Subsequences of Automatic Sequences

Clemens Müllner

Wednesday, November 6, 2019

Clemens Müllner

Subsequences of Automatic Sequences

6. 11. 2019 1 / 22

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

 $n = 22 = (10110)_2,$ $u_{22} = 1$ $\mathbf{u} = (u_n)_{n \ge 0} = 01101001101001011001011001...$

Subsequences of Automatic Sequences

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

 $n = 22 = (10110)_2,$ $u_{22} = 1$ $\mathbf{u} = (u_n)_{n \ge 0} = 011010011001011001011001011001...$

Clemens Müllner

Subsequences of Automatic Sequences

6. 11. 2019 2 / 22

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

 $n = 22 = (10110)_2, \qquad u_{22} = 1$

 $\mathbf{u} = (u_n)_{n>0} = 01101001100101101001011001011001\dots$

Clemens Müllner

Subsequences of Automatic Sequences

6. 11. 2019 2 / 22

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

$$n = 22 = (10110)_2,$$
 $u_{22} = 1$
 $\mathbf{u} = (u_n)_{n>0} = 011010011001011001011001011001...$

Clemens Müllner

Subsequences of Automatic Sequences

6. 11. 2019 2 / 22

• For every primitive automatic sequence **u** there exists the density

$$dens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{N} \sum_{1 \le n \le N} \mathbf{1}_{[u_n = a]}.$$

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

• For every primitive automatic sequence **u** there exists the density

dens
$$(\mathbf{u}, \mathbf{a}) = \lim_{N \to \infty} \frac{1}{N} \sum_{1 \le n \le N} \mathbf{1}_{[u_n = \mathbf{a}]}.$$

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity of an automatic sequence is (at most) linear.
- Every subsequence (u_{an+b})_{n≥0} along an arithmetic progression of an automatic sequence (u_n)_{n≥0} is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

• For every primitive automatic sequence **u** there exists the density

dens
$$(\mathbf{u}, \mathbf{a}) = \lim_{N \to \infty} \frac{1}{N} \sum_{1 \le n \le N} \mathbf{1}_{[u_n = \mathbf{a}]}.$$

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

• For every primitive automatic sequence **u** there exists the density

dens
$$(\mathbf{u}, \mathbf{a}) = \lim_{N \to \infty} \frac{1}{N} \sum_{1 \le n \le N} \mathbf{1}_{[u_n = \mathbf{a}]}.$$

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

Theorem (Gelfond)

Let $q, m, r, l, a \in \mathbb{N}$ with (m, q - 1) = 1. Then we have

$$\frac{\#\{n \leq N : s_q(nr+l) \equiv a \mod m\}}{N} = \frac{1}{m} + O_q(N^{-\lambda}r).$$

Gelfond Problems

- In the joint distribution of the sum-of-digits in different bases.
 - Besinau (1972), Kim (1999)
- Interpretation of the sum-of-digits of primes.
 - Mauduit, Rivat (2010)
- The distribution of the sum-of-digits of polynomials.
 - Squares: Mauduit, Rivat (2009)

< 一型

Theorem (Gelfond)

Let $q, m, r, l, a \in \mathbb{N}$ with (m, q - 1) = 1. Then we have

$$\frac{\#\{n \leq N : s_q(nr+l) \equiv a \mod m\}}{N} = \frac{1}{m} + O_q(N^{-\lambda}r).$$

Gelfond Problems

• The joint distribution of the sum-of-digits in different bases.

