Multiplicative automatic sequences

Clemens Müllner

with Jakub Konieczny, Mariusz Lemańczyk

TU Wien

Tuesday, February 09, 2021

[Background](#page-1-0)

Disjointedness of additive and multiplicative structures

Theorem (Solymosi - 2009)

For any finite set $A \subset \mathbb{R}$,

$$
\max \left| A \cdot A \right|, \left| A + A \right| \gg \left| A \right|^{4/3 - o(1)}.
$$

Let $\lambda(n) = (-1)^k$, where k is the number of prime factors of n. Then for all $a_1 < a_2 < \ldots < a_m$

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\lambda(n+a_1)\cdot\lambda(n+a_2)\cdots\lambda(n+a_m)=0.
$$

4 0 F

[Background](#page-1-0)

Disjointedness of additive and multiplicative structures

Theorem (Solymosi - 2009)

For any finite set $A \subset \mathbb{R}$,

$$
\mathsf{max} \left| A \cdot A \right|, \left| A + A \right| \gg \left| A \right|^{4/3 - o(1)}
$$

Conjecture (Chowla)

Let $\lambda(n) = (-1)^k$, where k is the number of prime factors of n. Then for all $a_1 < a_2 < \ldots < a_m$

.

4 D F

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\lambda(n+a_1)\cdot\lambda(n+a_2)\cdots\lambda(n+a_m)=0.
$$

Sarnak Conjecture

The Möbius function is defined by

$$
\mu(n) = \begin{cases}\n(-1)^k & \text{if } n \text{ is squarefree and} \\
0 & \text{otherwise.} \n\end{cases}
$$

A dynamical system is said to be determinist, if its topological entropy is 0.

For every complex sequence $u = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system,

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u_n\mu(n)=0.
$$

Sarnak Conjecture

The Möbius function is defined by

$$
\mu(n) = \begin{cases}\n(-1)^k & \text{if } n \text{ is squarefree and} \\
0 & \text{otherwise.} \n\end{cases}
$$

A dynamical system is said to be determinist, if its topological entropy is 0.

For every complex sequence $u = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system,

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u_n\mu(n)=0.
$$

Sarnak Conjecture

The Möbius function is defined by

$$
\mu(n) = \begin{cases}\n(-1)^k & \text{if } n \text{ is squarefree and} \\
0 & \text{otherwise.} \n\end{cases}
$$

A dynamical system is said to be determinist, if its topological entropy is 0.

Conjecture (Sarnak - 2010)

For every complex sequence $u = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system,

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u_n\mu(n)=0.
$$

Multiplicative functions

Definition (Multiplicative function)

A function $f : \mathbb{N} \to \mathbb{C}$ is called *(completely)* multiplicative if $f(nm) = f(n)f(m)$ for all n, m that are coprime (for all n, m).

Examples: μ , λ

We call $\chi : \mathbb{Z} \to \mathbb{C}$ a Dirichlet character (of modulus m) if

- **1** There exists $m > 0$ such that $\chi(n) = \chi(n+m)$ for all n.
- 2 If gcd $(n, m) > 1$ then $\chi(n) = 0$; if gcd $(n, m) = 1$ then $\chi(n) \neq 0.$
- \bullet x is completely multiplicative.

∢ □ ▶ ∢ _□ ▶ ∢ ∃ ▶ ∢

Multiplicative functions

Definition (Multiplicative function)

A function $f : \mathbb{N} \to \mathbb{C}$ is called *(completely)* multiplicative if $f(nm) = f(n)f(m)$ for all n, m that are coprime (for all n, m).

Examples: μ, λ

We call $\chi : \mathbb{Z} \to \mathbb{C}$ a Dirichlet character (of modulus m) if

- **1** There exists $m > 0$ such that $\chi(n) = \chi(n+m)$ for all n.
- 2 If gcd $(n, m) > 1$ then $\chi(n) = 0$; if gcd $(n, m) = 1$ then $\chi(n) \neq 0.$
- \bullet x is completely multiplicative.

∢ □ ▶ ∢ _□ ▶ ∢ ∃ ▶ ∢

Multiplicative functions

Definition (Multiplicative function)

A function $f : \mathbb{N} \to \mathbb{C}$ is called *(completely)* multiplicative if $f(nm) = f(n)f(m)$ for all n, m that are coprime (for all n, m).

Examples: μ, λ

Definition (Dirichlet character)

We call $\chi : \mathbb{Z} \to \mathbb{C}$ a Dirichlet character (of modulus m) if

- **1** There exists $m > 0$ such that $\chi(n) = \chi(n+m)$ for all n.
- **2** If gcd $(n, m) > 1$ then $\chi(n) = 0$; if gcd $(n, m) = 1$ then $\chi(n) \neq 0$.
- \bullet x is completely multiplicative.

