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Automatic Sequences

Definition (Automaton - DFA)

A=(QL={0.....k—1},0,q0,7)
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Automatic Sequences

Definition (Automaton - DFA)

A:(Q,Z:{O,...,k—1},5,(7077')

Example (Thue-Morse sequence)

0 0
1

s —(0}_Yon)
1

n=22=(10110);, up=1
u = (u,),=0 = 01101001100101101001011001101001 . . .

V.
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Properties of Automatic Sequences

@ For every primitive automatic sequence u there exists the
density

1
dens(u,a):NIim N E 1jy,=a)-
—00

1<n<N

@ For every automatic sequence u there exists the logarithmic

density )
> L=l

1<n<N

logdens(u, a) = NI|_r>nOO iog(N)

Clemens Miillner Subsequences of Automatic Sequences 6. 11. 2019 3/22



Properties of Automatic Sequences

@ For every primitive automatic sequence u there exists the
density

1
dens(u,a):NIim N E 1jy,=a)-
—00

1<n<N

@ For every automatic sequence u there exists the logarithmic

density )
> L=l

1<n<N

logdens(u, a) = NI|_r>nOO iog(N)

@ The subword complexity of an automatic sequence is (at most)
linear.

Clemens Miillner Subsequences of Automatic Sequences 6. 11. 2019 3/22



Properties of Automatic Sequences

@ For every primitive automatic sequence u there exists the
density
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dens(u,a):NIim N E 1jy,=a)-
—00

1<n<N

@ For every automatic sequence u there exists the logarithmic

density )
> L=l

1<n<N

logdens(u, a) = lim
g ( ’ ) N—o0 /Og(N)
@ The subword complexity of an automatic sequence is (at most)
linear.
@ Every subsequence (Uan1p)n>0 along an arithmetic progression
of an automatic sequence (u,),>0 is again automatic.
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Properties of Automatic Sequences

@ For every primitive automatic sequence u there exists the
density

1
dens(u,a):NIim N E 1jy,=a)-
—00

1<n<N

@ For every automatic sequence u there exists the logarithmic

density )
> L=l

1<n<N

logdens(u, a) = NI|_r>nOO iog(N)
@ The subword complexity of an automatic sequence is (at most)
linear.
@ Every subsequence (Uan1p)n>0 along an arithmetic progression
of an automatic sequence (u,),>0 is again automatic.
o Let u®(n), ..., uY)(n) be automatic sequences. Then
u(n) = f(u®(n),...,uY)(n)) is again automatic.
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Gelfond

Theorem (Gelfond)

Let g,m,r,/,a € N with (m,q — 1) = 1. Then we have

<N: =
#{n<N: sq.(nrl\;L ) = a mod m} _ % + 0y(Nr).
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Gelfond Problems
©Q The joint distribution of the sum-of-digits in different bases.
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Gelfond

Theorem (Gelfond)

Let g,m,r,/,a € N with (m,q — 1) = 1. Then we have

<N: =
#{n<N: sq(nrl\;L ) = a mod m} _ % + 0y(Nr).

Gelfond Problems
©Q The joint distribution of the sum-of-digits in different bases.
e Besinau (1972), Kim (1999)
© The distribution of the sum-of-digits of primes.
e Mauduit, Rivat (2010)
© The distribution of the sum-of-digits of polynomials.
e Squares: Mauduit, Rivat (2009)

4
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Thue-Morse sequence along squares

Conjecture (Allouche and Shallit, 2003)
Every block B € {0,1}* k > 1, appears in (t(n?))n>o0.
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Thue-Morse sequence along squares

Conjecture (Allouche and Shallit, 2003)
Every block B € {0,1}* k > 1, appears in (t(n?))n>o0.

Resolved by Moshe (2007)
But what can be said about the frequency of a given block?

Theorem (Drmota + Mauduit + Rivat, 2019)

The sequence (t(n?)),o0 is normal, i.e. every block of length k
appears with asymptotic frequency 2.
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A more general method

Rudin-Shapiro sequence

0 0
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A more general method

Rudin-Shapiro sequence

0 0

r(n) “counts” 11 in the
digital expansion of n.
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A more general method

Rudin-Shapiro sequence

0 0

r(n) “counts” 11 in the
digital expansion of n.