- Besinau (1972), Kim (1999)
- One of the sum-of-digits of primes.
 - Mauduit, Rivat (2010)
- Interpretation of the sum-of-digits of polynomials.
 - Squares: Mauduit, Rivat (2009)

6. 11. 2019 4 / 22

Theorem (Gelfond)

Let $q, m, r, l, a \in \mathbb{N}$ with (m, q - 1) = 1. Then we have

$$\frac{\#\{n \leq N : s_q(nr+l) \equiv a \mod m\}}{N} = \frac{1}{m} + O_q(N^{-\lambda}r).$$

Gelfond Problems

- The joint distribution of the sum-of-digits in different bases.
 - Besinau (1972), Kim (1999)
- One of the sum-of-digits of primes.
 - Mauduit, Rivat (2010)
- Interpretation of the sum-of-digits of polynomials.
 - Squares: Mauduit, Rivat (2009)

6. 11. 2019 4 / 22

Theorem (Gelfond)

Let $q, m, r, l, a \in \mathbb{N}$ with (m, q - 1) = 1. Then we have

$$\frac{\#\{n \leq N : s_q(nr+l) \equiv a \mod m\}}{N} = \frac{1}{m} + O_q(N^{-\lambda}r).$$

Gelfond Problems

- The joint distribution of the sum-of-digits in different bases.
 - Besinau (1972), Kim (1999)
- 2 The distribution of the sum-of-digits of primes.
 - Mauduit, Rivat (2010)
- Interpretation of the sum-of-digits of polynomials.
 - Squares: Mauduit, Rivat (2009)

6. 11. 2019 4 / 22

Theorem (Gelfond)

Let $q, m, r, l, a \in \mathbb{N}$ with (m, q - 1) = 1. Then we have

$$\frac{\#\{n \leq N : s_q(nr+l) \equiv a \mod m\}}{N} = \frac{1}{m} + O_q(N^{-\lambda}r).$$

Gelfond Problems

- The joint distribution of the sum-of-digits in different bases.
 - Besinau (1972), Kim (1999)
- 2 The distribution of the sum-of-digits of primes.
 - Mauduit, Rivat (2010)
- Interpretation of the sum-of-digits of polynomials.
 - Squares: Mauduit, Rivat (2009)

6. 11. 2019 4 / 22

Theorem (Gelfond)

Let $q, m, r, l, a \in \mathbb{N}$ with (m, q - 1) = 1. Then we have

$$\frac{\#\{n \leq N : s_q(nr+l) \equiv a \mod m\}}{N} = \frac{1}{m} + O_q(N^{-\lambda}r).$$

Gelfond Problems

- The joint distribution of the sum-of-digits in different bases.
 - Besinau (1972), Kim (1999)
- 2 The distribution of the sum-of-digits of primes.
 - Mauduit, Rivat (2010)
- The distribution of the sum-of-digits of polynomials.
 - Squares: Mauduit, Rivat (2009)

Theorem (Gelfond)

Let $q, m, r, l, a \in \mathbb{N}$ with (m, q - 1) = 1. Then we have

$$\frac{\#\{n \leq N : s_q(nr+l) \equiv a \mod m\}}{N} = \frac{1}{m} + O_q(N^{-\lambda}r).$$

Gelfond Problems

- The joint distribution of the sum-of-digits in different bases.
 - Besinau (1972), Kim (1999)
- 2 The distribution of the sum-of-digits of primes.
 - Mauduit, Rivat (2010)
- The distribution of the sum-of-digits of polynomials.
 - Squares: Mauduit, Rivat (2009)

6. 11. 2019 4 / 22

Every block $B \in \{0,1\}^k$, $k \ge 1$, appears in $(t(n^2))_{n \ge 0}$.

Resolved by Moshe (2007) But what can be said about the frequency of a given block?

Theorem (Drmota + Mauduit + Rivat, 2019)

Every block $B \in \{0,1\}^k$, $k \ge 1$, appears in $(t(n^2))_{n \ge 0}$.

Resolved by Moshe (2007)

But what can be said about the frequency of a given block?

Theorem (Drmota + Mauduit + Rivat, 2019)

Every block $B \in \{0,1\}^k$, $k \ge 1$, appears in $(t(n^2))_{n \ge 0}$.

Resolved by Moshe (2007) But what can be said about the frequency of a given block?

