =
∑
i≥2

εi(n)

the Zeckendorf sum-of-digits function.

We note that sϕ(n) is the least k such that n is the sum of k
Fibonacci numbers.
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Results II

Theorem (Drmota, M., Spiegelhofer, 2017)
Let sϕ(n) be the Zeckendorf sum-of-digits function and m(n) a
bounded multiplicative function. Then we have∑

n<N
(−1)sϕ(n)m(n) = o(N) (N →∞).

This implies that the Zeckendorf sum-of-digits function is
orthogonal to the Möbius function.
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Fixpoint of a Substitution

A Morphism

a 7→ ab
b 7→ c
c 7→ cd
d 7→ a.

This gives the sequence (−1)sϕ(n) under the coding
τ(a) = τ(d) = 1, τ(b) = τ(c) = −1.

This is one of the first examples of a substitution with non-constant
length to be orthogonal to the Möbius function.
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A DFAO

We use as input the Zeckendorf representation of n, i.e.
εk(n), . . . , ε0(n):

astart c

bd

0

1 0

0

10
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Sketch of the Proof

Use the Kátai Criterion to reduce the problem to∑
n≤N

(−1)sϕ(pn)+sϕ(qn) = o(N),

for all different primes p, q.
Use a generating function approach and “quasi-additivity” of
(−1)sϕ(pn)+sϕ(qn) to reduce this to:

sϕ(pn0) 6≡ sϕ(qn0) mod 2 (1)

for some n0.
Show (1).
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Kátai Criterion
Suppose that (xn) is a bounded complex valued sequence with
values in a finite set and that for every pair (p, q) of different prime
numbers we have∑

n≤N
xpnxqn = o(N).

Then for all bounded multiplicative functions m(n) it follows that∑
n≤N

xnm(n) = o(N).
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Quasi Additivity

Definition
We say that n1 and n2 are r -separated at position k if εi(n1) = 0 for
i ≥ k − r and εi(n2) = 0 for i ≤ k + r .

Example:
n1 = 4⇒ 0000101

n2 = 29⇒ 1010000
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Quasi Additivity

Definition (for integer base by Kropf, Wagner)
We call a function f (n) quasi-additive (with respect to the
Zeckendorf expansion) if there exists r ≥ 0 such that

f (n1 + n2) = f (n1) + f (n2)

for all integers n1, n2 that are r separated.
f (n1) = f (n2) if the Zeckendorf expansion of n1 and n2
coincide up to ”shifts“.
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Lemma
Let q > p ≥ 2 and f (n) = sϕ(pn) + sϕ(qn). Then f (n) is
quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch):
It suffices to work with sϕ(mn) as the sum of quasi-additive
functions is again quasi-additive.
Choose r such that ϕr−1 < m.
n1 < Fk−r ⇒ mn1 < Fk .
εi(n2) = 0∀i < k + r ⇒ εi(mn2) = 0∀i < k .
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Clemens Müllner Möbius orthogonality for automatic sequences and beyond 24. 05. 2018 27 / 24



Automatic Sequences Invertible Automata

Generating Functions Approach
Let f be a quasi-additive function and

H(x , z) :=
∑
k≥3

x k ∑
Fk−1≤n<Fk

z f (n).

Note that

[x k ]H(x ,−1) =
∑

Fk−1≤n<Fk

(−1)sϕ(pn)+sϕ(qn).

Let B be the set of integers n whose Zeckendorf expansion ends
with exactly r zeros and that can not be decomposed into positive,
r -separated summands. Let

B(x , z) =
∑
n∈B

x `(n)z f (n),

where `(n) = k if Fk−1 ≤ n < Fk .
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Thus by decomposing n into parts belonging to B, we find

H(x , z) = 1
1− x

1
1− B(x , z) x2r+1

1−x
B ′(x , z)

= B ′(x , z)
1− x − x2r+1B(x , z) .

The dominant singularity of H(x , 1) is at x0 = 1
ϕ

.
This is due to the fact that x = x0 is a solution for

x + x2r+1B(x , 1) = 1.

It suffices to show that there exists no solution in |x | < x0 + ε for

x + x2r+1B(x ,−1) = 1.
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It remains to find n such that

sϕ(pn) + sϕ(qn) ≡ 1 mod 2.

The key point is to find n1, n2 such that

sϕ(pn1) + sϕ(pn2) ≡ sϕ(p(n1 + n2)) mod 2
sϕ(qn1) + sϕ(qn2) ≡ sϕ(q(n1 + n2)) + 1 mod 2.
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Open Questions

1 Other base: G0 = 0,G1 = 1,Gk+1 = aGk + Gk−1.
2 More general bases: Ostrowski numeration.
3 Replace the sum-of-digits function by a block-additive function.
4 Automatic sequences with respect to the Zeckendorf

numeration.
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