4 D F

Definition (Automaton - DFA)

$$
\mathcal{A} = (\mathcal{Q}, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)
$$

$n = 22 = (10110)_{2}$, $u(22) = 1$ $u = (u(n))_{n>0} = 011010011001011001011001101001...$

Definition (Automaton - DFA)

$$
\mathcal{A} = (\mathit{Q}, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)
$$

Example (Thue-Morse sequence)

$n = 22 = (10110)$ ₂, $u(22) = 1$ $u = (u(n))_{n>0} = 011010011001011001011001101001...$

Clemens Mullner ¨ [Multiplicative automatic sequences](#page-0-0) 09. 02. 2021 5 / 25

Definition (Automaton - DFA)

$$
\mathcal{A} = (\mathit{Q}, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)
$$

Example (Thue-Morse sequence)

 $n = 22 = (10110)_2,$ $u(22) = 1$

 $u = (u(n))_{n>0} = 011010011001011001011001101001...$

Definition (Automaton - DFA)

$$
\mathcal{A} = (\mathcal{Q}, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)
$$

Example (Thue-Morse sequence)

 $n = 22 = (10110)_2,$ $u(22) = 1$ $u = (u(n))_{n>0} = 011010011001011001011001100101...$

Different Points of View I

$(u(n))_{n>0} = 01101001100101101001011001101001...$

Coding of the fixpoint of a constant-length substitution:

$$
a \to ab \qquad a \mapsto 0
$$

$$
b \to ba \qquad b \mapsto 1
$$

Different Points of View I

$(u(n))_{n>0} = 01101001100101101001011001101001...$

Coding of the fixpoint of a constant-length substitution:

$$
a \to ab \qquad a \mapsto 0
$$

$$
b \to ba \qquad b \mapsto 1
$$

Different Points of View I

$(u(n))_{n>0} = 01101001100101101001011001101001...$

Substitution (Dynamics)

Coding of the fixpoint of a constant-length substitution:

$$
a \to ab \qquad a \mapsto 0
$$

$$
b \to ba \qquad b \mapsto 1
$$

Different Points of View II

$(u(n))_{n\geq 0} = 01101001100101101001011001101001...$

Algebraicity over $F_q(X)$. $t(X) := \sum u(n)X^n$ $X+(1+X)^2t(X)+(1+X)^3t(X)^2=0$

The λ -kernel of a sequence $a(n)$ is defined as

$$
\{(a(n\lambda^k+r))_{n\geq 0}:k\geq 0,0\leq r<\lambda^k\}.
$$

 $a(n)$ is λ -automatic iff its λ -kernel is finite.

4 D F

Different Points of View II

 $(u(n))_{n>0} = 01101001100101101001011001101001...$

Formal Power Series (Algebra)

Algebraicity over $F_q(X)$. $t(X) := \sum u(n)X^n$ $n \geq 0$ $X+(1+X)^2t(X)+(1+X)^3t(X)^2=0$

The λ -kernel of a sequence $a(n)$ is defined as

$$
\{(a(n\lambda^k+r))_{n\geq 0}:k\geq 0,0\leq r<\lambda^k\}.
$$

 $a(n)$ is λ -automatic iff its λ -kernel is finite.

4 D F

Different Points of View II

 $(u(n))_{n\geq 0} = 01101001100101101001011001101001...$

Formal Power Series (Algebra)

Algebraicity over $F_q(X)$. $t(X) := \sum u(n)X^n$ $n \geq 0$ $X+(1+X)^2t(X)+(1+X)^3t(X)^2=0$

Finite Kernel

The λ -kernel of a sequence $a(n)$ is defined as

$$
\{(a(n\lambda^k+r))_{n\geq 0}:k\geq 0,0\leq r<\lambda^k\}.
$$

 $a(n)$ is λ -automatic iff its λ -kernel is finite.

 \leftarrow \Box

∢母→

 QQ

Question

Can a sequence be automatic in multiple bases?

Let $\lambda, k \in \mathbb{N}$. A sequence is λ -automatic if and only if it is λ^k -automatic.

Proof works by considering the kernel.

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $log(\mu)/log(\lambda) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

4 0 F

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}$. A sequence is λ -automatic if and only if it is λ^k -automatic.

Proof works by considering the kernel.

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $log(\mu)/log(\lambda) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

 Ω

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and \mathcal{B}

4 0 F

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}$. A sequence is λ -automatic if and only if it is λ^k -automatic.

Proof works by considering the kernel.

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $log(\mu)/log(\lambda) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

 Ω

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$ and \mathcal{B}

4 0 F

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}$. A sequence is λ -automatic if and only if it is λ^k -automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $log(\mu)/log(\lambda) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

Lemma

Let $(a(n))_{n>0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Let $a_1(n)$, $a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

Proof: We look at the corresponding λ -kernels:

 $\{(a_1(n\lambda^k+r)\cdot a_2(n\lambda^k+r): k\in\mathbb{N}, 0\leq r<\lambda^k\}$ $\subset \{ (a_1(n\lambda^k+r) : k \in \mathbb{N}, 0 \leq r < \lambda^k \}$ $\cdot \{ (a_2(n\lambda^k+r) : k \in \mathbb{N}, 0 \le r < \lambda^k \}.$

