Multiplicative automatic sequences

Clemens Müllner

Joint work with Jakub Konieczny and Mariusz Lemańczyk

Wednesday, January 13, 2021

Disjointedness of additive and multiplicative structures

Theorem (Solymosi - 2009)

For any finite set $A \subset \mathbb{R}$,

$$\max |A \cdot A|, |A + A| \gg |A|^{4/3 - o(1)}.$$

Conjecture (Chowla)

Let $\lambda(n) = (-1)^k$, where k is the number of prime factors of n. Then for all $a_1 < a_2 < \ldots < a_m$

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\lambda(n+a_1)\cdot\lambda(n+a_2)\cdots\lambda(n+a_m)=0.$$

Disjointedness of additive and multiplicative structures

Theorem (Solymosi - 2009)

For any finite set $A \subset \mathbb{R}$,

$$\max |A \cdot A|, |A + A| \gg |A|^{4/3 - o(1)}$$
.

Conjecture (Chowla)

Let $\lambda(n) = (-1)^k$, where k is the number of prime factors of n. Then for all $a_1 < a_2 < \ldots < a_m$

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\lambda(n+a_1)\cdot\lambda(n+a_2)\cdots\lambda(n+a_m)=0.$$

Sarnak Conjecture

The Möbius function is defined by

$$\mu(n) = \left\{ egin{array}{ll} (-1)^k & ext{if n is squarefree and} \\ k & ext{is the number of prime factors} \\ 0 & ext{otherwise} \end{array}
ight.$$

Definition: A dynamical system is said to be determinist, if its topological entropy is 0.

Conjecture (Sarnak - 2010)

For every complex sequence $u = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u_n\mu(n)=0.$$

Sarnak Conjecture

The Möbius function is defined by

$$\mu(n) = \left\{ egin{array}{ll} (-1)^k & \mbox{if n is squarefree and} \\ k & \mbox{is the number of prime factors} \\ 0 & \mbox{otherwise} \end{array}
ight.$$

Definition: A dynamical system is said to be determinist, if its topological entropy is 0.

Conjecture (Sarnak - 2010)

For every complex sequence $u = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u_n\mu(n)=0.$$

Sarnak Conjecture

The Möbius function is defined by

$$\mu(n) = \left\{ egin{array}{ll} (-1)^k & \mbox{if n is squarefree and} \\ k & \mbox{is the number of prime factors} \\ 0 & \mbox{otherwise} \end{array}
ight.$$

Definition: A dynamical system is said to be determinist, if its topological entropy is 0.

Conjecture (Sarnak - 2010)

For every complex sequence $u = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u_n\mu(n)=0.$$

Multiplicative functions

Definition (Multiplicative function)

A function $f: \mathbb{N} \to \mathbb{C}$ is called *(completely) multiplicative* if f(nm) = f(n)f(m) for all n, m that are coprime (for all n, m)

Examples: μ, λ

Definition (Dirichlet character)

We call $\chi: \mathbb{Z} \to \mathbb{C}$ a Dirichlet character (of modulus m) if

- ① There exists m > 0 such that $\chi(n) = \chi(n+m)$ for all n.
- ② If gcd(n, m) > 1 then $\chi(n) = 0$; if gcd(n, m) = 1 then $\chi(n) \neq 0$.
- \odot χ is completely multiplicative.

Multiplicative functions

Definition (Multiplicative function)

A function $f: \mathbb{N} \to \mathbb{C}$ is called *(completely) multiplicative* if f(nm) = f(n)f(m) for all n, m that are coprime (for all n, m)

Examples: μ, λ

Definition (Dirichlet character)

We call $\chi: \mathbb{Z} \to \mathbb{C}$ a Dirichlet character (of modulus m) if

- ① There exists m > 0 such that $\chi(n) = \chi(n+m)$ for all n.
- ② If gcd(n, m) > 1 then $\chi(n) = 0$; if gcd(n, m) = 1 then $\chi(n) \neq 0$.
- \odot χ is completely multiplicative.

