
Multiplicative automatic sequences

Clemens Müllner
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Background

Disjointedness of additive and multiplicative

structures

Theorem (Solymosi - 2009)

For any finite set A ⊂ R,

max |A · A| , |A + A| � |A|4/3−o(1) .

Conjecture (Chowla)

Let λ(n) = (−1)k , where k is the number of prime factors of n.
Then for all a1 < a2 < . . . < am

lim
N→∞

1

N

∑
n≤N

λ(n + a1) · λ(n + a2) · · ·λ(n + am) = 0.
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Background

Sarnak Conjecture

The Möbius function is defined by

µ(n) =

 (−1)k
if n is squarefree and
k is the number of prime factors

0 otherwise.

A dynamical system is said to be determinist, if its topological
entropy is 0.

Conjecture (Sarnak - 2010)

For every complex sequence u = (un)n>0 that is obtained by a
deterministic dynamical system,

lim
N→∞

1

N

∑
n≤N

unµ(n) = 0.
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Background

Multiplicative functions

Definition (Multiplicative function)

A function f : N→ C is called (completely) multiplicative if
f (nm) = f (n)f (m) for all n,m that are coprime (for all n,m).

Examples: µ, λ

Definition (Dirichlet character)

We call χ : Z→ C a Dirichlet character (of modulus m) if

1 There exists m > 0 such that χ(n) = χ(n + m) for all n.

2 If gcd(n,m) > 1 then χ(n) = 0; if gcd(n,m) = 1 then
χ(n) 6= 0.

3 χ is completely multiplicative.
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Automatic Sequences

Deterministic Finite Automata

Definition (Automaton - DFA)

A = (Q,Σ = {0, . . . , k − 1}, δ, q0, τ)

Example (Thue-Morse sequence)

a/0start b/1

0 0

1

1

n = 22 = (10110)2, u(22) = 1

u = (u(n))n≥0 = 01101001100101101001011001101001 . . .
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Automatic Sequences

Different Points of View I

(u(n))n≥0 = 01101001100101101001011001101001 . . .

Automaton (Computer Science)

a/0start b/1

0 0

1

1

Substitution (Dynamics)

Coding of the fixpoint of a
constant-length substitution:

a→ ab a 7→ 0

b → ba b 7→ 1
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Automatic Sequences

Different Points of View II

(u(n))n≥0 = 01101001100101101001011001101001 . . .

Formal Power Series (Algebra)

Algebraicity over Fq(X ).
t(X ) :=

∑
n≥0

u(n)X n

X + (1 + X )2t(X ) + (1 + X )3t(X )2 = 0

Finite Kernel

The λ-kernel of a sequence a(n) is defined as

{(a(nλk + r))n≥0 : k ≥ 0, 0 ≤ r < λk}.

a(n) is λ-automatic iff its λ-kernel is finite.
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Automatic Sequences

Being automatic in different bases

Question

Can a sequence be automatic in multiple bases?

Lemma

Let λ, k ∈ N. A sequence is λ-automatic if and only if it is
λk-automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence (a(n))n≥0 is both µ and λ automatic, where
log(µ)/ log(λ) /∈ Q. Then (a(n))n≥0 is eventually periodic.

Clemens Müllner Multiplicative automatic sequences 09. 02. 2021 8 / 25



Automatic Sequences

Being automatic in different bases

Question

Can a sequence be automatic in multiple bases?

Lemma

Let λ, k ∈ N. A sequence is λ-automatic if and only if it is
λk-automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence (a(n))n≥0 is both µ and λ automatic, where
log(µ)/ log(λ) /∈ Q. Then (a(n))n≥0 is eventually periodic.
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Clemens Müllner Multiplicative automatic sequences 09. 02. 2021 8 / 25



Automatic Sequences

Being automatic in different bases

Question

Can a sequence be automatic in multiple bases?

Lemma

Let λ, k ∈ N. A sequence is λ-automatic if and only if it is
λk-automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence (a(n))n≥0 is both µ and λ automatic, where
log(µ)/ log(λ) /∈ Q. Then (a(n))n≥0 is eventually periodic.
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Automatic Sequences

Simple examples and Properties

Lemma

Let (a(n))n≥0 be eventually periodic. Then it is λ-automatic for
every λ ∈ N.

Proof: Follows from considering the λ-kernel.

Lemma

Let a1(n), a2(n) be, λ-automatic sequences, then so is
(a1(n) · a2(n)).