∢ □ ▶ ⊣ *←* □

Lemma

Let $(a(n))_{n>0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Let $a_1(n)$, $a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

Proof: We look at the corresponding λ -kernels:

 $\{(a_1(n\lambda^k+r)\cdot a_2(n\lambda^k+r): k\in\mathbb{N}, 0\leq r<\lambda^k\}$ $\subset \{ (a_1(n\lambda^k+r) : k \in \mathbb{N}, 0 \leq r < \lambda^k \}$ $\cdot \{ (a_2(n\lambda^k+r) : k \in \mathbb{N}, 0 \le r < \lambda^k \}.$

∢ □ ▶ ⊣ *←* □

Lemma

Let $(a(n))_{n>0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n)$, $a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

Proof: We look at the corresponding λ -kernels:

$$
\{(a_1(n\lambda^k+r)\cdot a_2(n\lambda^k+r): k\in\mathbb{N}, 0\leq r<\lambda^k\}
$$

$$
\subset \{(a_1(n\lambda^k+r): k\in\mathbb{N}, 0\leq r<\lambda^k\}
$$

$$
\cdot \{(a_2(n\lambda^k+r): k\in\mathbb{N}, 0\leq r<\lambda^k\}.
$$

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n)$, $a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

Proof: We look at the corresponding λ -kernels:

 $\{(a_1(n\lambda^k+r)\cdot a_2(n\lambda^k+r): k\in\mathbb{N}, 0\leq r<\lambda^k\}$ $\subset \{ (a_1(n\lambda^k+r) : k \in \mathbb{N}, 0 \leq r < \lambda^k \}$ $\cdot \{ (a_2(n\lambda^k+r) : k \in \mathbb{N}, 0 \le r < \lambda^k \}.$

∢ □ ▶ ⊣ *←* □

Lemma

Let $(a(n))_{n>0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n)$, $a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

Proof: We look at the corresponding λ -kernels:

$$
\{(a_1(n\lambda^k+r)\cdot a_2(n\lambda^k+r): k\in\mathbb{N}, 0\leq r<\lambda^k\}
$$

$$
\subset \{(a_1(n\lambda^k+r): k\in\mathbb{N}, 0\leq r<\lambda^k\}
$$

$$
\cdot \{(a_2(n\lambda^k+r): k\in\mathbb{N}, 0\leq r<\lambda^k\}.
$$

つへへ

Disjointedness of automatic and multiplicative sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also true for the associated dynamical system.) If the automatic

sequence is primitive, then we also have a prime number theorem.

Let a be a primitive automatic sequence. Then it is orthogonal to any bounded, aperiodic, multiplicative function $u : \mathbb{N} \to \mathbb{C}$, i.e.

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}a(n)u(n)=0.
$$

Disjointedness of automatic and multiplicative sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also true for the associated dynamical system.) If the automatic sequence is primitive, then we also have a prime number theorem.

Let a be a primitive automatic sequence. Then it is orthogonal to any bounded, aperiodic, multiplicative function $u : \mathbb{N} \to \mathbb{C}$. i.e.

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}a(n)u(n)=0.
$$

Disjointedness of automatic and multiplicative sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also true for the associated dynamical system.) If the automatic sequence is primitive, then we also have a prime number theorem.

Theorem (Lemańczyk, M. - 2020)

Let a be a primitive automatic sequence. Then it is orthogonal to any bounded, aperiodic, multiplicative function $u : \mathbb{N} \to \mathbb{C}$. i.e.

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}a(n)u(n)=0.
$$

◂**◻▸ ◂◚▸**

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters). Non-trivial counter-example: $a(n) = (-1)^{\nu_2(n)}$.

We call a sequence u aperiodic if for all $k, \ell \in \mathbb{N}$

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u(kn+\ell)=0.
$$

4 **E** F

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters).

Non-trivial counter-example: $a(n) = (-1)^{\nu_2(n)}$.

We call a sequence u aperiodic if for all $k, \ell \in \mathbb{N}$

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u(kn+\ell)=0.
$$

4 **E** F

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters). Non-trivial counter-example: $a(n) = (-1)^{\nu_2(n)}$.

We call a sequence u aperiodic if for all $k, \ell \in \mathbb{N}$

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u(kn+\ell)=0.
$$

4 **E** F

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters).

Non-trivial counter-example: $a(n) = (-1)^{\nu_2(n)}$.

Definition (aperiodic sequence)

We call a sequence u aperiodic if for all $k, \ell \in \mathbb{N}$

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u(kn+\ell)=0.
$$

 QQQ

Disjointedness of multiplicative sequences and algebraic generating series

Theorem (Bell, Bruin and Coons - 2012)

Let K be a field of characteristic 0, let $f : \mathbb{N} \to K$ be a multiplicative function, and its generating series $F(z) = \sum_{n\geq 1} f(n)z^n$ be algebraic over $K(z)$. Then either \overline{f} is finitely supported or there is a natural number k and a periodic multiplicative function $\chi : \mathbb{N} \to K$ such that $f(n) = n^k \chi(n)$ for all *n*.
Disjointedness of multiplicative sequences and algebraic generating series

Theorem (Bell, Bruin and Coons - 2012)

Let K be a field of characteristic 0, let $f : \mathbb{N} \to K$ be a multiplicative function, and its generating series $F(z) = \sum_{n\geq 1} f(n)z^n$ be algebraic over $K(z)$. Then either f is finitely supported or there is a natural number k and a periodic multiplicative function $\chi : \mathbb{N} \to K$ such that $f(n) = n^k \chi(n)$ for all *n*.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a : \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f : \mathbb{N} \to \mathbb{C}$ such that $f(p) = a(p)$ for all primes p.

