Normal Subsequences of Automatic Sequences

Clemens Müllner

Monday, February 2, 2019

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u}=(u_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w} = (w_0, \dots, w_{\ell-1}) \in \mathcal{A}^{\ell}$.

$$N_{\mathbf{u}}(a, n) := \#\{k \le n : u_k = a\}$$

$$N_{\mathbf{u}}(\mathbf{w}, n) := \#\{k \leq n : u_k = w_0, \dots, u_{k+\ell-1} = w_{\ell-1}\}.$$

Definition (Subword Complexity)

The subword complexity of a sequence $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ is defined by

$$p_{\mathbf{u}}(n) := \#\{\mathbf{w} \in \mathcal{A}^n : \exists k, N_{\mathbf{u}}(\mathbf{w}, k) \ge 1\}.$$

$$p_{\mathbf{u}}(n) \leq |\mathcal{A}|^r$$

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u}=(u_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w} = (w_0, \dots, w_{\ell-1}) \in \mathcal{A}^{\ell}$.

$$N_{\mathbf{u}}(a,n) := \#\{k \leq n : u_k = a\}$$

$$N_{\mathbf{u}}(\mathbf{w}, n) := \#\{k \leq n : u_k = w_0, \dots, u_{k+\ell-1} = w_{\ell-1}\}.$$

Definition (Subword Complexity)

The subword complexity of a sequence $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ is defined by

$$p_{\mathbf{u}}(n) := \#\{\mathbf{w} \in \mathcal{A}^n : \exists k, N_{\mathbf{u}}(\mathbf{w}, k) \ge 1\}.$$

$$p_{\rm u}(n) \leq |\mathcal{A}|^r$$

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u}=(u_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w} = (w_0, \dots, w_{\ell-1}) \in \mathcal{A}^{\ell}$.

$$\textit{N}_{\textbf{u}}(\textit{a},\textit{n}) := \#\{\textit{k} \leq \textit{n} : \textit{u}_{\textit{k}} = \textit{a}\}$$

$$N_{\mathbf{u}}(\mathbf{w}, n) := \#\{k \leq n : u_k = w_0, \dots, u_{k+\ell-1} = w_{\ell-1}\}.$$

Definition (Subword Complexity)

The subword complexity of a sequence $\mathbf{u} \in \mathcal{A}^\mathbb{N}$ is defined by

$$p_{\mathbf{u}}(n) := \#\{\mathbf{w} \in \mathcal{A}^n : \exists k, N_{\mathbf{u}}(\mathbf{w}, k) \geq 1\}.$$

$$p_{\mathbf{u}}(n) \leq |\mathcal{A}|^n$$

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u} = (u_n)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w} = (w_0, \dots, w_{\ell-1}) \in \mathcal{A}^{\ell}$.

$$N_{\mathbf{u}}(a,n) := \#\{k \leq n : u_k = a\}$$

$$N_{\mathbf{u}}(\mathbf{w}, n) := \#\{k \leq n : u_k = w_0, \dots, u_{k+\ell-1} = w_{\ell-1}\}.$$

Definition (Subword Complexity)

The subword complexity of a sequence $\mathbf{u} \in \mathcal{A}^\mathbb{N}$ is defined by

$$p_{\mathbf{u}}(n) := \#\{\mathbf{w} \in \mathcal{A}^n : \exists k, N_{\mathbf{u}}(\mathbf{w}, k) \geq 1\}.$$

$$p_{\mathbf{u}}(n) \leq |\mathcal{A}|^n$$

Definition (Simple Normality)

We say that \mathbf{u} is simply normal in base b if for every $a \in \mathcal{A}$

$$\lim_{n\to\infty}\frac{N_{\mathbf{u}}(a,n)}{n}=\frac{1}{b}.$$

Definition (Normality)

We say that \mathbf{u} is *normal in base b* if for every $\mathbf{w} \in \mathcal{A}^*$

$$\lim_{n\to\infty}\frac{N_{\mathbf{u}}(\mathbf{w},n)}{n}=\frac{1}{b^{|\mathbf{w}|}}.$$

Definition (Simple Normality)

We say that \mathbf{u} is simply normal in base b if for every $a \in \mathcal{A}$

$$\lim_{n\to\infty}\frac{N_{\mathbf{u}}(a,n)}{n}=\frac{1}{b}.$$

Definition (Normality)

We say that \mathbf{u} is *normal in base b* if for every $\mathbf{w} \in \mathcal{A}^*$

$$\lim_{n\to\infty}\frac{N_{\mathbf{u}}(\mathbf{w},n)}{n}=\frac{1}{b^{|\mathbf{w}|}}.$$

Examples

- Almost every sequence **u** is normal (1909).
- Champernowne (1933): The sequence 0123456789101112131415... is normal in base 10.
- Copeland-Erdös (1946): The sequence 235711131719232931 . . . is normal in base 10.