The old approach does not work directly.
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A general method

Fourier Property

A function f : N — U has the Fourier property if the Fourier
transform is uniformly small, e.g. 9n > 0, s.t.

< kT,

% > f(mk*)e(—mt)

m<kX
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A general method

Fourier Property

A function f : N — U has the Fourier property if the Fourier
transform is uniformly small, e.g. 9n > 0, s.t.

< kT,

% > f(mk*)e(—mt)

m<kX

Carry Property

The contribution of high digits and the contribution of low digits are
»independent".

Clemens Miillner Subsequences of Automatic Sequences 6. 11. 2019 7/22



A general method

Theorem (Mauduit + Rivat, 2015)

If a sequence satisfies a (sufficently strong) Fourier Property and
the Carry Property, then one knows how it behaves along primes.
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A general method

Theorem (Mauduit + Rivat, 2015)

If a sequence satisfies a (sufficently strong) Fourier Property and
the Carry Property, then one knows how it behaves along primes.

Proposition (Mauduit + Rivat, 2015)

The function e(afi1(n) + 0n) satisfies for o ¢ Z the Fourier
Property and the Carry Property, where fi;(n) denotes the number
of 11 in the binary expansion of n.
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A general method

Theorem (Mauduit + Rivat, 2015)

If a sequence satisfies a (sufficently strong) Fourier Property and
the Carry Property, then one knows how it behaves along primes.

Proposition (Mauduit + Rivat, 2015

The function e(afi1(n) + 0n) satisfies for o ¢ Z the Fourier
Property and the Carry Property, where fi;(n) denotes the number
of 11 in the binary expansion of n.

—
~—

Corollary (Mauduit + Rivat, 2015)

#{0<p<N:r(p)=0} 1

lim = -.
N—oo W(N) 2
Vv
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A general method

Theorem (Mauduit + Rivat, 2015)

If a sequence satisfies a (sufficently strong) Fourier Property and
the Carry Property, then one knows how it behaves along squares.

Corollary (Mauduit + Rivat, 2018)

. #{0<n<N:r(n)=0} 1
[im = —.
N— oo N
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Synchronizing Automata

Synchronizing Automata

Definition (Synchronizing Automaton / Word)
dwg : d(g,wp) = a Vg.
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Synchronizing Automata

Synchronizing Automata

Definition (Synchronizing Automaton / Word)
dwg : d(g,wp) = a Vag.

Example
0
start —
! 1
0 1
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Synchronizing Automata

Synchronizing Automata

Definition (Synchronizing Automaton / Word)
dwg : d(g,wp) = a Vag.

Example
0
start —
! 1
0 1
0
wo = 010.
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Synchronizing Automata

Synchronizing Automata

Theorem (Deshouillers + Drmota + M.)

Let u = (up)n > 0 be generated by a synchronizing automaton.
Then for every o the density

d(a) = lim %#{n <N:u,=a}

N—oo

exists.
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Theorem (Deshouillers + Drmota + M.)

Let u = (up)n > 0 be generated by a synchronizing automaton.
Then for every o the density

d(a) = lim %#{n <N:u,=a}

N—oo

exists. Furthermore, the densities for the following subsequences exist
© (up)pep

@ (Up(n))neN

Theorem (Deshouillers + Drmota + M.)