The conjecture is true. Moreover, there exists h, λ such that a is λ -automatic and coincides with χ on integers that are coprime to $h\lambda$, where χ is either zero or a Dirichlet character.

- \bullet χ is a Dirichlet character: *dense case*
- $\chi = 0$: sparse case.

 Ω

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a : \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f : \mathbb{N} \to \mathbb{C}$ such that $f(p) = a(p)$ for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

The conjecture is true. Moreover, there exists h, λ such that a is λ -automatic and coincides with χ on integers that are coprime to $h\lambda$, where χ is either zero or a Dirichlet character.

\bullet χ is a Dirichlet character: *dense case*

 \bullet $x = 0$: sparse case.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a : \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f : \mathbb{N} \to \mathbb{C}$ such that $f(p) = a(p)$ for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

The conjecture is true. Moreover, there exists h, λ such that a is λ -automatic and coincides with χ on integers that are coprime to $h\lambda$, where χ is either zero or a Dirichlet character.

\bullet χ is a Dirichlet character: *dense case*

 \bullet $x = 0$: sparse case.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a : \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f : \mathbb{N} \to \mathbb{C}$ such that $f(p) = a(p)$ for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

The conjecture is true. Moreover, there exists h, λ such that a is λ -automatic and coincides with χ on integers that are coprime to $h\lambda$, where χ is either zero or a Dirichlet character.

- \bullet x is a Dirichlet character: *dense case*
- $\gamma = 0$: sparse case.

つへへ

Theorem (Konieczny, Lemańczyk, M. - 2020 $+$)

A sequence $a : \mathbb{N} \to \mathbb{C}$ is multiplicative and automatic if and only if there exists a prime p such that a is p -automatic and of the form

$$
a(n) = f_1(\nu_p(n)) \cdot f_2(n/p^{\nu_p(n)}), \tag{1}
$$

where f_1 is eventually periodic and f_2 is multiplicative, eventually periodic and vanishes at all multiples of p.

つひひ

Previous Results

- Schlage-Puchta (2003): A criterion for multiplicative sequences to not be automatic.
- Coons (2010): Non-automaticity of special multiplicative functions
- Li (2017): completely multiplicative automatic sequences, nonvanishing prime numbers
- Allouche, Goldmakher (2018): completely multiplicative, never vanishing automatic sequences
- Li (2019): characterizing completely multiplicative automatic sequences
- Klurman, Kurlberg; Konieczny (2019): showed a stronger version of BBC-conjecture

Simple example

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and p-automatic. Then

$$
a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),
$$

where $\alpha \mapsto \mathsf{a}(\mathsf{p}^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity. As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $n = p^{\alpha}$.

Theorem 1 is true for eventually periodic multiplicative sequences (for every p).

Simple example

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and p-automatic. Then

$$
a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),
$$

where $\alpha \mapsto \mathsf{a}(\mathsf{p}^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity.

As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $n = p^{\alpha}$.

Theorem 1 is true for eventually periodic multiplicative sequences (for every p).

Simple example

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and p-automatic. Then

$$
a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),
$$

where $\alpha \mapsto \mathsf{a}(\mathsf{p}^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity. As the p-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $n = p^{\alpha}$.

Theorem 1 is true for eventually periodic multiplicative sequences (for every p).

Simple example

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and p-automatic. Then

$$
a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),
$$

where $\alpha \mapsto \mathsf{a}(\mathsf{p}^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity. As the p-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $n = p^{\alpha}$.

Theorem 1 is true for eventually periodic multiplicative sequences (for every p).

Simple example

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and p-automatic. Then

$$
a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),
$$

where $\alpha \mapsto \mathsf{a}(\mathsf{p}^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity. As the p-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $n = p^{\alpha}$.

Corollary

Theorem 1 is true for eventually periodic multiplicative sequences (for every p).

Clemens Mullner ¨ [Multiplicative automatic sequences](#page-0-0) 09. 02. 2021 16 / 25

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

 $\{ (f_1(\nu_p(np^k+r)))_{n\geq 0} : k \in \mathbb{N}, 0 \leq r < p^k \}$ $=\{f_1(\nu_p(n)+k)_{p>0}:k\in\mathbb{N}\}\cup\{f_1(\nu_p(r))_{p>0}:r\in\mathbb{N}\}\$

Multiplicativity: If $(m, n) = 1$ then either $p \nmid m$ or $p \nmid n$. Thus, we have $\nu_n(mn) = \max(\nu_n(m), \nu_n(n))$ and $f_1(mn) = f_1(m)f_1(n)$.