Examples

- Almost every sequence **u** is normal (1909).
- Champernowne (1933): The sequence 0123456789101112131415... is normal in base 10.
- Copeland-Erdös (1946): The sequence
 235711131719232931... is normal in base 10.

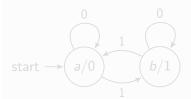
Examples

- Almost every sequence u is normal (1909).
- Champernowne (1933): The sequence 0123456789101112131415... is normal in base 10.
- Copeland-Erdös (1946): The sequence 235711131719232931... is normal in base 10.

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \dots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



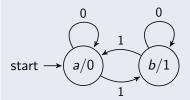
$$n = 22 = (10110)_2, \qquad u_{22} = 1$$

$$\mathbf{u} = (u_n)_{n \ge 0} = 01101001100101101001011001101001\dots$$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \dots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



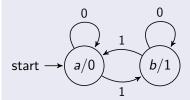
$$n = 22 = (10110)_2, \qquad u_{22} = 1$$

 $\mathbf{u} = (u_n)_{n>0} = 01101001100101101001011001101001\dots$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \dots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



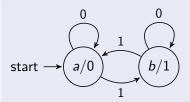
$$n=22=(10110)_2, u_{22}=1$$

 $\mathbf{u} = (u_n)_{n \ge 0} = 01101001100101101001011001101001\dots$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \dots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



$$n = 22 = (10110)_2, u_{22} = 1$$

$$\mathbf{u} = (u_n)_{n \ge 0} = 01101001100101101001011001101001\dots$$

Examples of Automatic Sequences

- Periodic sequences.
- q-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j\geq 0} f(\varepsilon_j(n))$$
 and $f(0) = 0$.

• q-block-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j\geq 0} f(\varepsilon_j(n), \ldots, \varepsilon_{j+r}(n))$$
 and $f(0, \ldots, 0) = 0$.

Examples of Automatic Sequences

- Periodic sequences.
- q-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j \geq 0} f(\varepsilon_j(n))$$
 and $f(0) = 0$.

• q-block-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j\geq 0} f(\varepsilon_j(n), \dots, \varepsilon_{j+r}(n))$$
 and $f(0, \dots, 0) = 0$.

Examples of Automatic Sequences

- Periodic sequences.
- q-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j \geq 0} f(\varepsilon_j(n))$$
 and $f(0) = 0$.

• q-block-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j \geq 0} f(\varepsilon_j(n), \dots, \varepsilon_{j+r}(n))$$
 and $f(0, \dots, 0) = 0$.

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity p_k of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity p_k of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity p_k of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity p_k of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

General Idea

- Start with an automatic sequence u_n that is uniformly distributed on the output alphabet.
- Consider a relatively sparse subsequence u_{n_k} that has the same asymptotic frequencies. (The size of the gaps needs to increase sufficiently fast.)
- This subsequence should be normal.

8/1

General Idea

- Start with an automatic sequence u_n that is uniformly distributed on the output alphabet.
- Consider a relatively sparse subsequence u_{n_k} that has the same asymptotic frequencies. (The size of the gaps needs to increase sufficiently fast.)
- This subsequence should be normal.

General Idea

- Start with an automatic sequence u_n that is uniformly distributed on the output alphabet.
- Consider a relatively sparse subsequence u_{n_k} that has the same asymptotic frequencies. (The size of the gaps needs to increase sufficiently fast.)
- This subsequence should be normal.

8/1

Thue-Morse sequence along Piatetski-Shapiro sequence $|n^c|$

Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2017, 2018+) 1 < c < 2:

$$\#\{0 \leq n < N : t_{\lfloor n^c \rfloor} = 0\} \approx \frac{N}{2}$$

that is, $(t_{\lfloor n^c \rfloor})_{n \in \mathbb{N}}$ is simply normal in base 2.

Thue-Morse sequence along Piatetski-Shapiro sequence $|n^c|$

Thue-Morse sequence $(t_n)_{n\geq 0}$:

011010011001011010010110011010011001011001101...

