All automatic sequences satisfy the full Sarnak
conjecture

Clemens Miillner
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Sarnak conjecture
Complexity of a sequence

Definition

A bounded complex valued sequence u = (u,)n>o is said to be
deterministic if for every ¢ > 0 the set {(uq1,..., Unim) 1 N € N}
can be covered by O(exp(o(m))) balls of radius € (as m — o).
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Sarnak conjecture
Complexity of a sequence

Definition
A bounded complex valued sequence u = (u,)n>o is said to be
deterministic if for every ¢ > 0 the set {(vy11,- .-, Uptm) : n € N}

can be covered by O(exp(o(m))) balls of radius £ (as m — o).

Example
Let
u, = f(T"x)

for a minimal topological dynamical system (X, T) with zero
topological entropy (and a continuous function f), then (u,)n>o is
deterministic.

4
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Sarnak conjecture
Sarnak Conjecture

The Mobius function is defined by

(—1)* if n is squarefree and
w(n) = k is the number of prime factors
0  otherwise
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(—1)* if n is squarefree and
w(n) = k is the number of prime factors
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A sequence u is orthogonal to the M&bius function fi(n) if

> p(n)u, = o(N) (N — o0).

n<N
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Sarnak conjecture
Sarnak Conjecture

The Mobius function is defined by

(—1)* if n is squarefree and
w(n) = k is the number of prime factors
0  otherwise

A sequence u is orthogonal to the M&bius function fi(n) if

> p(n)u, = o(N) (N — o0).

n<N

Conjecture (Sarnak conjecture)

Every deterministic bounded complex valued sequence u = (u,)n>0
is orthogonal to the Mobius function p(n).
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Sarnak conjecture  Orthogonaly to u(n) vs. ,full“ Sarnak conjecture

, Full” Sarnak Conjecture

Dynamical System (X, T) related to u
u = (Uy)n>0 - - - bounded complex sequence
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Sarnak conjecture  Orthogonaly to u(n) vs. ,full“ Sarnak conjecture

, Full” Sarnak Conjecture

Dynamical System (X, T) related to u
u = (Uy)n>0 - - - bounded complex sequence
Tu = (Upt1)n>0- - - shift operator

X ={Tku): k > 0}

We say that u satisfies the ,,Full* Sarnak conjecture if all
sequences @ = (a,),>0 € X are orthogonal to p(n).
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Automatic Sequences

Deterministic Finite Automata

Definition (Automaton)

A=(QL={0.....k—1},0,q0,7)
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Automatic Sequences

Deterministic Finite Automata

Definition (Automaton)

A:(Q,Z:{O,...,k—1},5,(7077')

Example (Thue-Morse sequence)
0 0
1

s —(0}_Yon)
1
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Deterministic Finite Automata

Definition (Automaton)

A:(Q,Z:{O,...,k—1},5,(7077')

Example (Thue-Morse sequence)
0 0
1

s —(0}_Yon)
1

n=22=(10110);, up=1
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Automatic Sequences

Deterministic Finite Automata

Definition (Automaton)

A:(Q,Z:{O,...,k—1},5,(7077')

Example (Thue-Morse sequence)

0 0
1

s —(0}_Yon)
1

n=22=(10110);, up=1
u = (u,),=0 = 01101001100101101001011001101001 . . .
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Automatic Sequences

Properties

@ For every automatic sequence u there exists the logarithmic
density

. 1 1
logdens(u, a) = Jim Tog(N) Z ;l[un:a].
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Automatic Sequences

Properties

@ For every automatic sequence u there exists the logarithmic
density

: 1 1
logdens(u, a) = I\;inoo g (V) I;N ;l[un:a].

@ The subword complexity px of an automatic sequence is (at
most) linear.
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Automatic Sequences
Properties

@ For every automatic sequence u there exists the logarithmic

density
1
E S N
5 lun=al

1<n<N

logdens(u, a) = ,Jinoo log(N)

@ The subword complexity px of an automatic sequence is (at
most) linear. The dynamical system (X, T) related to an
automatic sequence has zero topological entropy.
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Automatic Sequences
Properties

@ For every automatic sequence u there exists the logarithmic

density
1
E S N
5 lun=al

1<n<N

logdens(u, a) = ,Jinoo log(N)

@ The subword complexity px of an automatic sequence is (at
most) linear. The dynamical system (X, T) related to an
automatic sequence has zero topological entropy.