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

 $\{ (f_1(\nu_\rho(np^k+r)))_{n\geq 0}: k\in \mathbb{N}, 0\leq r< p^k\}$ $=\{f_1(\nu_p(n)+k)_{p>0}:k\in\mathbb{N}\}\cup\{f_1(\nu_p(r))_{p>0}:r\in\mathbb{N}\}\$

Multiplicativity: If $(m, n) = 1$ then either $p \nmid m$ or $p \nmid n$. Thus, we have $\nu_p(mn) = \max(\nu_p(m), \nu_p(n))$ and $f_1(mn) = f_1(m)f_1(n)$.

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

$$
\begin{aligned} \{(f_1(\nu_p(np^k+r)))_{n\geq 0}: k \in \mathbb{N}, 0 \leq r < p^k\} \\ &= \{f_1(\nu_p(n)+k)_{n\geq 0}: k \in \mathbb{N}\} \cup \{f_1(\nu_p(r))_{n\geq 0}: r \in \mathbb{N}\}\end{aligned}
$$

Multiplicativity: If $(m, n) = 1$ then either $p \nmid m$ or $p \nmid n$. Thus, we have $\nu_p(mn) = \max(\nu_p(m), \nu_p(n))$ and $f_1(mn) = f_1(m)f_1(n)$.

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

$$
\{ (f_1(\nu_p(np^k+r)))_{n\geq 0} : k \in \mathbb{N}, 0 \leq r < p^k \} \\
 = \{ f_1(\nu_p(n) + k)_{n\geq 0} : k \in \mathbb{N} \} \cup \{ f_1(\nu_p(r))_{n\geq 0} : r \in \mathbb{N} \}
$$

Multiplicativity: If $(m, n) = 1$ then either $p \nmid m$ or $p \nmid n$. Thus, we have $\nu_p(mn) = \max(\nu_p(m), \nu_p(n))$ and $f_1(mn) = f_1(m)f_1(n)$.

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

$$
\begin{aligned} \{(f_1(\nu_p(np^k+r)))_{n\geq 0}: k\in\mathbb{N}, 0\leq r < p^k\} \\ &= \{f_1(\nu_p(n)+k)_{n\geq 0}: k\in\mathbb{N}\}\cup\{f_1(\nu_p(r))_{n\geq 0}: r\in\mathbb{N}\}\end{aligned}
$$

Multiplicativity: If $(m, n) = 1$ then either $p \nmid m$ or $p \nmid n$. Thus, we have $\nu_p(mn) = \max(\nu_p(m), \nu_p(n))$ and $f_1(mn) = f_1(m)f_1(n)$.

つへへ

Let f_2 be multiplicative and eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is p-automatic and multiplicative.

Proof: We consider once again the p-kernel:

$$
\begin{aligned}\n\{(a_2(np^k+r))_{n\geq 0}: k \in \mathbb{N}, 0 \leq r < p^k\} \\
&= \{(a_2(np^k))_{n\geq 0}: k \in \mathbb{N}\} \\
&\cup \{(a_2(np^k+r))_{n\geq 0}: k \in \mathbb{N}, 0 < r < p^k\} \\
&= \{(a_2(n))_{n\geq 0}\} \cup \{(f_2(np^\ell+s))_{n\geq 0}: \ell \in \mathbb{N}, 0 < s < p^\ell\}.\n\end{aligned}
$$

Let $(m,n)=1$. Then also $(m/p^{\nu_p(m)},n/p^{\nu_p(n)})=1$. Thus, a_2 is also multiplicative.

∢ ロ ▶ 《 母 》 《 ヨ 》 《 ヨ

Lemma

Let f_2 be multiplicative and eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is p-automatic and multiplicative.

Proof: We consider once again the p-kernel:

$$
\begin{aligned} \left\{ \left(a_2(np^k+r) \right)_{n\geq 0} : k \in \mathbb{N}, 0 \leq r < p^k \right\} \\ &= \left\{ (a_2(np^k))_{n\geq 0} : k \in \mathbb{N} \right\} \\ &\cup \left\{ (a_2(np^k+r))_{n\geq 0} : k \in \mathbb{N}, 0 < r < p^k \right\} \\ &= \left\{ (a_2(n))_{n\geq 0} \right\} \cup \left\{ (f_2(np^\ell+s))_{n\geq 0} : \ell \in \mathbb{N}, 0 < s < p^\ell \right\}. \end{aligned}
$$

Let $(m,n)=1$. Then also $(m/p^{\nu_p(m)},n/p^{\nu_p(n)})=1$. Thus, a_2 is also multiplicative.

∢ ロ ▶ 《 母 》 《 ヨ 》 《 ヨ

Lemma

Let f_2 be multiplicative and eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is p-automatic and multiplicative.