Proof: We look at the corresponding λ-kernels:

{(a1(nλk + r) · a2(nλk + r) : k ∈ N, 0 ≤ r < λk}
⊂ {(a1(nλk + r) : k ∈ N, 0 ≤ r < λk}
· {(a2(nλk + r) : k ∈ N, 0 ≤ r < λk}.
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Automatic vs. multiplicative sequences

Disjointedness of automatic and multiplicative

sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also
true for the associated dynamical system.) If the automatic
sequence is primitive, then we also have a prime number theorem.

Theorem (Lemańczyk, M. - 2020)

Let a be a primitive automatic sequence. Then it is orthogonal to
any bounded, aperiodic, multiplicative function u : N→ C, i.e.

lim
N→∞

1

N

∑
n≤N

a(n)u(n) = 0.
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Automatic vs. multiplicative sequences

Naive Question

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet
characters).
Non-trivial counter-example: a(n) = (−1)ν2(n).

Definition (aperiodic sequence)

We call a sequence u aperiodic if for all k , ` ∈ N

lim
N→∞

1

N

∑
n≤N

u(kn + `) = 0.
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BBC-Conjecture

Disjointedness of multiplicative sequences and

algebraic generating series

Theorem (Bell, Bruin and Coons - 2012)

Let K be a field of characteristic 0, let f : N→ K be a
multiplicative function, and its generating series
F (z) =

∑
n≥1 f (n)zn be algebraic over K (z).

Then either f is finitely supported or there is a natural number k
and a periodic multiplicative function χ : N→ K such that
f (n) = nkχ(n) for all n.
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BBC-Conjecture

BBC-Conjecture

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence a : N→ C there exists
an eventually periodic function f : N→ C such that f (p) = a(p)
for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

The conjecture is true. Moreover, there exists h, λ such that a is
λ-automatic and coincides with χ on integers that are coprime to
hλ, where χ is either zero or a Dirichlet character.

χ is a Dirichlet character: dense case

χ = 0: sparse case.
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Result

Result

Theorem (Konieczny, Lemańczyk, M. - 2020+)

A sequence a : N→ C is multiplicative and automatic if and only if
there exists a prime p such that a is p-automatic and of the form

a(n) = f1(νp(n)) · f2(n/pνp(n)), (1)

where f1 is eventually periodic and f2 is multiplicative, eventually
periodic and vanishes at all multiples of p.
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Result

Previous Results

Schlage-Puchta (2003): A criterion for multiplicative sequences
to not be automatic.

Coons (2010): Non-automaticity of special multiplicative
functions

Li (2017): completely multiplicative automatic sequences,
nonvanishing prime numbers

Allouche, Goldmakher (2018): completely multiplicative, never
vanishing automatic sequences

Li (2019): characterizing completely multiplicative automatic
sequences

Klurman, Kurlberg; Konieczny (2019): showed a stronger
version of BBC-conjecture

Clemens Müllner Multiplicative automatic sequences 09. 02. 2021 15 / 25



Result

Simple example

Lemma

Let (a(n))n≥0 be multiplicative and p-automatic. Then

a(n) = a(pνp(n)) · a(n/pνp(n)),

where α 7→ a(pα) is eventually periodic.

Proof: The first part follows by multiplicativity.
As the p-kernel is finite, there exists k1, k2 ∈ N such that
a(npk1) = a(npk2) for all n ∈ N.
Choose n = pα.

Corollary

Theorem 1 is true for eventually periodic multiplicative sequences
(for every p).
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Theorem 1 is true for eventually periodic multiplicative sequences
(for every p).
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The easy direction

f1

Lemma

Let f1 be eventually periodic with f1(0) = 1. Then a1(n) = f1(νp(n))
is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

{(f1(νp(npk + r)))n≥0 : k ∈ N, 0 ≤ r < pk}
= {f1(νp(n) + k)n≥0 : k ∈ N} ∪ {f1(νp(r))n≥0 : r ∈ N}

Multiplicativity: If (m, n) = 1 then either p - m or p - n. Thus, we
have νp(mn) = max(νp(m), νp(n)) and f1(mn) = f1(m)f1(n).
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Clemens Müllner Multiplicative automatic sequences 09. 02. 2021 17 / 25



The easy direction

f1

Lemma

Let f1 be eventually periodic with f1(0) = 1. Then a1(n) = f1(νp(n))
is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

{(f1(νp(npk + r)))n≥0 : k ∈ N, 0 ≤ r < pk}
= {f1(νp(n) + k)n≥0 : k ∈ N} ∪ {f1(νp(r))n≥0 : r ∈ N}

Multiplicativity: If (m, n) = 1 then either p - m or p - n. Thus, we
have νp(mn) = max(νp(m), νp(n)) and f1(mn) = f1(m)f1(n).
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The easy direction

f2

Lemma

Let f2 be multiplicative and eventually periodic. Then
a2(n) = f2(n/pνp(n)) is p-automatic and multiplicative.