Multiplicative functions

Definition (Multiplicative function)

A function $f: \mathbb{N} \to \mathbb{C}$ is called *(completely) multiplicative* if f(nm) = f(n)f(m) for all n, m that are coprime (for all n, m)

Examples: μ, λ

Definition (Dirichlet character)

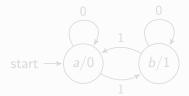
We call $\chi: \mathbb{Z} \to \mathbb{C}$ a Dirichlet character (of modulus m) if

- There exists m > 0 such that $\chi(n) = \chi(n+m)$ for all n.
- If $\gcd(n,m) > 1$ then $\chi(n) = 0$; if $\gcd(n,m) = 1$ then $\chi(n) \neq 0$.
- \circ χ is completely multiplicative.

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



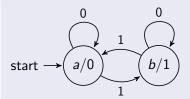
$$n = 22 = (10110)_2, \qquad u(22) = 1$$

$$u = (u(n))_{n>0} = 01101001100101101001011001101001...$$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



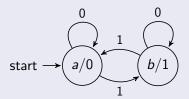
$$n = 22 = (10110)_2, \qquad u(22) = 1$$

 $u = (u(n))_{n>0} = 01101001100101101001011001101001\dots$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \dots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



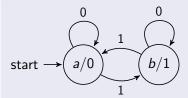
$$n = 22 = (10110)_2, \qquad u(22) = 1$$

 $u = (u(n))_{n>0} = 01101001100101101001011001101001...$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \dots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



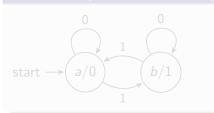
$$n = 22 = (10110)_2, \qquad u(22) = 1$$

$$u = (u(n))_{n>0} = 01101001100101101001011001101001...$$

Different Points of View I

$$(u(n))_{n\geq 0} = 01101001100101101001011001101001\dots$$

Automaton (Computer Science)



Substitution (Dynamics)

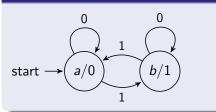
Coding of the fixpoint of a constant-length substitution

$$a \rightarrow ab$$
 $a \mapsto 0$

Different Points of View I

$$(u(n))_{n\geq 0} = 01101001100101101001011001101001\dots$$

Automaton (Computer Science)



Substitution (Dynamics)

Coding of the fixpoint of a constant-length substitution

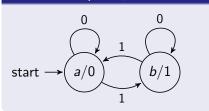
$$a o ab$$
 $a \mapsto 0$

$$b \rightarrow ba$$
 $b \mapsto 1$

Different Points of View I

$$(u(n))_{n\geq 0} = 01101001100101101001011001101001\dots$$

Automaton (Computer Science)



Substitution (Dynamics)

Coding of the fixpoint of a constant-length substitution:

$$a o ab$$
 $a \mapsto 0$

$$b o ba$$
 $b \mapsto 1$

Different Points of View II

 $(u(n))_{n\geq 0} = 01101001100101101001011001101001...$

Formal Power Series (Algebra)

Algebraicity over $F_q(X)$.

$$t(X) := \sum_{n \ge 0} u(n) X^n$$

$$X + (1+X)^2 t(X) + (1+X)^3 t(X)^2 = 0$$

Finite Kerne

The λ -kernel of a sequence a(n) is defined as

$$\{(a(n\lambda^k + r))_{n\geq 0} : k \geq 0, 0 \leq r < \lambda^k\}.$$

a(n) is λ -automatic iff its λ -kernel is finite

Different Points of View II

 $(u(n))_{n\geq 0} = 01101001100101101001011001101001\dots$

Formal Power Series (Algebra)

Algebraicity over $F_q(X)$.

$$t(X) := \sum_{n \ge 0} u(n) X^n$$

$$X + (1+X)^2 t(X) + (1+X)^3 t(X)^2 = 0$$

Finite Kerne

The λ -kernel of a sequence a(n) is defined as

$$\{(a(n\lambda^k + r))_{n\geq 0} : k \geq 0, 0 \leq r < \lambda^k\}.$$

a(n) is λ -automatic iff its λ -kernel is finite

Different Points of View II

 $(u(n))_{n\geq 0} = 01101001100101101001011001101001\dots$

Formal Power Series (Algebra)

Algebraicity over $F_q(X)$.

$$t(X) := \sum_{n \ge 0} u(n) X^n$$

$$X + (1+X)^2 t(X) + (1+X)^3 t(X)^2 = 0$$

Finite Kernel

The λ -kernel of a sequence a(n) is defined as

$$\{(a(n\lambda^k+r))_{n\geq 0}: k\geq 0, 0\leq r<\lambda^k\}.$$

a(n) is λ -automatic iff its λ -kernel is finite.