Proof: We consider once again the p-kernel:

$$
\begin{aligned}\n\{(a_2(np^k+r))_{n\geq 0}: k \in \mathbb{N}, 0 \leq r < p^k\} \\
&= \{(a_2(np^k))_{n\geq 0}: k \in \mathbb{N}\} \\
&\cup \{(a_2(np^k+r))_{n\geq 0}: k \in \mathbb{N}, 0 < r < p^k\} \\
&= \{(a_2(n))_{n\geq 0}\} \cup \{(f_2(np^\ell+s))_{n\geq 0}: \ell \in \mathbb{N}, 0 < s < p^\ell\}.\n\end{aligned}
$$

Let $(m,n)=1$. Then also $(m/p^{\nu_p(m)},n/p^{\nu_p(n)})=1$. Thus, a_2 is also multiplicative.

∢ ロ ▶ 《 母 》 《 ヨ 》 《 ヨ

Lemma

Let f_2 be multiplicative and eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is p-automatic and multiplicative.

Proof: We consider once again the p-kernel:

$$
\{(a_2(np^k+r))_{n\geq 0}: k \in \mathbb{N}, 0 \leq r < p^k\}
$$

= $\{(a_2(np^k))_{n\geq 0}: k \in \mathbb{N}\}$

$$
\cup \{(a_2(np^k+r))_{n\geq 0}: k \in \mathbb{N}, 0 < r < p^k\}
$$

= $\{(a_2(n))_{n\geq 0}\} \cup \{(f_2(np^\ell+s))_{n\geq 0}: \ell \in \mathbb{N}, 0 < s < p^\ell\}.$

Let $(m,n)=1$. Then also $(m/p^{\nu_p(m)},n/p^{\nu_p(n)})=1$. Thus, a_2 is also multiplicative.

∢ ロ ▶ 《 母 》 《 ヨ 》 《 ヨ

Lemma

Let f_2 be multiplicative and eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is p-automatic and multiplicative.

Proof: We consider once again the p-kernel:

$$
\begin{aligned}\n\{(a_2(np^k+r))_{n\geq 0}: k \in \mathbb{N}, 0 \leq r < p^k\} \\
&= \{(a_2(np^k))_{n\geq 0}: k \in \mathbb{N}\} \\
&\cup \{(a_2(np^k+r))_{n\geq 0}: k \in \mathbb{N}, 0 < r < p^k\} \\
&= \{(a_2(n))_{n\geq 0}\} \cup \{(f_2(np^\ell+s))_{n\geq 0}: \ell \in \mathbb{N}, 0 < s < p^\ell\}.\n\end{aligned}
$$

Let $(m,n)=1$. Then also $(m/p^{\nu_p(m)},n/p^{\nu_p(n)})=1$. Thus, a_2 is also multiplicative.

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus $m = m_1 m_2$ where $({\it m}_1,{\it m}_2)=1.$ Then $\chi=\chi_{m_1}\cdot\chi_{m_2}$, where $\chi_{m_i}(n)$ is a Dirichlet character of modulus m_i and $\chi_{m_i}(n) = \chi(n_i)$ with

 $n_i \equiv n \mod m_i$ $n_i \equiv 1 \mod m/m_i$.

Let x be a Dirichlet character of modulus m. Then

$$
\chi(n)=\prod_{n|m}\chi_{p^{\nu_p(m)}}(n).
$$

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus $m = m_1 m_2$ where $(m_1,m_2)=1$.Then $\chi=\chi_{m_1}\cdot\chi_{m_2}$, where $\chi_{m_i}(n)$ is a Dirichlet character of modulus m_i and $\chi_{m_i}(n)=\chi(n_i)$ with

 $n_i \equiv n \mod m_i$ $n_i \equiv 1 \mod m/m_i$.

Let x be a Dirichlet character of modulus m. Then

$$
\chi(n)=\prod_{n|m}\chi_{p^{\nu_p(m)}}(n).
$$

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus $m = m_1 m_2$ where $(m_1,m_2)=1$.Then $\chi=\chi_{m_1}\cdot\chi_{m_2}$, where $\chi_{m_i}(n)$ is a Dirichlet character of modulus m_i and $\chi_{m_i}(n)=\chi(n_i)$ with

$$
n_i \equiv n \mod m_i
$$

$$
n_i \equiv 1 \mod m/m_i.
$$

Corollary

Let χ be a Dirichlet character of modulus m. Then

$$
\chi(n)=\prod_{p|m}\chi_{p^{\nu_p(m)}}(n).
$$

→ 伊 → 4 D F

Dense case

Assumption: $\nu_{p}(h\lambda) = 1$ for all $p | h\lambda$! Thus, $\chi = \prod_{\mathsf{p} \mid h\lambda} \chi_\mathsf{p}.$

Let $a(n)$ be a dense multiplicative automatic sequence. Then

$$
a(n) = \prod_{p \mid h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right),
$$

where $\chi(\overline{p}) = \chi_{h\lambda/p}(p)$.

 \leftarrow \Box

Dense case

Assumption:
$$
\nu_p(h\lambda) = 1
$$
 for all $p \mid h\lambda!$
Thus, $\chi = \prod_{p \mid h\lambda} \chi_p$.