Proof: We consider once again the p-kernel:

{(a2(npk + r))n≥0 : k ∈ N, 0 ≤ r < pk}
= {(a2(npk))n≥0 : k ∈ N}
∪ {(a2(npk + r))n≥0 : k ∈ N, 0 < r < pk}

= {(a2(n))n≥0} ∪ {(f2(np` + s))n≥0 : ` ∈ N, 0 < s < p`}.

Let (m, n) = 1. Then also (m/pνp(m), n/pνp(n)) = 1. Thus, a2 is also
multiplicative.
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The hard direction

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus m = m1m2 where
(m1,m2) = 1.Then χ = χm1 · χm2 , where χmi

(n) is a Dirichlet
character of modulus mi and χmi

(n) = χ(ni) with

ni ≡ n mod mi

ni ≡ 1 mod m/mi .

Corollary

Let χ be a Dirichlet character of modulus m. Then

χ(n) =
∏
p|m

χpνp(m)(n).
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The hard direction

Dense case

Assumption: νp(hλ) = 1 for all p | hλ!
Thus, χ =

∏
p|hλ χp.

Proposition

Let a(n) be a dense multiplicative automatic sequence. Then

a(n) =
∏
p|hλ

a(pνp(n))

χ(p)νp(n)
· χp

(
n

pνp(n)

)
,

where χ(p) = χhλ/p(p).
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The hard direction

Dynamical systems

Dynamical System (X ,T ) related to u

u = (un)n≥0 . . . bounded complex sequence

T (u) = (un+1)n≥0 . . . shift operator

X = {T k(u) : k ≥ 0}

Theorem (M., Yassawi; 2019)

Let a be a primitive λ-automatic sequence, which is not periodic.
Then the continuous eigenvalues of (X ,T ) are isomorphic to
Z(λ)× Z /hZ, where h is the height of a.
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The hard direction

Intuition I

a(n) =
∏
p|hλ

a(pνp(n))

χ(p)νp(n)
· χp

(
n

pνp(n)

)
.

The right hand side looks like a product of p-automatic
sequences, where p | hλ.

Thus we expect the continuous eigenvalues to be ≈ Z(hλ).

The continuous eigenvalues of a(n) are only ≈ Z(λ).

Therefore, the contribution of p | h should be trivial.
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The hard direction

Intuition II

a(n) =
∏
p|λ

a(pνp(n))

χ(p)νp(n)
· χp

(
n

pνp(n)

)
.

If λ is composite, we can separate one contribution:

a(n) · χ(q)νq(n)

a(qνq(n))
· χ−1q

(
n

qνq(n)

)
=
∏
p|λ
p 6=q

a(pνp(n))

χ(p)νp(n)
· χp

(
n

pνp(n)

)
.

Continuous eigenvalues of the left-hand side: ≈ Z(λ).

Continuous eigenvalues of the right-hand side: ≈ Z(λ/q).

a(n) =
a(pνp(n))

χ(p)νp(n)
· χp

(
n

pνp(n)

)
.
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Clemens Müllner Multiplicative automatic sequences 09. 02. 2021 23 / 25



The hard direction

Intuition II

a(n) =
∏
p|λ

a(pνp(n))

χ(p)νp(n)
· χp

(
n

pνp(n)

)
.

If λ is composite, we can separate one contribution:

a(n) · χ(q)νq(n)

a(qνq(n))
· χ−1q

(
n

qνq(n)

)
=
∏
p|λ
p 6=q

a(pνp(n))

χ(p)νp(n)
· χp

(
n

pνp(n)

)
.

Continuous eigenvalues of the left-hand side: ≈ Z(λ).

Continuous eigenvalues of the right-hand side: ≈ Z(λ/q).

a(n) =
a(pνp(n))

χ(p)νp(n)
· χp

(
n

pνp(n)

)
.
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The End

Open Questions

Question 1

What about multiplicative morphic sequences?

Question 2

Are there non-trivial multiplicative morphic sequences?
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The End

Conclusion

Capturing the independence of additive and multiplicative
structures is hard.

The intersection of automatic and multiplicative sequences is
very special.

Dynamics often gives you a good intuition.

Thank you!
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