Mauduit and Rivat (1995, 2005), Spiegelhofer (2014, 2017, 2018+) 1 < c < 2:

$$\#\{0 \leq n < N : t_{\lfloor n^c \rfloor} = 0\} \approx \frac{N}{2},$$

that is, $(t_{\lfloor n^c \rfloor})_{n \in \mathbb{N}}$ is simply normal in base 2.

Thue-Morse sequence along Piatetski-Shapiro sequence $\lfloor n^c \rfloor$

$$\#\{0 \leq n < N : t_{\lfloor n^c \rfloor} = 0\} \approx \frac{N}{2},$$

that is, $(t_{\lfloor n^c \rfloor})_{n \in \mathbb{N}}$ is simply normal in base 2.

Subsequences along $\lfloor n^c \rfloor$

Theorem (Deshouillers, Drmota and Morgenbesser, 2012)

Let u_n be a k-automatic sequence (on an alphabet \mathcal{A}) and

$$1 < c < 7/5$$
.

Then for each $a \in \mathcal{A}$ the asymptotic density $dens(u_{\lfloor n^c \rfloor}, a)$ of a in the subsequence $u_{\lfloor n^c \rfloor}$ exists if and only if the asymptotic density of a in u_n exists and we have

$$dens(u_{\lfloor n^c \rfloor}, a) = dens(u_n, a).$$

Mauduit and Rivat (2009):

$$\#\{0 \le n < N : t_{n^2} = 0\} \approx \frac{N}{2}.$$

Mauduit and Rivat (2009):

$$\#\{0 \le n < N : t_{n^2} = 0\} \approx \frac{N}{2}.$$

$$\#\{0 \le n < N : t_{n^2} = 0\} \approx \frac{N}{2}.$$

$$\#\{0 \le n < N : t_{n^2} = 0\} \approx \frac{N}{2}.$$

Subsequences along squares

Theorem (M., 2017+)

Let u_n be a k-automatic sequence (on an alphabet \mathcal{A}) generated by a strongly connected automaton such that a initial state is mapped to itself under 0. Then for each $a \in \mathcal{A}$ the asymptotic density

$$dens(u_{n^2}, a)$$

exists (and can be computed).

Thue-Morse sequence along primes

Mauduit and Rivat (2010):

$$\#\{0 \le p < N : t_p = 0\} \approx \frac{\pi(N)}{2}.$$

Thue-Morse sequence along primes

Mauduit and Rivat (2010):

$$\#\{0 \le p < N : t_p = 0\} \approx \frac{\pi(N)}{2}.$$

Thue-Morse sequence along primes

$$\#\{0 \le p < N : t_p = 0\} \approx \frac{\pi(N)}{2}.$$

Thue-Morse sequence along primes

$$\#\{0 \le p < N : t_p = 0\} \approx \frac{\pi(N)}{2}.$$

Solution of a Conjecture of Gelfond (1968).

Subsequences along primes

Theorem (M., 2017)

Let u_n be a k-automatic sequence (on an alphabet \mathcal{A}) generated by a strongly connected automaton such that the initial state is mapped to itself under 0. Then for each $a \in \mathcal{A}$ the asymptotic density

$$dens(u_{p_n}, a)$$

exists, where p_n denotes the n-th prime number (and can be computed).

Sarnak Conjecture for automatic sequences

Theorem (M., 2016)

Let u_n be a complex-valued automatic sequence.

Then we have

$$\sum_{n\leq N}u_n\mu(n)=o(N),$$

where $\mu(n)$ denotes the Möbius function.

This generalizes several results by Dartyge and Tenenbaum (Thue-Morse); Mauduit and Rivat (Rudin-Shapiro); Tao (Rudin-Shapiro); Drmota (invertible); Ferenczi, Kulaga-Przymus, Lemanczyk, and Mauduit (invertible); Deshoulliers, Drmota and M. (synchronizing).

 $p_k^{(2)}$... subword complexity of $(t_{n^2})_{n\geq 0}$.

Conjecture (Allouche and Shallit, 2003)

$$p_k^{(2)} = 2^k$$

Equivalently: every block $B \in \{0,1\}^k, k \geq 1$, appears in $(t_{n^2})_{n \geq 0}$

(Moshe, 2007):
$$p_k^{(2)} = 2^k$$
.

 $p_k^{(2)}\dots$ subword complexity of $(t_{n^2})_{n\geq 0}$.

Conjecture (Allouche and Shallit, 2003)

$$p_k^{(2)}=2^k$$

Equivalently: every block $B \in \{0,1\}^k, k \geq 1$, appears in $(t_{n^2})_{n \geq 0}$.