@ Every subsequence (u,,4p)n>0 along an arithmetic progression
of an automatic sequence (u,),>o is again automatic.
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Automatic Sequences
Properties

@ For every automatic sequence u there exists the logarithmic

density
1
E S N
5 lun=al

1<n<N

logdens(u, a) = ,Jinoo log(N)

@ The subword complexity px of an automatic sequence is (at
most) linear. The dynamical system (X, T) related to an
automatic sequence has zero topological entropy.

@ Every subsequence (u,,4p)n>0 along an arithmetic progression
of an automatic sequence (u,),>o is again automatic.

o Let uM(n),..., uY(n) be automatic sequences. Then
u(n) = f(u®(n),...,uY)(n)) is again automatic.
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Automatic Sequences Synchronizing Automata

Synchronizing Automata

Definition (Synchronizing Automaton / Word)
dwg : 0(g,wp) = a Vq.
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Automatic Sequences Synchronizing Automata

Synchronizing Automata

Definition (Synchronizing Automaton / Word)
dwg : d(g,wo) = a Vaq.

Example
0
start —
! 1
0 1
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Automatic Sequences Synchronizing Automata

Synchronizing Automata

Definition (Synchronizing Automaton / Word)
dwg : d(g,wo) = a Vaq.

Example
0
start —
! 1
0 1
0
wpo = 010.
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Automatic Sequences Synchronizing Automata

Synchronizing Automata

Definition (Synchronizing Automaton / Word)
dwg : d(g,wo) = a Vaq.

Example
0
start —
! 1
0 1
0
wpo = 010.

Theorem (Deshouillers + Drmota + M.)

Let u = (up)n > 0 be generated by a synchronizing automaton. Then
u = (up)n>o satisfies the full Sarnak conjecture.

Clemens Miillner Automatic sequences / Sarnak conjecture 23. February 2016
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matic Sequences  Transiti

2 0

start —> 1
1

0 2 2
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Automatic Sequences Transition Matrix

start —>‘ )

0

0

Mo =

O O =
o = O
= O O
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Automatic Sequences Transition Matrix

start —>‘\1/'
. } .

My = My =

o O =
o = O
= O O
—=
o O
= O O

Clemens Miillner

Automatic sequences / Sarnak conjecture
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Automatic Sequences Transition Matrix

2
start —>

2 2

1 00 010 0 01
Mo=1 01 0 |;Mi=]100 |;Mp=1]1200
0 01 0 01 010
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Automatic Sequences Transition Matrix

2 0
O==0
1
0 2 2
=)
1
100 010 001
Mo=|0 10 |;Mm=(100|;M=(100
001 001 010
1 0
11 = (102)3 : MyoMooMy | 0 | =( 0
0 1

Clemens Miillner Automatic sequences / Sarnak conjecture 23. February 2016 12 / 41



Automatic Sequences Transition Matrix

2 0
SO==0
1
0 2 2
(5
1
1 00 010 0 01
M= 0 1 0 | ;M = 1 0 0 |;M= 1 00
0 01 0 01 010

T(n):= Mao(n)Mel(n) M

eo—1(n)

u(n) = f(T(n)e1) ee=(1 0 O)T
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Automatic Sequences Invertible Automata

Definition

An automaton is called invertible if all transition matrices
My, ..., M,_q are invertible and if M = My + ...+ M,_; is
primitive.
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Automatic Sequences Invertible Automata

Definition

An automaton is called invertible if all transition matrices
My, ..., M,_q are invertible and if M = My + ...+ M,_; is
primitive.

Remark:
If the matrix M = My + ...+ M,_1 is primitive then the densities

1
dens(u, a) = Nlinoo N Z 1,4
1<n<N

exist and coincide with the logarithmic densities.
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Automatic Sequences Invertible Automata

Definition

An automaton is called invertible if all transition matrices
My, ..., M,_q are invertible and if M = My + ...+ M,_; is
primitive.