Theorem (Drmota + Mauduit + Rivat, 2019)

Every block $B \in \{0,1\}^k$, $k \ge 1$, appears in $(t(n^2))_{n \ge 0}$.

Resolved by Moshe (2007) But what can be said about the frequency of a given block?

Theorem (Drmota + Mauduit + Rivat, 2019)

Rudin-Shapiro sequence

r(n) "counts" 11 in the digital expansion of n.

The old approach does not work directly.

Rudin-Shapiro sequence

r(n) "counts" 11 in the digital expansion of n.

The old approach does not work directly.

Rudin-Shapiro sequence

r(n) "counts" 11 in the digital expansion of n.

The old approach does not work directly.

Fourier Property

A function $f : \mathbb{N} \to \mathbb{U}$ has the Fourier property if the Fourier transform is uniformly small, e.g. $\exists \eta > 0$, s.t.

$$\left|\frac{1}{k^{\lambda}}\sum_{m< k^{\lambda}}f(mk^{\alpha})e(-mt)\right|\leq k^{-\eta\lambda}.$$

Carry Property

The contribution of high digits and the contribution of low digits are "independent".

Fourier Property

A function $f : \mathbb{N} \to \mathbb{U}$ has the Fourier property if the Fourier transform is uniformly small, e.g. $\exists \eta > 0$, s.t.

$$\left|\frac{1}{k^{\lambda}}\sum_{m< k^{\lambda}}f(mk^{\alpha})e(-mt)\right|\leq k^{-\eta\lambda}.$$

Carry Property

The contribution of high digits and the contribution of low digits are "independent".

If a sequence satisfies a (sufficently strong) Fourier Property and the Carry Property, then one knows how it behaves along primes.

Proposition (Mauduit + Rivat, 2015)

The function $e(\alpha f_{11}(n) + \theta n)$ satisfies for $\alpha \notin \mathbb{Z}$ the Fourier Property and the Carry Property, where $f_{11}(n)$ denotes the number of 11 in the binary expansion of n.

If a sequence satisfies a (sufficently strong) Fourier Property and the Carry Property, then one knows how it behaves along primes.

Proposition (Mauduit + Rivat, 2015)

The function $e(\alpha f_{11}(n) + \theta n)$ satisfies for $\alpha \notin \mathbb{Z}$ the Fourier Property and the Carry Property, where $f_{11}(n)$ denotes the number of 11 in the binary expansion of n.

If a sequence satisfies a (sufficently strong) Fourier Property and the Carry Property, then one knows how it behaves along primes.

Proposition (Mauduit + Rivat, 2015)

The function $e(\alpha f_{11}(n) + \theta n)$ satisfies for $\alpha \notin \mathbb{Z}$ the Fourier Property and the Carry Property, where $f_{11}(n)$ denotes the number of 11 in the binary expansion of n.

Corollary (Mauduit + Rivat, 2015)

$$\lim_{N \to \infty} \frac{\#\{0 \le p < N : r(p) = 0\}}{\pi(N)} = \frac{1}{2}.$$

If a sequence satisfies a (sufficiently strong) Fourier Property and the Carry Property, then one knows how it behaves along squares.

Corollary (Mauduit + Rivat, 2018)

$$\lim_{N \to \infty} \frac{\#\{0 \le n < N : r(n^2) = 0\}}{N} = \frac{1}{2}$$

If a sequence satisfies a (sufficiently strong) Fourier Property and the Carry Property, then one knows how it behaves along squares.