(Moshe, 2007): $p_k^{(2)} = 2^k$

 $p_k^{(2)}\dots$ subword complexity of $(t_{n^2})_{n\geq 0}$.

Conjecture (Allouche and Shallit, 2003)

$$p_k^{(2)}=2^k$$

Equivalently: every block $B \in \{0,1\}^k, k \geq 1$, appears in $(t_{n^2})_{n \geq 0}$.

(Moshe, 2007):
$$p_k^{(2)} = 2^k$$
.

 $p_k^{(2)}\dots$ subword complexity of $(t_{n^2})_{n\geq 0}$.

Conjecture (Allouche and Shallit, 2003)

$$p_k^{(2)}=2^k$$

Equivalently: every block $B \in \{0,1\}^k, k \geq 1$, appears in $(t_{n^2})_{n \geq 0}$.

(Moshe, 2007): $p_k^{(2)} = 2^k$.

Normal subsequences of the Thue-Morse sequence

Theorem (Drmota + Mauduit + Rivat, 2013+)

The sequence (t_{n^2}) is normal.

Theorem (M. + Spiegelhofer, 2017)

Suppose that 1 < c < 3/2. Then the sequence $(t_{\lfloor n^c \rfloor})$ is normal.

Normal subsequences of the Thue-Morse sequence

Theorem (Drmota + Mauduit + Rivat, 2013+)

The sequence (t_{n^2}) is normal.

 $\overline{\mathsf{Theorem}} \; (\mathsf{M.} + \mathsf{Spiegelhofer}, 2017)$

Suppose that 1 < c < 3/2. Then the sequence $(t_{|n^c|})$ is normal.

Normal subsequences

Theorem (M., 2018+)

Let f(n) be a block-additive function and $u_n = f(n) \mod m$ an automatic sequence which is uniformly distributed on the alphabet $\{0, \ldots, m-1\}$ along arithmetic subsequences.

Then the sequence $(u_{\lfloor n^c \rfloor})_{n \geq 0}$ is normal for all c with 1 < c < 4/3. Furthermore, $(u_{n^2})_{n \geq 0}$ is normal.

Conjecture (Drmota)

Suppose that c>1 and $c\notin\mathbb{Z}$. Then for every automatic sequence u_n (on an alphabet \mathcal{A}) the asymptotic density $dens(u_{\lfloor n^c\rfloor},a)$ of $a\in\mathcal{A}$ in the subsequence $(u_{\lfloor n^c\rfloor})$ exists if and only if the asymptotic density of a in u_n exists and we have up to periodic behavior

$$\lim_{N \to \infty} \#\{n < N, u_{\lfloor n^c \rfloor} = b_0, \dots, u_{\lfloor (n+k-1)^c \rfloor} = b_{k-1}\}$$

$$= dens(u_n, b_0) \cdots dens(u_n, b_{k-1})$$

for every $k \geq 1$ and for all $b_0, \ldots, b_{k-1} \in \mathcal{A}$.

Conjecture (Drmota)

Let P(x) be a positive integer valued polynomial and u_n an automatic sequence generated by a strongly connected automaton. Then, for every $a \in \mathcal{A}$ the densities $\delta_a = dens(u_{P(n)}, a)$ exists and we have (up to periodic behavior)

$$\lim_{N \to \infty} \# \{ n < N, u_{P(n)} = b_0, \dots, u_{P(n+k-1)} = b_{k-1} \}$$
$$= \delta_{b_0} \cdots \delta_{b_{k-1}}$$

for every $k \geq 1$ and for all $b_0, \ldots, b_{k-1} \in \mathcal{A}$.

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If $\phi(n) = an + b$ with integers a, b. Then $u_{\phi(n)}$ is again an automatic sequence.
- If $\phi(n) = n \log_2(n)$ then $t_{\lfloor \varphi(n) \rfloor}$ behaves like the Thue-Morse sequence t_n , but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If $\phi(n) = an + b$ with integers a, b. Then $u_{\phi(n)}$ is again an automatic sequence.
- If $\phi(n) = n \log_2(n)$ then $t_{\lfloor \varphi(n) \rfloor}$ behaves like the Thue-Morse sequence t_n , but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If $\phi(n) = an + b$ with integers a, b. Then $u_{\phi(n)}$ is again an automatic sequence.
- If $\phi(n) = n \log_2(n)$ then $t_{\lfloor \varphi(n) \rfloor}$ behaves like the Thue-Morse sequence t_n , but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If $\phi(n) = an + b$ with integers a, b. Then $u_{\phi(n)}$ is again an automatic sequence.
- If $\phi(n) = n \log_2(n)$ then $t_{\lfloor \varphi(n) \rfloor}$ behaves like the Thue-Morse sequence t_n , but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} e\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi ix)$.