Remark:
If the matrix M = My + ...+ M,_1 is primitive then the densities

1
dens(u, a) = Nlinoo N Z 1,4
1<n<N

exist and coincide with the logarithmic densities.

Theorem [Drmota, Ferenczi +

Kulaga-Przymus+Lemanczyk-+Mauduit]

Suppose that an automatic sequence u = (u,),>0 is generated by an
invertible automaton. Then u is orthogonal to p(n).
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Automatic Sequences Structure of strongly connected automata

Example (Rudin-Shapiro)

0 0 0 id
o start —>
0]id 1]id
1| (12)
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Automatic Sequences Structure of strongly connected automata

Example (Rudin-Shapiro)

id
0 0 0i
start —>
0]id 1]id
1| (12)

Theorem [Mauduit + Rivat, Tao]

The Rudin-Shapiro Sequence is orthogonal to the Mobius function.
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Automatic Sequences Naturally Induced Transducer

Definition (Naturally Induced Transducer)

Let A= (Q', X, ¢, q)) be a strongly connected automata. We call
Ta=(Q,%,9,qo, A, \) a naturally induced transducer iff
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Definition (Naturally Induced Transducer)

Let A= (Q', X, ¢, q)) be a strongly connected automata. We call
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Automatic Sequences Naturally Induced Transducer

Definition (Naturally Induced Transducer)

Let A= (Q', X, ¢, q)) be a strongly connected automata. We call
Ta=(Q,%,9,qo, A, \) a naturally induced transducer iff

Q@ InpeN:QC(Q)m

@ some technical conditions
© 5(,2) = A(q.2) - 6(3,2)
@ 7, is synchronizing
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Automatic Sequences Naturally Induced Transducer

Definition (Naturally Induced Transducer)

Let A= (Q', X, ¢, q)) be a strongly connected automata. We call
Ta=(Q,%,9,qo, A, \) a naturally induced transducer iff

@ I eN: QC(Q)™

© some technical conditions
Q 0'(g,a) = A(q,a) - d(q, a)
@ 74 is synchronizing

© some minimality conditions
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Automatic Sequences Naturally Induced Transducer

Example

start —
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Automatic Sequences Naturally Induced Transducer

Example

19 start —(  qg, 91, 95

start —

q0: G3: 94
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Automatic Sequences Naturally Induced Transducer

Example

0 0/(12)

19 start —(  qg, 91, 95

start —

q0: G3: 94
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Automatic Sequences Naturally Induced Transducer

Example

0](12)

start —(  qg, 91, 95

1](23)
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Example

Clemens Miillner

Automatic Sequences Naturally Induced Transducer

0](12)

start —(  qg, 91, 95

0](12) 1/(23)
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Example

Clemens Miillner

Automatic Sequences Naturally Induced Transducer

0](12)

start —(  qg, 91, 95

0[(12)
1] id

11(23)

Automatic sequences / Sarnak conjecture 23. February 2016
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Automatic Sequences Naturally Induced Transducer
Theorem

For every strongly connected automaton A, there exists a naturally
induced transducer 74.

Clemens Miillner Automatic sequences / Sarnak conjecture 23. February 2016 23 /41



Automatic Sequences Naturally Induced Transducer

For every strongly connected automaton A, there exists a naturally
induced transducer T4. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.
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Automatic Sequences Naturally Induced Transducer

For every strongly connected automaton A, there exists a naturally
induced transducer T4. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):
Define

no := min{#0'(Q',w) : w e X"}
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For every strongly connected automaton A, there exists a naturally
induced transducer T4. All other naturally induced transducers can
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Proof (first part of the Theorem):
Define

no := min{#0'(Q',w) : w e X"}
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Automatic Sequences Naturally Induced Transducer

For every strongly connected automaton A, there exists a naturally
induced transducer T4. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):
Define

no := min{#0'(Q',w) : w e X"}
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Automatic Sequences Naturally Induced Transducer