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}$. A sequence is λ -automatic if and only if it is λ^k -automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $\log(\mu)/\log(\lambda) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}$. A sequence is λ -automatic if and only if it is λ^k -automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $\log(\mu)/\log(\lambda)\notin\mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}$. A sequence is λ -automatic if and only if it is λ^k -automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $\log(\mu)/\log(\lambda)\notin\mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $\lambda, k \in \mathbb{N}$. A sequence is λ -automatic if and only if it is λ^k -automatic.

Proof works by considering the kernel.

Theorem (Cobham - 1972)

If a sequence $(a(n))_{n\geq 0}$ is both μ and λ automatic, where $\log(\mu)/\log(\lambda) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n)$, $a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

$$\{(a_1(n\lambda^k + r) \cdot a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}$$

$$\subset \{(a_1(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}$$

$$\cdot \{(a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}.$$

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n)$, $a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

$$\{(a_1(n\lambda^k + r) \cdot a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}$$

$$\subset \{(a_1(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}$$

$$\cdot \{(a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}.$$

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n)$, $a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

$$\{(a_1(n\lambda^k + r) \cdot a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}$$

$$\subset \{(a_1(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}$$

$$\cdot \{(a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}.$$

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n)$, $a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

$$\{(a_1(n\lambda^k + r) \cdot a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}$$

$$\subset \{(a_1(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}$$

$$\cdot \{(a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}.$$

Lemma

Let $(a(n))_{n\geq 0}$ be eventually periodic. Then it is λ -automatic for every $\lambda \in \mathbb{N}$.

Proof: Follows from considering the λ -kernel.

Lemma

Let $a_1(n)$, $a_2(n)$ be, λ -automatic sequences, then so is $(a_1(n) \cdot a_2(n))$.

$$\begin{aligned} \{(a_1(n\lambda^k + r) \cdot a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\} \\ &\subset \{(a_1(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\} \\ &\cdot \{(a_2(n\lambda^k + r) : k \in \mathbb{N}, 0 \le r < \lambda^k\}.\end{aligned}$$

Disjointedness of automatic and multiplicative sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also true for the associated dynamical systems.) If the automatic sequence is primitive, then we also have a prime number theorem.

Theorem (Lemańczyk, M. - 2020)

Let a be a primitive automatic sequence. Then it is orthogonal to any bounded, aperiodic, multiplicative function $u : \mathbb{N} \to \mathbb{C}$, i.e.

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}a(n)u(n)=0.$$

Disjointedness of automatic and multiplicative sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also true for the associated dynamical systems.) If the automatic sequence is primitive, then we also have a prime number theorem.

Theorem (Lemańczyk, M. - 2020)

Let a be a primitive automatic sequence. Then it is orthogonal to any bounded, aperiodic, multiplicative function $u : \mathbb{N} \to \mathbb{C}$, i.e.

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}a(n)u(n)=0.$$

Disjointedness of automatic and multiplicative sequences

Theorem (M. - 2017)

Any automatic sequence is orthogonal to the Möbius function. (Also true for the associated dynamical systems.) If the automatic sequence is primitive, then we also have a prime number theorem.

Theorem (Lemańczyk, M. - 2020)

Let a be a primitive automatic sequence. Then it is orthogonal to any bounded, aperiodic, multiplicative function $u : \mathbb{N} \to \mathbb{C}$, i.e.

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}a(n)u(n)=0.$$

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters).

Non-trivial counter-example: $a(n)=(-1)^{
u_2(n)}.$

Definition (aperiodic sequence)

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u(kn+\ell)=0.$$

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters).

Non-trivial counter-example: $\mathit{a}(\mathit{n}) = (-1)^{\mathit{
u}_2(\mathit{n})}$.

Definition (aperiodic sequence)

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u(kn+\ell)=0.$$

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters).

Non-trivial counter-example: $a(n) = (-1)^{\nu_2(n)}$.