Let $a(n)$ be a dense multiplicative automatic sequence. Then

$$
a(n) = \prod_{p \mid h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right),
$$

where $\chi(\overline{p}) = \chi_{h\lambda/p}(p)$.

4 **ED**

 $\left(\left\{ \bigoplus \right. \right. \left\{ \left. \bigoplus \right. \left. \left. \right. \right. \left. \left. \left. \right. \right. \right\} \left. \right. \left. \left. \right. \right. \left. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \left. \right$

Dense case

Assumption:
$$
\nu_p(h\lambda) = 1
$$
 for all $p \mid h\lambda!$
Thus, $\chi = \prod_{p \mid h\lambda} \chi_p$.

Proposition

Let $a(n)$ be a dense multiplicative automatic sequence. Then

$$
a(n)=\prod_{p\mid h\lambda}\frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}\cdot\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right),
$$

where $\chi(\overline{p}) = \chi_{h\lambda/p}(p)$.

4 **D F**

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right\}$

Dynamical System (X, T) related to u

 $u = (u_n)_{n \geq 0}$... bounded complex sequence $T(u) = (u_{n+1})_{n\geq 0}$...shift operator $\mathcal{X} = \{\,T^k(\mathsf{u}) : k \geq 0\}$

Let a be a primitive λ -automatic sequence, which is not periodic. Then the continuous eigenvalues of (X, T) are isomorphic to $\mathbb{Z}(\lambda) \times \mathbb{Z}/h\mathbb{Z}$, where h is the height of a.

 Ω

Dynamical System (X, T) related to u

 $u = (u_n)_{n \geq 0}$... bounded complex sequence $T(u) = (u_{n+1})_{n\geq 0}$... shift operator $\mathcal{X} = \{\,T^k(\mathsf{u}) : k \geq 0\}$

Let a be a primitive λ -automatic sequence, which is not periodic. Then the continuous eigenvalues of (X, T) are isomorphic to $\mathbb{Z}(\lambda) \times \mathbb{Z}/h\mathbb{Z}$, where h is the height of a.

Dynamical System (X, T) related to u

$$
u = (u_n)_{n \ge 0} \dots
$$
 bounded complex sequence

$$
T(u) = (u_{n+1})_{n \ge 0} \dots
$$
shift operator

$$
X = \overline{\{T^k(u) : k \ge 0\}}
$$

Let a be a primitive λ -automatic sequence, which is not periodic. Then the continuous eigenvalues of (X, T) are isomorphic to $\mathbb{Z}(\lambda) \times \mathbb{Z}/h\mathbb{Z}$, where h is the height of a.

 \leftarrow \Box

Dynamical System (X, T) related to u

$$
u = (u_n)_{n \ge 0} \dots
$$
 bounded complex sequence

$$
T(u) = (u_{n+1})_{n \ge 0} \dots
$$
shift operator

$$
X = \{T^k(u) : k \ge 0\}
$$

Theorem (M., Yassawi; 2019)

Let a be a primitive λ -automatic sequence, which is not periodic. Then the continuous eigenvalues of (X, T) are isomorphic to $\mathbb{Z}(\lambda) \times \mathbb{Z}/h\mathbb{Z}$, where h is the height of a.

つへへ

$$
a(n) = \prod_{p \mid h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right).
$$

- The right hand side looks like a product of p-automatic sequences, where $p \mid h\lambda$.
- Thus we expect the continuous eigenvalues to be $\approx \mathbb{Z}(h\lambda)$.
- The continuous eigenvalues of $a(n)$ are only $\approx \mathbb{Z}(\lambda)$.
- Therefore, the contribution of $p \mid h$ should be trivial.

 Ω

$$
a(n) = \prod_{p \mid h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right).
$$

- \bullet The right hand side looks like a product of p-automatic sequences, where $p \mid h\lambda$.
- Thus we expect the continuous eigenvalues to be $\approx \mathbb{Z}(h\lambda)$.
- The continuous eigenvalues of $a(n)$ are only $\approx \mathbb{Z}(\lambda)$.
- Therefore, the contribution of $p \mid h$ should be trivial.

$$
a(n) = \prod_{p \mid h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right).
$$

- \bullet The right hand side looks like a product of p-automatic sequences, where $p \mid h\lambda$.
- Thus we expect the continuous eigenvalues to be $\approx \mathbb{Z}(h\lambda)$.
- The continuous eigenvalues of $a(n)$ are only $\approx \mathbb{Z}(\lambda)$.
- Therefore, the contribution of $p \mid h$ should be trivial.

$$
a(n) = \prod_{p \mid h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right).
$$

- \bullet The right hand side looks like a product of p-automatic sequences, where $p \mid h\lambda$.
- Thus we expect the continuous eigenvalues to be $\approx \mathbb{Z}(h\lambda)$.
- The continuous eigenvalues of $a(n)$ are only $\approx \mathbb{Z}(\lambda)$.
- Therefore, the contribution of $p \mid h$ should be trivial.
$$
a(n) = \prod_{p \mid h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right).
$$

- The right hand side looks like a product of p-automatic sequences, where $p \mid h\lambda$.
- Thus we expect the continuous eigenvalues to be $\approx \mathbb{Z}(h\lambda)$.
- The continuous eigenvalues of $a(n)$ are only $\approx \mathbb{Z}(\lambda)$.
- Therefore, the contribution of $p \mid h$ should be trivial.