For every strongly connected automaton A, there exists a naturally
induced transducer T4. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):
Define

no := min{#0'(Q',w) : w e X"}
S(A) = {M - Ql : #M = no,ﬂwM € Z*,él(Ql,WM) = M}

Define no-tuple gy corresponding to M € S(A).
e §'(M,a) € S(A) = 0(qm, a) = Gs(m,2)
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Automatic Sequences Naturally Induced Transducer

For every strongly connected automaton A, there exists a naturally
induced transducer T4. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):
Define

no := min{#0'(Q',w) : w e X"}
S(A) = {M - Ql : #M = no,ﬂwM € Z*,él(Ql,WM) = M}
Define no-tuple gy corresponding to M € S(A).
e §'(M,a) € S(A) = 0(qm, a) = Gs(m,2)
@ choose A accordingly.
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Automatic Sequences Naturally Induced Transducer

For every strongly connected automaton A, there exists a naturally
induced transducer T4. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):
Define

no := min{#0'(Q',w) : w e X"}
S(A) = {M - Ql : #M = no,ﬂwM € Z*,él(Ql,WM) = M}

Define no-tuple gy corresponding to M € S(A).
("] (S/(M, a) c S(A) = 5(Q/\/],a) = Clé'(M,a)
@ choose A accordingly.
@ synchronizing:

Vq : 0(q,wm) = qu.
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Automatic Sequences Naturally Induced Transducer

Definition

Denote by

T(q7 wi... Wr) = )‘(qa Wl) e A(5(q7 W1)7 W2) O...
o No(g,wy ... w,_1), w,).
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Automatic Sequences Naturally Induced Transducer

Definition

Denote by

T(g,wi...w) =g, wi)oA(q, w1), w2)o...
o No(g,wy ... w,_1), w,).

Lemma

Let A be a strongly connected automaton and 7, a naturally
induced transducer. Then,

&'(qo, w) = m1( T (qo, w) - 3(qo, w))

holds for all w € ¥*.
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Automatic Sequences Properties of naturally induced transducers

Are some naturally induced transducers better than others?
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Automatic Sequences Properties of naturally induced transducers

Are some naturally induced transducers better than others?

(Oversimplified) Example
0 0
0,1 ’ 0,1 )
1 1

Clemens Miillner Automatic sequences / Sarnak conjecture 23. February 2016 25 /41




Automatic Sequences Properties of naturally induced transducers

Are some naturally induced transducers better than others?

(Oversimplified) Example

0id

0 0
- G
01 01 Oid 4 |ig
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Automatic Sequences Properties of naturally induced transducers

Are some naturally induced transducers better than others?

(Oversimplified) Example
0] id 0] id

0
0]id .
Ovlf ’1 ( ) 1ia| |11 1] (12)

Clemens Miillner Automatic sequences / Sarnak conjecture 23. February 2016 25 /41
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Automatic Sequences Properties of naturally induced transducers

All elements of A appear as values of T(qo,.) for ,good" naturally
induced transducer.

Clemens Miillner Automatic sequences / Sarnak conjecture 23. February 2016 26 / 41



Automatic Sequences Properties of naturally induced transducers

All elements of A appear as values of T(qo,.) for ,good" naturally
induced transducer.

Do all elements of A appear as values of T(qo,w) forw € ¥",
where n is large?
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Automatic Sequences Properties of naturally induced transducers

All elements of A appear as values of T(qo,.) for ,good" naturally
induced transducer.

Do all elements of A appear as values of T(qo,w) forw € ¥",
where n is large?

Example

0,1

01
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Automatic Sequences Properties of naturally induced transducers

All elements of A appear as values of T(qo,.) for ,good" naturally
induced transducer.

Do all elements of A appear as values of T(qo,w) forw € ¥",
where n is large?

Example

0,1 11](12)
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Automatic Sequences Properties of naturally induced transducers

Do all elements of A appear as values of T(qp,w) forw € ",
where n is large?
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Automatic Sequences Properties of naturally induced transducers

Do all elements of A appear as values of T(qp,w) forw € ",
where n is large?
The key point is to avoid periodic behavior.
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Automatic Sequences Properties of naturally induced transducers

Do all elements of A appear as values of T(qp,w) forw € ",

where n is large?
The key point is to avoid periodic behavior.