Definition (aperiodic sequence)

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u(kn+\ell)=0.$$

Why not all bounded multiplicative functions?

Trivial counter-example: periodic sequences (e.g. Dirichlet characters).

Non-trivial counter-example: $a(n) = (-1)^{\nu_2(n)}$.

Definition (aperiodic sequence)

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}u(kn+\ell)=0.$$

Disjointedness of multiplicative sequences and algebraic generating series

Theorem (Bell, Bruin and Coons - 2012)

Let K be a field of characteristic 0, let $f: \mathbb{N} \to K$ be a multiplicative function, and its generating series

$$F(z) = \sum_{n \ge 1} f(n)z^n$$
 is algebraic over $K(z)$.

Then either f is finitely supported or there is a natural number k and a periodic multiplicative function $\chi: \mathbb{N} \to K$ such that $f(n) = n^k \chi(n)$ for all n.

Disjointedness of multiplicative sequences and algebraic generating series

Theorem (Bell, Bruin and Coons - 2012)

Let K be a field of characteristic 0, let $f: \mathbb{N} \to K$ be a multiplicative function, and its generating series

$$F(z) = \sum_{n>1} f(n)z^n$$
 is algebraic over $K(z)$.

Then either f is finitely supported or there is a natural number k and a periodic multiplicative function $\chi: \mathbb{N} \to K$ such that

 $f(n) = n^k \chi(n)$ for all n.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a: \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f: \mathbb{N} \to \mathbb{C}$ such that f(p) = a(p) for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

- χ is a Dirichlet character: dense case
- $\chi = 0$: sparse case.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a: \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f: \mathbb{N} \to \mathbb{C}$ such that f(p) = a(p) for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

- χ is a Dirichlet character: dense case
- $\chi = 0$: sparse case.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a: \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f: \mathbb{N} \to \mathbb{C}$ such that f(p) = a(p) for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

- χ is a Dirichlet character: dense case
- $\chi = 0$: sparse case.

Conjecture (Bell, Bruin and Coons - 2012)

For any multiplicative automatic sequence $a: \mathbb{N} \to \mathbb{C}$ there exists an eventually periodic function $f: \mathbb{N} \to \mathbb{C}$ such that f(p) = a(p) for all primes p.

Theorem/Corollary (Klurman, Kurlberg; Konieczny - 2019)

- χ is a Dirichlet character: dense case
- $\chi = 0$: sparse case.

Result

Theorem (Konieczny, Lemańczyk, M. - 2020+)

A sequence $a: \mathbb{N} \to \mathbb{C}$ is multiplicative and automatic if and only if there exists a prime p such that a is p-automatic and of the form

$$a(n) = f_1(\nu_p(n)) \cdot f_2(n/p^{\nu_p(n)}), \tag{1}$$

where f_1 is eventually periodic and f_2 is multiplicative, eventually periodic and vanishes at all multiples of p.

Previous Results

- Schlage-Puchta (2003): A criterion for multiplicative sequences to not be automatic.
- Coons (2010): Non-automaticity of special multiplicative functions
- Li (2017): completely multiplicative automatic sequences, nonvanishing prime numbers
- Allouche, Goldmakher (2018): completely multiplicative, never vanishing automatic sequences
- Li (2019): characterizing completely multiplicative automatic sequences
- Klurman, Kurlberg; Konieczny (2019): showed a stronger version of BBC-conjecture

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and p-automatic. Then

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),$$

where $\alpha \mapsto a(p^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity.

As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that

 $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$.

Choose $n = p^{\alpha}$.

Corollary

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and p-automatic. Then

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),$$

where $\alpha \mapsto a(p^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity.

As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$. Choose $p = p^{\alpha}$

Corollary

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and p-automatic. Then

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),$$

where $\alpha \mapsto a(p^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity.

As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$.

Choose $n = p^{\alpha}$

Corollary

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and p-automatic. Then

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),$$

where $\alpha \mapsto a(p^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity.

As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$.

Choose $n = p^{\alpha}$.

Corollary

Lemma

Let $(a(n))_{n\geq 0}$ be multiplicative and p-automatic. Then

$$a(n) = a(p^{\nu_p(n)}) \cdot a(n/p^{\nu_p(n)}),$$

where $\alpha \mapsto a(p^{\alpha})$ is eventually periodic.