Corollary (Mauduit + Rivat, 2018)

$$\lim_{N \to \infty} \frac{\#\{0 \le n < N : r(n^2) = 0\}}{N} = \frac{1}{2}.$$

Definition (Synchronizing Automaton / Word)

 $\exists \mathbf{w}_0 : \delta(q, \mathbf{w}_0) = a \quad \forall q.$

Example

$w_0 = 010.$

- < A

< ∃ >

Definition (Synchronizing Automaton / Word)

 $\exists \mathbf{w}_0 : \delta(q, \mathbf{w}_0) = a \quad \forall q.$

Example

★ ∃ ►

Definition (Synchronizing Automaton / Word)

 $\exists \mathbf{w}_0 : \delta(q, \mathbf{w}_0) = a \quad \forall q.$

Example

 $w_0 = 010.$

< ∃ >

Theorem (Deshouillers + Drmota + M.)

Let $\mathbf{u} = (u_n)n > 0$ be generated by a synchronizing automaton. Then for every α the density

$$\delta(\alpha) = \lim_{N \to \infty} \frac{1}{N} \# \{ n \le N : u_n = \alpha \}$$

exists. Furthermore, the densities for the following subsequences exist

- $(u_p)_{p\in\mathcal{P}}$
- $(u_{P(n)})_{n\in\mathbb{N}}$

Theorem (Deshouillers + Drmota + M.)

Let $\mathbf{u} = (u_n)n > 0$ be generated by a synchronizing automaton. Then $\mathbf{u} = (u_n)_{n>0}$ is orthogonal to the Möbius function $\mu(n)$.

Clemens Müllner

Subsequences of Automatic Sequences

6. 11. 2019 11 / 22

Theorem (Deshouillers + Drmota + M.)

Let $\mathbf{u} = (u_n)n > 0$ be generated by a synchronizing automaton. Then for every α the density

$$\delta(\alpha) = \lim_{N \to \infty} \frac{1}{N} \# \{ n \le N : u_n = \alpha \}$$

exists. Furthermore, the densities for the following subsequences exist

•
$$(u_p)_{p\in\mathcal{P}}$$

•
$$(u_{P(n)})_{n\in\mathbb{N}}$$

Theorem (Deshouillers + Drmota + M.)

Let $\mathbf{u} = (u_n)n > 0$ be generated by a synchronizing automaton. Then $\mathbf{u} = (u_n)_{n>0}$ is orthogonal to the Möbius function $\mu(n)$.

Clemens Müllner

Subsequences of Automatic Sequences

6. 11. 2019 11 / 22

Theorem (Deshouillers + Drmota + M.)

Let $\mathbf{u} = (u_n)n > 0$ be generated by a synchronizing automaton. Then for every α the density

$$\delta(\alpha) = \lim_{N \to \infty} \frac{1}{N} \# \{ n \le N : u_n = \alpha \}$$

exists. Furthermore, the densities for the following subsequences exist

•
$$(u_p)_{p\in\mathcal{P}}$$

•
$$(u_{P(n)})_{n\in\mathbb{N}}$$

Theorem (Deshouillers + Drmota + M.)

Let $\mathbf{u} = (u_n)n > 0$ be generated by a synchronizing automaton. Then $\mathbf{u} = (u_n)_{n>0}$ is orthogonal to the Möbius function $\mu(n)$.

Clemens Müllner

6. 11. 2019 11 / 22
Synchronizing Automata

Theorem (Deshouillers + Drmota + M.)

Let $\mathbf{u} = (u_n)n > 0$ be generated by a synchronizing automaton. Then for every α the density

$$\delta(\alpha) = \lim_{N \to \infty} \frac{1}{N} \# \{ n \le N : u_n = \alpha \}$$

exists. Furthermore, the densities for the following subsequences exist

•
$$(u_p)_{p\in\mathcal{P}}$$

•
$$(u_{P(n)})_{n\in\mathbb{N}}$$

Theorem (Deshouillers + Drmota + M.)

Let $\mathbf{u} = (u_n)n > 0$ be generated by a synchronizing automaton. Then $\mathbf{u} = (u_n)_{n>0}$ is orthogonal to the Möbius function $\mu(n)$.