Example

00,01,10,11 00,01,10,11
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Automatic Sequences Properties of naturally induced transducers

Do all elements of A appear as values of T(qp,w) forw € ",

where n is large?
The key point is to avoid periodic behavior.

Example

00,01,10,11 00,01,10,11 00 | id, 01 | id
10 | id, 11 | id

SONONr

Automatic sequences / Sarnak conjecture
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Every automatic sequence (a,),>o fulfills the full Sarnak conjecture.
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Every automatic sequence (a,),>o fulfills the full Sarnak conjecture.

Let A= (Q',X,d, g), 7) be a strongly connected DFAQO such that
Y ={0,...,k—1} and 0'(qg,0) = gg. Then the frequencies of the
letters for the subsequence (ap)pep exist.

Clemens Miillner Automatic sequences / Sarnak conjecture 23. February 2016 28 / 41



Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Every automatic sequence (a,),>o fulfills the full Sarnak conjecture.

Let A= (Q',X,d, g), 7) be a strongly connected DFAQO such that
Y ={0,...,k—1} and 0'(qg,0) = gg. Then the frequencies of the
letters for the subsequence (ap)pep exist.

Remark: All block-additive (i.e. digital) functions are covered by
Theorem 2 and they are equally distributed under reasonable
conditions.
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Ideas for the proof of Theorem 1

We assume that the automaton is strongly connected and
8'(g4,0) = g4 and proof only

S ulmay = o(N).
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Ideas for the proof of Theorem 1

We assume that the automaton is strongly connected and
8'(g4,0) = g4 and proof only

S ulmay = o(N).

Fix € > 0. We need to show

Z p(n)a,| <eNl.

n<N
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Ideas for the proof of Theorem 1

We assume that the automaton is strongly connected and
8'(g4,0) = g4 and proof only

Fix € > 0. We need to show

Z p(n)a,| <eNl.

> u(n)an =" p(n) - m(T(do, ) - 3(do, m)
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

> p(n) - 71(T(qo, n) - 5(qo, n))

n<N

= Z Z p(n) - m1(T(qo, n) - 6(qo, n))

m< k> n<N
n=m mod k*
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

> p(n) - 71(T(qo, n) - 5(qo, n))
= Z Z p(n) - (T (qo, n) - 6(qo, n))

m< k> n<N
n=m mod k*

Z Z p(n) - w1 (T(qo, n) - 5(qo, m))

m< kX n<N
n=m mod k*

Q
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

> p(n) - 71(T(qo, n) - 5(qo, n))
= Z Z p(n) - (T (qo, n) - 6(qo, n))

m< k> n<N
n=m mod k*

Z Z p(n) - w1 (T(qo, n) - 5(qo, m))

m< kX n<N
n=m mod k*

=> > un)- figm(T(q.n))

m<kX n<N
n=m mod k*

Q

> " p(n)a,

n<N

S K maxmax| > pu(n) - fo(T(qo, )

<k* g€Q
m 9 n<N

n=m mod k>
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Continuous functions from a compact group to C

Definition (Representation)

Let G be a compact group and k € N. A Representation of rank k
is a continuous homomorphism D : G — Ck*k,
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Continuous functions from a compact group to C

Definition (Representation)

Let G be a compact group and k € N. A Representation of rank k
is a continuous homomorphism D : G — CK*k,

Lemma

Let f be a continuous function from G to C and € > 0. There exists

r € N and unitary, irreducible representations D) = (d,(f));J<kl

along with ¢, € C such that

<e

flg) — Y ad’)(g)

<r

holds for all g € G.

v
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ST ulmf(T(qo. m)

n<N
n=m mod k>
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

ST ulmf(T(qo. m)

n<N
n=m mod k>

Q

Z p(n) Z Ced,-%(T(%, n))

n<N <r

<Slal| Y undd(T(a,n))

l<r n<N
n=m mod k>
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

ST ulmf(T(qo. m)

n<N
n=m mod k>

Z/’L Zcfd,[,‘m qun))

n<N <r
<Sal| S un)d) (T(qo,n)
<r n<N

n=m mod k>

<Dlal > wmDO(T(q, )

l<r n<N
n=m mod k* F
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Special Representations

There exist representations that correspond to arithmetic properties
of the automatic sequence.
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Special Representations

There exist representations that correspond to arithmetic properties
of the automatic sequence.