Proof: The first part follows by multiplicativity.

As the *p*-kernel is finite, there exists $k_1, k_2 \in \mathbb{N}$ such that $a(np^{k_1}) = a(np^{k_2})$ for all $n \in \mathbb{N}$.

Choose $n = p^{\alpha}$.

Corollary

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is p-automatic and multiplicative.

Proof: We consider again the *p*-kernel,

$$\{(f_1(\nu_p(np^k+r)))_{n\geq 0}: k\in\mathbb{N}, 0\leq r< p^k\}$$

=\{f_1(\nu_p(n)+k)_{n\geq 0}: k\in\mathbb{N}\} \cup \{f_1(\nu_p(r))_{n\geq 0}: r\in\mathbb{N}\}

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

$$\{(f_1(\nu_p(np^k+r)))_{n\geq 0}: k\in\mathbb{N}, 0\leq r< p^k\}$$

=\{f_1(\nu_p(n)+k)_{n\geq 0}: k\in \mathbb{N}\} \cup \{f_1(\nu_p(r))_{n\geq 0}: r\in \mathbb{N}\}

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

$$\{(f_1(\nu_p(np^k+r)))_{n\geq 0}: k\in\mathbb{N}, 0\leq r< p^k\}$$

=\{f_1(\nu_p(n)+k)_{n\geq 0}: k\in \mathbb{N}\} \cup \{f_1(\nu_p(r))_{n\geq 0}: r\in \mathbb{N}\}

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

$$\{(f_1(\nu_p(np^k+r)))_{n\geq 0}: k\in\mathbb{N}, 0\leq r< p^k\}$$

=\{f_1(\nu_p(n)+k)_{n\geq 0}: k\in \mathbb{N}\} \cup \{f_1(\nu_p(r))_{n\geq 0}: r\in \mathbb{N}\}

Let f_1 be eventually periodic with $f_1(0) = 1$. Then $a_1(n) = f_1(\nu_p(n))$ is p-automatic and multiplicative.

Proof: We consider again the p-kernel,

$$\{(f_1(\nu_p(np^k+r)))_{n\geq 0}: k\in\mathbb{N}, 0\leq r< p^k\}$$

=\{f_1(\nu_p(n)+k)_{n\geq 0}: k\in\mathbb{N}\} \cup \{f_1(\nu_p(r))_{n\geq 0}: r\in\mathbb{N}\}

Let f_2 be multiplicative and eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is *p*-automatic and multiplicative.

Proof: We consider once again the p-kernel:

$$\begin{aligned} \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 \le r < p^k\} \\ &= \{(a_2(np^k))_{n \ge 0} : k \in \mathbb{N}\} \\ & \cup \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 < r < p^k\} \\ &= \{(a_2(n))_{n \ge 0}\} \cup \{(f_2(np^\ell + s))_{n \ge 0} : \ell \in \mathbb{N}, 0 < s < p^\ell\}. \end{aligned}$$

Let f_2 be multiplicative and eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is *p*-automatic and multiplicative.

Proof: We consider once again the *p*-kernel:

$$\{(a_{2}(np^{k}+r))_{n\geq 0}: k \in \mathbb{N}, 0 \leq r < p^{k}\}$$

$$= \{(a_{2}(np^{k}))_{n\geq 0}: k \in \mathbb{N}\}$$

$$\cup \{(a_{2}(np^{k}+r))_{n\geq 0}: k \in \mathbb{N}, 0 < r < p^{k}\}$$

$$= \{(a_{2}(n))_{n\geq 0}\} \cup \{(f_{2}(np^{\ell}+s))_{n\geq 0}: \ell \in \mathbb{N}, 0 < s < p^{\ell}\}.$$

Let f_2 be multiplicative and eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is *p*-automatic and multiplicative.

Proof: We consider once again the *p*-kernel:

$$\begin{aligned} \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 \le r < p^k\} \\ &= \{(a_2(np^k))_{n \ge 0} : k \in \mathbb{N}\} \\ & \cup \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 < r < p^k\} \\ &= \{(a_2(n))_{n \ge 0}\} \cup \{(f_2(np^\ell + s))_{n \ge 0} : \ell \in \mathbb{N}, 0 < s < p^\ell\}. \end{aligned}$$

Let f_2 be multiplicative and eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is *p*-automatic and multiplicative.