Clemens Müllner

6. 11. 2019 11 / 22

 $T(n) := M_{\varepsilon_0(n)} M_{\varepsilon_1(n)} \cdots M_{\varepsilon_{\ell-1}(n)}$ $u(n) = f(T(n)\mathbf{e}_1) \qquad \mathbf{e}_1 = (1 \quad 0 \quad 0)^T$

Clemens Müllner

Subsequences of Automatic Sequences

 $T(n) := M_{\varepsilon_0(n)} M_{\varepsilon_1(n)} \cdots M_{\varepsilon_{\ell-1}(n)}$ $u(n) = f(T(n)\mathbf{e}_1) \qquad \mathbf{e}_1 = (1 \quad 0 \quad 0)^T$

6. 11. 2019 12 / 22

Transition Matrix

 $u(n) = f(T(n)\mathbf{e}_1)$ $\mathbf{e}_1 = (1 \ 0 \ 0)^T$

 $u(n) = f(T(n)\mathbf{e}_1)$ $\mathbf{e}_1 = (1 \ 0 \ 0)^T$

 $u(n) = f(T(n)\mathbf{e}_1) \qquad \mathbf{e}_1 = (1 \ 0 \ 0)^T$

 $u(n) = f(T(n)\mathbf{e}_1) \qquad \mathbf{e}_1 = (1 \ 0 \ 0)^T$

An automaton is called invertible if all transition matrices M_0, \ldots, M_{k-1} are invertible and if $M = M_0 + \ldots + M_{k-1}$ is primitive.

Suppose that an automatic sequence $\mathbf{u} = (u_n)_{n \ge 0}$ is generated by an invertible automaton.

Theorem [Drmota, Ferenczi + Kulaga-Przymus+Lemanczyk+Mauduit

u is orthogonal to $\mu(n)$.

Theorem[Drmota]

The frequency of each letter of the subsequence $(u_p)_{p\in\mathcal{P}}$ exists.

Theorem [Drmota + Morgenbesser]

The frequency of each letter of the subsequence $(u_{n^2})_{n>0}$ exists.

An automaton is called invertible if all transition matrices M_0, \ldots, M_{k-1} are invertible and if $M = M_0 + \ldots + M_{k-1}$ is primitive.

Suppose that an automatic sequence $\mathbf{u} = (u_n)_{n \ge 0}$ is generated by an invertible automaton.

Theorem [Drmota, Ferenczi + Kulaga-Przymus+Lemanczyk+Mauduit

u is orthogonal to $\mu(n)$.

Theorem[Drmota]

The frequency of each letter of the subsequence $(u_p)_{p\in\mathcal{P}}$ exists.

Theorem [Drmota + Morgenbesser]

The frequency of each letter of the subsequence $(u_{n^2})_{n>0}$ exists.

An automaton is called invertible if all transition matrices M_0, \ldots, M_{k-1} are invertible and if $M = M_0 + \ldots + M_{k-1}$ is primitive.

Suppose that an automatic sequence $\mathbf{u} = (u_n)_{n \ge 0}$ is generated by an invertible automaton.

Theorem [Drmota, Ferenczi + Kulaga-Przymus+Lemanczyk+Mauduit]

u is orthogonal to $\mu(n)$.

Theorem[Drmota]

The frequency of each letter of the subsequence $(u_p)_{p\in\mathcal{P}}$ exists.

Theorem [Drmota + Morgenbesser]

The frequency of each letter of the subsequence $(u_{n^2})_{n\geq 0}$ exists.

An automaton is called invertible if all transition matrices M_0, \ldots, M_{k-1} are invertible and if $M = M_0 + \ldots + M_{k-1}$ is primitive.

Suppose that an automatic sequence $\mathbf{u} = (u_n)_{n \ge 0}$ is generated by an invertible automaton.

Theorem [Drmota, Ferenczi + Kulaga-Przymus+Lemanczyk+Mauduit]

u is orthogonal to $\mu(n)$.

Theorem[Drmota]

The frequency of each letter of the subsequence $(u_p)_{p\in\mathcal{P}}$ exists.