Example

01id, 1](12),2]id

0,2 0,2
1
- ~(5
1

T(qo,n) = id < s3(n) =0mod 2 < n= 0 mod 2
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Special Representations

There exist representations that correspond to arithmetic properties
of the automatic sequence.

Example

01id, 1](12),2]id

0,2 0,2
1
- ~(5
1

T(qo,n) = id < s3(n) =0mod 2 < n= 0 mod 2

D(id) = 1,D((12)) = —1
D(T(qo, n)) = (=1)"

V.
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Special Representations

There exist representations that correspond to arithmetic properties
of the automatic sequence.

Example

01id, 1](12),2]id

0,2 0,2
1
- ~(5
1

T(qo,n) = id < s3(n) =0mod 2 < n= 0 mod 2

D(id) = 1,D((12)) = —1

D(T(qo, n)) = exp (2miL5
D(T(an ) = (<1 DT (dor)) = o0 (2mizss)

v
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Special Representations

> wmD(T(q.n)= >, p(n)exp 27Tikj—1

n<N n<N
n=m mod k> n=m mod k>
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Special Representations

> wmD(T(q.n)= >, p(n)exp 27Tik£1

n<N n<N
n=m mod k> n=m mod k>

MG&bius function in arithmetic progressions.
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Special Representations

> wmD(T(q.n)= >, p(n)exp 27Tikj—1

n<N n<N
n=m mod k> n=m mod k>

MG&bius function in arithmetic progressions.

Lemma

. n
Z exp (27”F> = l[nEO mod k*]-

h< kX
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Special Representations

> wmD(T(q.n)= “(”)exp(zﬂikil)

n<N n<N
n=m mod k> n=m mod k>

Mobius function in arithmetic progressions.

Lemma
. n
Z exp (27”F> = l[nEO mod k*]-
h<k* )
> u(n)D(T(qo. n))
n<N

n=m mod k>

= % Z Zexp (2#/#) 1(n)D(T(qo, n))

h<k>* n<N
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

We follow the method of Mauduit and Rivat that they use for
studying the Rudin-Shapiro sequence.

f(n) ... complex sequence with |f(n)| = 1.

fu(n) = f(n mod k*) ... periodic with period k*

Clemens Miillner Automatic sequences / Sarnak conjecture 23. February 2016 35 /41



Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

We follow the method of Mauduit and Rivat that they use for
studying the Rudin-Shapiro sequence.

f(n) ... complex sequence with |f(n)| = 1.

fu(n) = f(n mod k*) ... periodic with period k*

Definition

We say that f has the carry property if, uniformly for A\, x,p > 0
with p < ), the number of integers 0 < ¢ < k* such that there
exists ki, ko € {0,1,..., k" — 1} with

FCK™ + ky + ko) F(CKR + kg) # Fuy (0K + ki + ko) Foy o (CK" + k1)

is at most O(k*~*) , where the implied constant may depend on k
and f.
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Definition

We say that f has the Fourier property if there exists a
non-decreasing real function 7 with limy_ ., v(\) = +00 and a
constant ¢ such that for all non-negativ integers A\, « > 0 with
a < cXandreal t

1 N _
= > f(mk*)e(mt)| < kO

m<kX
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Theorem (Mauduit + Rivat)

Suppose that f has the carry and the Fourier property (for some
¢ > 10). Then we have for any real

Z M 9,,) < cl(k)(log N)Cz(k) Nk (2llog N/(80log k)])/20

n<N

<
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Theorem (Mauduit + Rivat)

Suppose that f has the carry and the Fourier property (for some
¢ > 10). Then we have for any real