Proof: We consider once again the *p*-kernel:

$$\begin{aligned} \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 \le r < p^k\} \\ &= \{(a_2(np^k))_{n \ge 0} : k \in \mathbb{N}\} \\ & \cup \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 < r < p^k\} \\ &= \{(a_2(n))_{n \ge 0}\} \cup \{(f_2(np^\ell + s))_{n \ge 0} : \ell \in \mathbb{N}, 0 < s < p^\ell\}. \end{aligned}$$

Let f_2 be multiplicative and eventually periodic. Then $a_2(n) = f_2(n/p^{\nu_p(n)})$ is *p*-automatic and multiplicative.

Proof: We consider once again the *p*-kernel:

$$\begin{aligned} \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 \le r < p^k\} \\ &= \{(a_2(np^k))_{n \ge 0} : k \in \mathbb{N}\} \\ & \cup \{(a_2(np^k + r))_{n \ge 0} : k \in \mathbb{N}, 0 < r < p^k\} \\ &= \{(a_2(n))_{n \ge 0}\} \cup \{(f_2(np^\ell + s))_{n \ge 0} : \ell \in \mathbb{N}, 0 < s < p^\ell\}. \end{aligned}$$

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus $m=m_1m_2$ where $(m_1,m_2)=1$. Then $\chi=\chi_{m_1}\cdot\chi_{m_2}$, where $\chi_{m_i}(n)$ is a Dirichlet character of modulus m_i and $\chi_{m_i}(n)=\chi(n_i)$ with

 $n_i \equiv n$ mod m_i $n_i \equiv 1$ mod m/m_i .

Corollary

Let χ be a Dirichlet character of modulus m. Then

$$\chi(n) = \prod_{p \mid m} \chi_{p^{\nu_p(m)}}(n)$$

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus $m=m_1m_2$ where $(m_1,m_2)=1$. Then $\chi=\chi_{m_1}\cdot\chi_{m_2}$, where $\chi_{m_i}(n)$ is a Dirichlet character of modulus m_i and $\chi_{m_i}(n)=\chi(n_i)$ with

 $n_i \equiv n \mod m_i$ $n_i \equiv 1 \mod m/m_i$.

Corollary

Let χ be a Dirichlet character of modulus m. Then

$$\chi(n) = \prod_{p \mid m} \chi_{p^{\nu_p(m)}}(n)$$

Decomposing Dirichlet characters

Lemma

Let χ be a Dirichlet character of modulus $m=m_1m_2$ where $(m_1,m_2)=1$. Then $\chi=\chi_{m_1}\cdot\chi_{m_2}$, where $\chi_{m_i}(n)$ is a Dirichlet character of modulus m_i and $\chi_{m_i}(n)=\chi(n_i)$ with

 $n_i \equiv n \mod m_i$ $n_i \equiv 1 \mod m/m_i$.

Corollary

Let χ be a Dirichlet character of modulus m. Then

$$\chi(n) = \prod_{p|m} \chi_{p^{\nu_p(m)}}(n).$$

Dense case

Assumption: $\nu_p(h\lambda) = 1$ for all $p \mid h\lambda!$

Thus, $\chi = \prod_{p|h\lambda} \chi_p$.

Proposition

Let a(n) be a dense multiplicative automatic sequence. Ther

$$a(n) = \prod_{p|h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right),$$

where $\chi(\overline{p}) = \chi_{h\lambda/p}(p)$.

Dense case

Assumption: $\nu_p(h\lambda) = 1$ for all $p \mid h\lambda!$ Thus, $\chi = \prod_{p \mid h\lambda} \chi_p$.

Proposition

Let a(n) be a dense multiplicative automatic sequence. Ther

$$a(n) = \prod_{p|h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right),$$

where $\chi(\overline{p}) = \chi_{h\lambda/p}(p)$.

Dense case

Assumption: $\nu_p(h\lambda) = 1$ for all $p \mid h\lambda!$ Thus, $\chi = \prod_{p \mid h\lambda} \chi_p$.