Theorem [Drmota + Morgenbesser

The frequency of each letter of the subsequence $(u_{n^2})_{n>0}$ exists.

An automaton is called invertible if all transition matrices M_0, \ldots, M_{k-1} are invertible and if $M = M_0 + \ldots + M_{k-1}$ is primitive.

Suppose that an automatic sequence $\mathbf{u} = (u_n)_{n \ge 0}$ is generated by an invertible automaton.

Theorem [Drmota, Ferenczi + Kulaga-Przymus+Lemanczyk+Mauduit]

u is orthogonal to $\mu(n)$.

Theorem[Drmota]

The frequency of each letter of the subsequence $(u_p)_{p\in\mathcal{P}}$ exists.

Theorem [Drmota + Morgenbesser]

The frequency of each letter of the subsequence $(u_{n^2})_{n\geq 0}$ exists.

Representation of automatic sequences

Example (Rudin-Shapiro)

Representation of automatic sequences

Example (Rudin-Shapiro)

Representation of automatic sequences

Example (Rudin-Shapiro)

For every primitive automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

For every primitive automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

For every primitive automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

For every primitive automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

For every primitive automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

For every primitive automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

For every primitive automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

For every primitive automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Representation of automatic sequences

Definition

Denote by

$$T(q, w_1 \dots w_r) := \lambda(q, w_1) \circ \lambda(\delta(q, w_1), w_2) \circ \dots \circ \lambda(\delta(q, w_1 \dots w_{r-1}), w_r).$$

Lemma

Let A be a primitive automaton and \mathcal{T}_A a naturally induced transducer. Then,

$$\delta'(q'_0, \mathbf{w}) = \pi_1(\mathcal{T}(q_0, \mathbf{w}) \cdot \delta(q_0, \mathbf{w}))$$

holds for all $\mathbf{w} \in \Sigma^*$

Representation of automatic sequences

Definition

Denote by

$$T(q, w_1 \dots w_r) := \lambda(q, w_1) \circ \lambda(\delta(q, w_1), w_2) \circ \dots \circ \lambda(\delta(q, w_1 \dots w_{r-1}), w_r).$$

Lemma

Let A be a primitive automaton and \mathcal{T}_A a naturally induced transducer. Then,

$$\delta'(q'_0, \mathbf{w}) = \pi_1(\mathcal{T}(q_0, \mathbf{w}) \cdot \delta(q_0, \mathbf{w}))$$

holds for all $\mathbf{w} \in \Sigma^*$.

Using the structure

Theorem (M., 2017)

For any "non-trivial" unitary representation D we have a generalized Fourier Property and a generalized Carry Property for D(T(n)).

Theorem (M., 2017)

Let u(n) be a primitive automatic sequence. Then

$$\lim_{N \to \infty} \frac{\#\{0 \le p < N : u(p) = \alpha\}}{\pi(N)}$$

exists for all α (and can be computed).

Theorem (Byszewski, Konieczny, M.; 2019+)

For any "non-trivial" unitary representation D, D(T(n)) is Gower's

Clemens Müllner

Using the structure

Theorem (M., 2017)

For any "non-trivial" unitary representation D we have a generalized Fourier Property and a generalized Carry Property for D(T(n)).

Theorem (M., 2017)

Let u(n) be a primitive automatic sequence. Then

$$\lim_{N \to \infty} \frac{\#\{0 \le p < N : u(p) = \alpha\}}{\pi(N)}$$

exists for all α (and can be computed).

Theorem (Byszewski, Konieczny, M.; 2019+)

For any "non-trivial" unitary representation D, D(T(n)) is Gower's

Initorm of any orde

Using the structure

Theorem (M., 2017)

For any "non-trivial" unitary representation D we have a generalized Fourier Property and a generalized Carry Property for D(T(n)).