 200

$$
a(n) = \prod_{p \mid \lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right).
$$

If λ is composite, we can separate one contribution:

$$
a(n) \cdot \frac{\chi(\overline{q})^{\nu_q(n)}}{a(q^{\nu_q(n)})} \cdot \chi_q^{-1}\left(\frac{n}{q^{\nu_q(n)}}\right) = \prod_{\substack{p \mid \lambda \\ p \neq q}} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).
$$

• Continuous eigenvalues of the left-hand side: $\approx \mathbb{Z}(\lambda)$. • Continuous eigenvalues of the right-hand side: $\approx \mathbb{Z}(\lambda/q)$.

$$
a(n) = \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).
$$

4 0 8

$$
a(n) = \prod_{p \mid \lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right).
$$

If λ is composite, we can separate one contribution:

$$
a(n)\cdot\frac{\chi(\overline{q})^{\nu_q(n)}}{a(q^{\nu_q(n)})}\cdot\chi_q^{-1}\left(\frac{n}{q^{\nu_q(n)}}\right)=\prod_{\substack{p|\lambda\\p\neq q}}\frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}\cdot\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).
$$

• Continuous eigenvalues of the left-hand side: $\approx \mathbb{Z}(\lambda)$. • Continuous eigenvalues of the right-hand side: $\approx \mathbb{Z}(\lambda/q)$.

$$
a(n) = \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).
$$

$$
a(n) = \prod_{p \mid \lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right).
$$

If λ is composite, we can separate one contribution:

$$
a(n)\cdot\frac{\chi(\overline{q})^{\nu_q(n)}}{a(q^{\nu_q(n)})}\cdot\chi_q^{-1}\left(\frac{n}{q^{\nu_q(n)}}\right)=\prod_{\substack{p\mid\lambda\\p\neq q}}\frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}\cdot\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).
$$

• Continuous eigenvalues of the left-hand side: $\approx \mathbb{Z}(\lambda)$. • Continuous eigenvalues of the right-hand side: $\approx \mathbb{Z}(\lambda/q)$.

$$
a(n) = \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).
$$

$$
a(n) = \prod_{p \mid \lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right).
$$

If λ is composite, we can separate one contribution:

$$
a(n)\cdot\frac{\chi(\overline{q})^{\nu_q(n)}}{a(q^{\nu_q(n)})}\cdot\chi_q^{-1}\left(\frac{n}{q^{\nu_q(n)}}\right)=\prod_{\substack{p\mid\lambda\\p\neq q}}\frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}\cdot\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).
$$

• Continuous eigenvalues of the left-hand side: $\approx \mathbb{Z}(\lambda)$. • Continuous eigenvalues of the right-hand side: $\approx \mathbb{Z}(\lambda/q)$.

$$
a(n) = \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).
$$

$$
a(n) = \prod_{p \mid \lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p \left(\frac{n}{p^{\nu_p(n)}}\right).
$$

If λ is composite, we can separate one contribution:

$$
a(n)\cdot\frac{\chi(\overline{q})^{\nu_q(n)}}{a(q^{\nu_q(n)})}\cdot\chi_q^{-1}\left(\frac{n}{q^{\nu_q(n)}}\right)=\prod_{\substack{p\mid\lambda\\p\neq q}}\frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}\cdot\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).
$$

• Continuous eigenvalues of the left-hand side: $\approx \mathbb{Z}(\lambda)$. • Continuous eigenvalues of the right-hand side: $\approx \mathbb{Z}(\lambda/q)$.

$$
a(n)=\frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}}\cdot\chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).
$$

Open Questions

Question 1

What about multiplicative morphic sequences?

Are there non-trivial multiplicative morphic sequences?

4 0 F

Open Questions

Question 1

What about multiplicative morphic sequences?

Question 2

Are there non-trivial multiplicative morphic sequences?

4 0 8

- Capturing the independence of additive and multiplicative structures is hard.
- The intersection of automatic and multiplicative sequences is very special.
- Dynamics often gives you a good intuition.

Thank you!

- Capturing the independence of additive and multiplicative structures is hard.
- The intersection of automatic and multiplicative sequences is very special.
- Dynamics often gives you a good intuition.

Thank you!

 200

- Capturing the independence of additive and multiplicative structures is hard.
- The intersection of automatic and multiplicative sequences is very special.
- Dynamics often gives you a good intuition.

Thank you!

- Capturing the independence of additive and multiplicative structures is hard.
- The intersection of automatic and multiplicative sequences is very special.
- Dynamics often gives you a good intuition.

Thank you!