Proposition

Let a(n) be a dense multiplicative automatic sequence. Then

$$a(n) = \prod_{p|h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right),$$

where $\chi(\overline{p}) = \chi_{h\lambda/p}(p)$.

Dynamical System (X, T) related to u

$$u = (u_n)_{n \ge 0} \dots$$
 bounded complex sequence

$$T(\mathbf{u}) = (u_{n+1})_{n \geq 0} \dots$$
 shift operator

$$X = \overline{\{T^k(\mathsf{u}) : k \ge 0\}}$$

Theorem (M., Yassawi; 2019)

Dynamical System (X, T) related to u

$$u = (u_n)_{n>0} \dots$$
 bounded complex sequence

$$T(\mathsf{u}) = (u_{n+1})_{n \geq 0} \dots$$
 shift operator

$$X = \overline{\{T^k(\mathsf{u}) : k \ge 0\}}$$

Theorem (M., Yassawi; 2019)

Dynamical System (X, T) related to u

$$u = (u_n)_{n \ge 0} \dots$$
 bounded complex sequence

$$T(\mathsf{u}) = (u_{n+1})_{n \geq 0} \dots$$
 shift operator

$$X = \overline{\{T^k(\mathsf{u}) : k \ge 0\}}$$

Theorem (M., Yassawi; 2019)

Dynamical System (X, T) related to u

$$u = (u_n)_{n \ge 0} \dots$$
 bounded complex sequence

$$T(\mathsf{u}) = (u_{n+1})_{n \geq 0} \dots$$
 shift operator

$$X = \overline{\{T^k(\mathsf{u}) : k \ge 0\}}$$

Theorem (M., Yassawi; 2019)

$$a(n) = \prod_{p \mid h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- The right hand side looks like a product of *p*-automatic sequences, where $p \mid h\lambda$.
- Thus we expect the continuous eigenvalues to be $\approx \mathbb{Z}(h\lambda)$.
- The continuous eigenvalues of a(n) are only $\approx \mathbb{Z}(\lambda)$.
- Therefore, the contribution of $p \mid h$ should be trivial.

$$a(n) = \prod_{p \mid h \lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- The right hand side looks like a product of *p*-automatic sequences, where $p \mid h\lambda$.
- Thus we expect the continuous eigenvalues to be $\approx \mathbb{Z}(h\lambda)$.
- The continuous eigenvalues of a(n) are only $\approx \mathbb{Z}(\lambda)$.
- Therefore, the contribution of $p \mid h$ should be trivial.

$$a(n) = \prod_{p \mid h} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- The right hand side looks like a product of *p*-automatic sequences, where $p \mid h\lambda$.
- Thus we expect the continuous eigenvalues to be $\approx \mathbb{Z}(h\lambda)$.
- The continuous eigenvalues of a(n) are only $\approx \mathbb{Z}(\lambda)$.
- Therefore, the contribution of $p \mid h$ should be trivial.

$$a(n) = \prod_{p \mid h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- The right hand side looks like a product of *p*-automatic sequences, where $p \mid h\lambda$.
- Thus we expect the continuous eigenvalues to be $\approx \mathbb{Z}(h\lambda)$.
- The continuous eigenvalues of a(n) are only $\approx \mathbb{Z}(\lambda)$.
- Therefore, the contribution of $p \mid h$ should be trivial.

$$a(n) = \prod_{p \mid h\lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- The right hand side looks like a product of *p*-automatic sequences, where $p \mid h\lambda$.
- Thus we expect the continuous eigenvalues to be $\approx \mathbb{Z}(h\lambda)$.
- The continuous eigenvalues of a(n) are only $\approx \mathbb{Z}(\lambda)$.
- Therefore, the contribution of $p \mid h$ should be trivial.