- Use independence of "high" and "low" digits.
- Statement involving the discrete Fourier transform

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{u < 2^{\lambda}} e(\alpha s_2(u) - hu2^{-\lambda}).$$

$$|F_{\lambda}(h, 1/2)| \leq 2^{-\eta m} |F_{\lambda-m}(h, 1/2)|$$
.

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} e\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi ix)$.

- Use independence of "high" and "low" digits.
- Statement involving the discrete Fourier transform

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{u < 2^{\lambda}} e(\alpha s_2(u) - hu2^{-\lambda}).$$

$$|F_{\lambda}(h, 1/2)| \leq 2^{-\eta m} |F_{\lambda-m}(h, 1/2)|$$
.

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} e\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi ix)$.

- Use independence of "high" and "low" digits.
- Statement involving the discrete Fourier transform

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{u < 2^{\lambda}} e(\alpha s_2(u) - hu2^{-\lambda}).$$

$$|F_{\lambda}(h, 1/2)| \leq 2^{-\eta m} |F_{\lambda-m}(h, 1/2)|$$
.

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} e\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi ix)$.

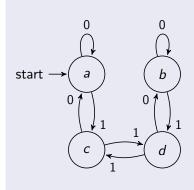
- Use independence of "high" and "low" digits.
- Statement involving the discrete Fourier transform

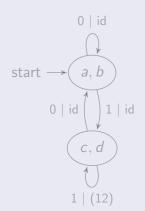
$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{u < 2^{\lambda}} e(\alpha s_2(u) - hu2^{-\lambda}).$$

$$|F_{\lambda}(h, 1/2)| \leq 2^{-\eta m} |F_{\lambda-m}(h, 1/2)|$$
.

Representation of automatic sequences

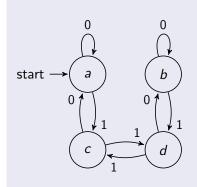
Example (Rudin-Shapiro)

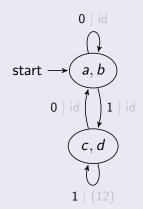




Representation of automatic sequences

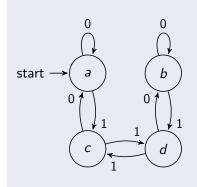
Example (Rudin-Shapiro)

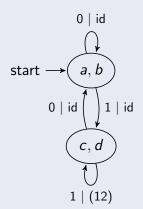




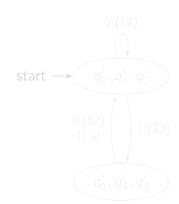
Representation of automatic sequences

Example (Rudin-Shapiro)



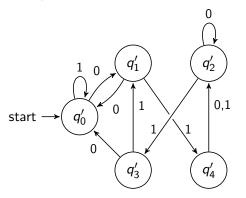


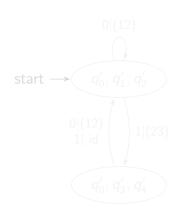
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.



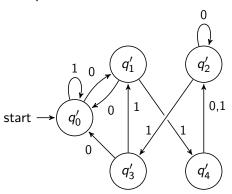
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

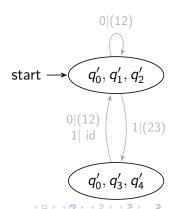
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.



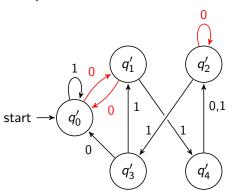


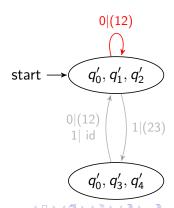
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.



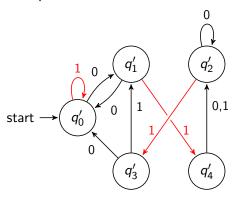


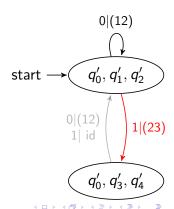
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.



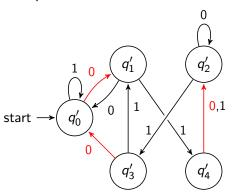


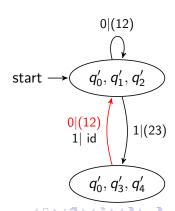
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.