Theorem (M., 2017)

Let u(n) be a primitive automatic sequence. Then

$$\lim_{N \to \infty} \frac{\#\{0 \le p < N : u(p) = \alpha\}}{\pi(N)}$$

exists for all α (and can be computed).

Theorem (Byszewski, Konieczny, M.; 2019+)

For any "non-trivial" unitary representation D, D(T(n)) is Gower's uniform of any order.

Clemens Müllner

6. 11. 2019 17 / 22

Sarnak Conjecture for automatic sequences

Theorem (M., 2017)

Let u(n) be a complex-valued automatic sequence. Then we have

$$\sum_{n\leq N} u(n)\mu(n) = o(N).$$

Theorem(Lemanczyk + M., 2018)

Let u(n) be a complex-valued primitive automatic sequence. Then we have for any aperiodic bounded multiplicative sequence m(n),

$$\sum_{n\leq N} u(n)m(n) = o(N).$$

Sarnak Conjecture for automatic sequences

Theorem (M., 2017)

Let u(n) be a complex-valued automatic sequence. Then we have

$$\sum_{n\leq N}u(n)\mu(n)=o(N).$$

Theorem(Lemanczyk + M., 2018)

Let u(n) be a complex-valued primitive automatic sequence. Then we have for any aperiodic bounded multiplicative sequence m(n),

$$\sum_{n\leq N}u(n)m(n)=o(N).$$

A D > A A P >

Other subsequences

Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2017, 2018+) 1 < c < 2:

$$\lim_{N\to\infty}\frac{\#\{0\leq n< N: t_{\lfloor n^c\rfloor}=0\}}{N}=\frac{1}{2},$$

Theorem (M. + Spiegelhofer, 2017)

Suppose that 1 < c < 3/2. Then the sequence $(t_{|n^c|})$ is normal.

Other subsequences

Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2017, 2018+) 1 < c < 2:

$$\lim_{N \to \infty} \frac{\# \{ 0 \le n < N : t_{\lfloor n^c \rfloor} = 0 \}}{N} = \frac{1}{2},$$

Theorem (M. + Spiegelhofer, 2017)

Suppose that 1 < c < 3/2. Then the sequence $(t_{|n^c|})$ is normal.

Other subsequences

Theorem (Deshouillers, Drmota and Morgenbesser, 2012)

Let u_n be a k-automatic sequence (on an alphabet A) and

1 < c < 7/5.

Then for each $a \in A$ the asymptotic density $dens(u_{\lfloor n^c \rfloor}, a)$ of a in the subsequence $u_{\lfloor n^c \rfloor}$ exists if and only if the asymptotic density of a in u_n exists and we have

 $dens(u_{\lfloor n^c \rfloor}, a) = dens(u_n, a).$

Upcoming results

Theorem (Adamczewski + Drmota + M., 2019+)

Let u(n) be a primitive automatic sequence. Then

$$\lim_{N \to \infty} \frac{\#\{0 \le n < N : u(n^2) = \alpha\}}{N}$$

exists for all α (and can be computed).

Upcoming results

Theorem (Adamczewski + Drmota + M., 2019+)

Let (n_{ℓ}) be a regularly varying sequence such that for any primitive automatic sequence u(n) the densities along n_{ℓ} exist. Then, for any automatic sequence v(n) exist the logarithmic densities along n_{ℓ} .

Theorem (Adamczewski + Drmota + M., 2019+)

Let u(n) be an automatic sequence, then the logarithmic densities exist along primes and squares.

Upcoming results

Theorem (Adamczewski + Drmota + M., 2019+)

Let (n_{ℓ}) be a regularly varying sequence such that for any primitive automatic sequence u(n) the densities along n_{ℓ} exist. Then, for any automatic sequence v(n) exist the logarithmic densities along n_{ℓ} .

Theorem (Adamczewski + Drmota + M., 2019+)

Let u(n) be an automatic sequence, then the logarithmic densities exist along primes and squares.