$$a(n) = \prod_{p \mid \lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

$$a(n) \cdot \frac{\chi(\overline{q})^{\nu_q(n)}}{a(q^{\nu_q(n)})} \cdot \chi_q^{-1}\left(\frac{n}{q^{\nu_q(n)}}\right) = \prod_{\substack{p \mid \lambda \\ p \neq q}} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- Continuous eigenvalues of the left-hand side: $\approx \mathbb{Z}(\lambda)$.
- Continuous eigenvalues of the right-hand side: $\approx \mathbb{Z}(\lambda/q)$

$$a(n) = \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)$$

$$a(n) = \prod_{\rho \mid \lambda} \frac{a(p^{\nu_{\rho}(n)})}{\chi(\overline{\rho})^{\nu_{\rho}(n)}} \cdot \chi_{\rho} \left(\frac{n}{p^{\nu_{\rho}(n)}}\right).$$

$$a(n) \cdot \frac{\chi(\overline{q})^{\nu_q(n)}}{a(q^{\nu_q(n)})} \cdot \chi_q^{-1}\left(\frac{n}{q^{\nu_q(n)}}\right) = \prod_{\substack{\rho \mid \lambda \\ \rho \neq q}} \frac{a(p^{\nu_p(n)})}{\chi(\overline{\rho})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- Continuous eigenvalues of the left-hand side: $\approx \mathbb{Z}(\lambda)$.
- Continuous eigenvalues of the right-hand side: $\approx \mathbb{Z}(\lambda/q)$.

$$a(n) = \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)$$

$$a(n) = \prod_{p \mid \lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

$$a(n) \cdot \frac{\chi(\overline{q})^{\nu_q(n)}}{a(q^{\nu_q(n)})} \cdot \chi_q^{-1}\left(\frac{n}{q^{\nu_q(n)}}\right) = \prod_{\substack{\rho \mid \lambda \\ \rho \neq q}} \frac{a(p^{\nu_p(n)})}{\chi(\overline{\rho})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- Continuous eigenvalues of the left-hand side: $\approx \mathbb{Z}(\lambda)$.
- Continuous eigenvalues of the right-hand side: $\approx \mathbb{Z}(\lambda/q)$

$$a(n) = \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)$$

$$a(n) = \prod_{\rho \mid \lambda} \frac{a(p^{\nu_{\rho}(n)})}{\chi(\overline{\rho})^{\nu_{\rho}(n)}} \cdot \chi_{\rho} \left(\frac{n}{p^{\nu_{\rho}(n)}}\right).$$

$$a(n) \cdot \frac{\chi(\overline{q})^{\nu_q(n)}}{a(q^{\nu_q(n)})} \cdot \chi_q^{-1}\left(\frac{n}{q^{\nu_q(n)}}\right) = \prod_{\substack{\rho \mid \lambda \\ \rho \neq q}} \frac{a(p^{\nu_p(n)})}{\chi(\overline{\rho})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- Continuous eigenvalues of the left-hand side: $\approx \mathbb{Z}(\lambda)$.
- Continuous eigenvalues of the right-hand side: $\approx \mathbb{Z}(\lambda/q)$.

$$a(n) = \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right)$$

$$a(n) = \prod_{p \mid \lambda} \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

$$a(n) \cdot \frac{\chi(\overline{q})^{\nu_q(n)}}{a(q^{\nu_q(n)})} \cdot \chi_q^{-1}\left(\frac{n}{q^{\nu_q(n)}}\right) = \prod_{\substack{\rho \mid \lambda \\ \rho \neq q}} \frac{a(p^{\nu_p(n)})}{\chi(\overline{\rho})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- Continuous eigenvalues of the left-hand side: $\approx \mathbb{Z}(\lambda)$.
- Continuous eigenvalues of the right-hand side: $\approx \mathbb{Z}(\lambda/q)$.

$$a(n) = \frac{a(p^{\nu_p(n)})}{\chi(\overline{p})^{\nu_p(n)}} \cdot \chi_p\left(\frac{n}{p^{\nu_p(n)}}\right).$$

- Capturing the independence of additive and multiplicative structures is hard.
- The intersection of automatic and multiplicative sequences is very special.
- Dynamics often gives you a good intuition.

- Capturing the independence of additive and multiplicative structures is hard.
- The intersection of automatic and multiplicative sequences is very special.
- Dynamics often gives you a good intuition.

- Capturing the independence of additive and multiplicative structures is hard.
- The intersection of automatic and multiplicative sequences is very special.
- Dynamics often gives you a good intuition.

- Capturing the independence of additive and multiplicative structures is hard.
- The intersection of automatic and multiplicative sequences is very special.
- Dynamics often gives you a good intuition.