Let u = (up)n > 0 be generated by a synchronizing automaton. Then
u = (up)n>0 is orthogonal to the Mébius function p(n).
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Transition Matrix

2 0

start —> 1
1

0 2 2
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Transition Matrix

2 0
start —> 1 e
1
0
2 2
(2 )00
1

S
|
oo
o~ o
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Transition Matrix

0

2
start —> 1 @
1
0 2 2

=)

S

|
o O
o = O
= O O

<

|
oL O =
O O =
= O O
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Transition Matrix

2 0
SO==0
1
0 2 2
(5
1
1 00 010 0 01
M= 0 1 0 | ;M = 1 0 0 |;M= 1 00
0 01 0 01 010
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Transition Matrix

2 0
WO=0
1
0 2 2
(2 )0
1
1 00 010 0 01
My = 010 |;M= 1 0 0 |;M= 1 00
0 01 0 01 010
T(n) :== MeymMey(ny -+ Me, 1 (n)
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Transition Matrix

2 0
SO==0
1
0 2 2
(5
1
1 00 010 0 01
M= 0 1 0 | ;M = 1 0 0 |;M= 1 00
0 01 0 01 010

T(n) = Mao(n)Mal(n) M,

ee—1(n)
u(n)=F(T(n)er) e=(1 0 0)7
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Invertible Automata

Definition

An automaton is called invertible if all transition matrices
My, ..., M,_; are invertible and if M = My + ...+ M,_1 is
primitive.
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Invertible Automata
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Suppose that an automatic sequence u = (u,),>0 is generated by an
invertible automaton.
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Invertible Automata

Definition

An automaton is called invertible if all transition matrices
My, ..., M,_; are invertible and if M = My + ...+ M,_1 is
primitive.

Suppose that an automatic sequence u = (u,),>0 is generated by an
invertible automaton.

Theorem [Drmota, Ferenczi +

Kulaga-Przymus+Lemanczyk-+Mauduit]

u is orthogonal to y(n).
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invertible automaton.

Theorem [Drmota, Ferenczi +
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u is orthogonal to y(n).
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The frequency of each letter of the subsequence (u,)pep exists.
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Invertible Automata

Definition

An automaton is called invertible if all transition matrices
My, ..., M,_; are invertible and if M = My + ...+ M,_1 is
primitive.

Suppose that an automatic sequence u = (u,),>0 is generated by an
invertible automaton.

Theorem [Drmota, Ferenczi +

Kulaga-Przymus+Lemanczyk-+Mauduit]
u is orthogonal to y(n).

Theorem[Drmota]

The frequency of each letter of the subsequence (u,)pep exists.

Theorem [Drmota + Morgenbesser]

The frequency of each letter of the subsequence (u,2),>0 exists.

Clemens Miillner Subsequences of Automatic Sequences 6. 11. 2019 13 / 22



Invertible Automata
Representation of automatic sequences

Example (Rudin-Shapiro)

start —
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Invertible Automata

Representation of automatic sequences

Example (Rudin-Shapiro)

0
0 0
. start —>
0 0 0 1
1
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Invertible Automata

Representation of automatic sequences

Example (Rudin-Shapiro)

0id

. start —>
0 0

0lid| |1]id

1|(12)
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Theorem (M., 2017)

For every primitive automaton A, there exists a naturally induced
transducer 7.
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Theorem (M., 2017)

For every primitive automaton A, there exists a naturally induced
transducer T4. All other naturally induced transducers can be
obtained by changing the order on the elements of Q.
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Theorem (M., 2017)

For every primitive automaton A, there exists a naturally induced
transducer T4. All other naturally induced transducers can be
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Invertible Automata

Theorem (M., 2017)

For every primitive automaton A, there exists a naturally induced
transducer T4. All other naturally induced transducers can be
obtained by changing the order on the elements of Q.

Example:

|4

start —>

A

| 4
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Invertible Automata

Theorem (M., 2017)

For every primitive automaton A, there exists a naturally induced
transducer T4. All other naturally induced transducers can be
obtained by changing the order on the elements of Q.

Example:
0](12)

start —>

A

|4
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Invertible Automata

Theorem (M., 2017)

For every primitive automaton A, there exists a naturally induced
transducer T4. All other naturally induced transducers can be
obtained by changing the order on the elements of Q.

Example:

0](12)

start —(  qg, 91, 9

1](23)
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Invertible Automata

Theorem (M., 2017)

For every primitive automaton A, there exists a naturally induced
transducer T4. All other naturally induced transducers can be
obtained by changing the order on the elements of Q.