< c1(k)(log )2 g —1(2Liog N/ (80log k)])/20

> u(n)f(n)e(én)

n<N

<

Theorem (Mauduit + Rivat)

Suppose that f has the carry and the Fourier property (for some
¢ > 10). Then we have for any real

Z /\(n)f(n)e(Qn) < cl(k)(log N)C3(k)Nk—v(2Llog N/(80log k)|)/20

n<N

v
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Remark: If y(\) grows faster than loglog A then the right hand
side is o( N).
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Remark: If y(\) grows faster than loglog A then the right hand
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U(n) ... sequence of unitary matrices

Ux(n) = U(n mod k*) ... periodic with period k*
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Remark: If y(\) grows faster than loglog A then the right hand
side is o( N).

U(n) ... sequence of unitary matrices

Ux(n) = U(n mod k*) ... periodic with period k*

(Adopted) Definition

We say that U has the carry property if, uniformly for A\, x, p > 0
with p < ), the number of integers 0 < ¢ < k* such that there
exists ki, ko € {0,1,..., k" — 1} with

U(LK" + ki + ko) U(CK" + ki) % Uy p(CK" + K + ko) Uy p(EK" + K1)H

is at most O(k*~"°) for some n > 0, where the implied constants
may depend on k and U.
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

(Adopted) Definition

We say that U has the Fourier property if there exists a
non-decreasing real function ~ with limy_ . v(\) = +00 and a
constant ¢ such that for all non-negativ integers A, &« > 0 with
a < c)and real t

1 _
= > U(mk®)e(mt)|| < kO,

m<kX
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

(Adopted) Definition

We say that U has the Fourier property if there exists a
non-decreasing real function ~ with limy_ . v(\) = +00 and a
constant ¢ such that for all non-negativ integers A, &« > 0 with
a < c)and real t

1 _
= > U(mk®)e(mt)|| < kO,

m<kX

Remark: The Fourier property is very hard to prove (compared to
the carry property).

Clemens Miillner Automatic sequences / Sarnak conjecture 23. February 2016 39 /41



Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

(Adopted) Definition

We say that U has the Fourier property if there exists a
non-decreasing real function ~ with limy_ . v(\) = +00 and a
constant ¢ such that for all non-negativ integers A, &« > 0 with
a < c)and real t

1 _
= > U(mk®)e(mt)|| < kO,

m<kX

Remark: The Fourier property is very hard to prove (compared to
the carry property).

Remark: The carry property holds for all U(n) = D(T(n)) where D
is a unitary representation, but the fourier property holds only for
unitary, irreducible (and non-special) representations.
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

(Adopted) Theorem

Suppose that U has the carry property for some 17 > 0 and the
Fourier property (for some ¢ > 10). Then we have for any real

Z ’u U(n 0”) < Cl(k)(log N)cz(k) Nk—n')’(2U°g N/(80log k)|)/20

n<N
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

(Adopted) Theorem

Suppose that U has the carry property for some 17 > 0 and the
Fourier property (for some ¢ > 10). Then we have for any real

> pu(n)U(n)e(6n)

n<N

< cy(k)(log V)< \k—mi(2llog N/ (8010g k) )/20

(Adopted) Theorem

Suppose that U has the carry property for some 1 > and the Fourier
property (for some ¢ > 10). Then we have for any real ¢

> A(n)U(n)e(6n)

n<N

< ci(k)(log N)C3(k)Nk—77'y(2Llog N/(80log k)])/20
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Mobius
function.
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Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Mobius
function.

One has to work more carefully to extract the main term.
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Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Mobius
function.

One has to work more carefully to extract the main term.
The actual frequencies can be made explicit.
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Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Mobius
function.

One has to work more carefully to extract the main term.

The actual frequencies can be made explicit.

Primes vs all natural Numbers
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Automatic Sequences Automatic Sequences fulfill Sarnak’s Conjecture

Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Mobius
function.

One has to work more carefully to extract the main term.

The actual frequencies can be made explicit.

Primes vs all natural Numbers

0 1 0,2 0,2
1 1
— > —>
0 1

v
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