Example:

0](12)

start —(  qg, 91, 9

0/(12)
1] id
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Invertible Automata
Representation of automatic sequences

Definition

Denote by

T(q,wh. .. wr) = A(d, ws) o A(5(q, wr), wa) o ..
o No(g,wy ... w,_1), w,).
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Invertible Automata
Representation of automatic sequences

Denote by

T(g,wi...w,):=Xgq,wi) o N0(g,w1),wn)o0...
o No(g,wy ... w,_1), w,).

4

Lemma
Let A be a primitive automaton and 7, a naturally induced
transducer. Then,

d'(qo, w) = m1(T (g0, W) - 6(q0, W))

holds for all w € ¥*.
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Invertible Automata
Using the structure

Theorem (M., 2017)

For any “non-trivial” unitary representation D we have a generalized
Fourier Property and a generalized Carry Property for D(T(n)).
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Invertible Automata
Using the structure

Theorem (M., 2017)

For any “non-trivial” unitary representation D we have a generalized
Fourier Property and a generalized Carry Property for D(T(n)).

Theorem (M., 2017)

Let u(n) be a primitive automatic sequence. Then

i OSSP <N:u(p)=a}
N=oo m(N)

exists for all & (and can be computed).
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Invertible Automata
Using the structure

Theorem (M., 2017)

For any “non-trivial” unitary representation D we have a generalized
Fourier Property and a generalized Carry Property for D(T(n)).

Theorem (M., 2017)

Let u(n) be a primitive automatic sequence. Then

exists for all & (and can be computed).

Theorem (Byszewski, Konieczny, M.; 2019+)

For any “non-trivial” unitary representation D, D(T(n)) is Gower's

uniform of any order.
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Invertible Automata

Sarnak Conjecture for automatic sequences

Theorem (M., 2017)

Let u(n) be a complex-valued automatic sequence.
Then we have
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Invertible Automata

Sarnak Conjecture for automatic sequences

Theorem (M., 2017)

Let u(n) be a complex-valued automatic sequence.
Then we have

n<N

\

Theorem(Lemanczyk + M., 2018)

Let u(n) be a complex-valued primitive automatic sequence. Then
we have for any aperiodic bounded multiplicative sequence m(n),

o
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Invertible Automata
Other subsequences

Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2017, 2018+)
1<c<2:

#{0§n<N:thcJ:O}_1

")

[im
N—oo N
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Invertible Automata
Other subsequences

Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2017, 2018+)
1<c<2:

#{0§n<N:thcJ:O}_1

")

[im
N—oo N

Theorem (M. + Spiegelhofer, 2017)
Suppose that 1 < ¢ < 3/2. Then the sequence (t|,|) is normal.
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Invertible Automata
Other subsequences

Theorem (Deshouillers, Drmota and Morgenbesser, 2012)

Let u, be a k-automatic sequence (on an alphabet .A) and
1<c<7/5.

Then for each a € A the asymptotic density dens(uj,c|,a) of ain
the subsequence v, exists if and only if the asymptotic density of
a in u, exists and we have

dens(ujpe|, a) = dens(up, a).
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Invertible Automata
Upcoming results

Theorem (Adamczewski + Drmota + M., 2019+)

Let u(n) be a primitive automatic sequence. Then

im #{0<n<N:u(n?) =a}
N—oo N

exists for all & (and can be computed).
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Invertible Automata
Upcoming results

Theorem (Adamczewski + Drmota + M., 2019+)

Let (n,) be a regularly varying sequence such that for any primitive
automatic sequence u(n) the densities along n, exist.

Then, for any automatic sequence v(n) exist the logarithmic
densities along nj.
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Invertible Automata

Upcoming results

Theorem (Adamczewski + Drmota + M., 2019+)

Let (n,) be a regularly varying sequence such that for any primitive
automatic sequence u(n) the densities along n, exist.

Then, for any automatic sequence v(n) exist the logarithmic
densities along nj.

Theorem (Adamczewski + Drmota + M., 2019+)

Let u(n) be an automatic sequence, then the logarithmic densities
exist along primes and squares.
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