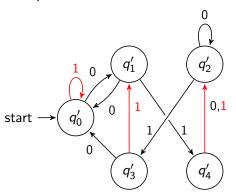


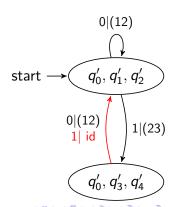
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.





For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.





Definition

Denote by

$$T(q, w_1 \dots w_r) := \lambda(q, w_1) \circ \lambda(\delta(q, w_1), w_2) \circ \dots \circ \lambda(\delta(q, w_1 \dots w_{r-1}), w_r).$$

Lemma

Let A be a strongly connected automaton and \mathcal{T}_A a naturally induced transducer. Then,

$$\delta'(q_0', \mathbf{w}) = \pi_1(T(q_0, \mathbf{w}) \cdot \delta(q_0, \mathbf{w}))$$

holds for all $\mathbf{w} \in \Sigma^*$.

Definition

Denote by

$$T(q, w_1 \dots w_r) := \lambda(q, w_1) \circ \lambda(\delta(q, w_1), w_2) \circ \dots \circ \lambda(\delta(q, w_1 \dots w_{r-1}), w_r).$$

Lemma

Let A be a strongly connected automaton and \mathcal{T}_A a naturally induced transducer. Then,

$$\delta'(q_0',\mathbf{w}) = \pi_1(T(q_0,\mathbf{w}) \cdot \delta(q_0,\mathbf{w}))$$

holds for all $\mathbf{w} \in \Sigma^*$.

$$s_2(n) \mod 2$$
 $T(q_0, n)$

Rewrite the statement in terms of exponential sums:

$$\sum_{\ell \leq 2} \frac{1}{2} e\left(\frac{\ell(s_2(n)-a)}{2}\right) \qquad \sum_{D} c_D \cdot D(T(q_0,n))$$

Independence of "high" and "low" digits

$$s_2(\mathbf{w}_1 \, \mathbf{w}_2)$$
 $T(q_0, \mathbf{w}_1 \, \mathbf{w}_0 \, \mathbf{w}_2)$
= $s_2(\mathbf{w}_1) + s_2(\mathbf{w}_2)$ = $T(q_0, \mathbf{w}_1 \, \mathbf{w}_0) T(q_0, \mathbf{w}_2)$

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{n < 2^{\lambda}} e(\alpha s_2(n) - hn2^{-\lambda})$$

$$F'_{\lambda}(h,D) = \frac{1}{2^{\lambda}} \sum_{n} D(T(q_0,n)) e(-hn2^{-\lambda}).$$

$$s_2(n) \mod 2$$
 $T(q_0, n)$

Rewrite the statement in terms of exponential sums:

$$\sum_{\ell < 2} \frac{1}{2} e\left(\frac{\ell(s_2(n) - a)}{2}\right) \qquad \sum_D c_D \cdot D(T(q_0, n))$$

Independence of "high" and "low" digits

$$s_2(\mathbf{w}_1 \, \mathbf{w}_2)$$
 $T(q_0, \mathbf{w}_1 \, \mathbf{w}_0 \, \mathbf{w}_2)$
= $s_2(\mathbf{w}_1) + s_2(\mathbf{w}_2)$ = $T(q_0, \mathbf{w}_1 \, \mathbf{w}_0) T(q_0, \mathbf{w}_2)$

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{n < 2^{\lambda}} e(\alpha s_2(n) - hn2^{-\lambda})$$

$$F'_{\lambda}(h,D) = \frac{1}{2^{\lambda}} \sum_{n} D(T(q_0,n)) e(-hn2^{-\lambda}).$$

$$s_2(n) \mod 2$$
 $T(q_0, n)$

Rewrite the statement in terms of exponential sums:

$$\sum_{\ell<2} \frac{1}{2} e\left(\frac{\ell(s_2(n)-a)}{2}\right) \qquad \sum_{D} c_D \cdot D(T(q_0,n))$$

Independence of "high" and "low" digits

$$s_2(\mathbf{w}_1 \, \mathbf{w}_2)$$
 $T(q_0, \mathbf{w}_1 \, \mathbf{w}_0 \, \mathbf{w}_2)$
= $s_2(\mathbf{w}_1) + s_2(\mathbf{w}_2)$ = $T(q_0, \mathbf{w}_1 \, \mathbf{w}_0) T(q_0, \mathbf{w}_2)$

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{n < 2^{\lambda}} e(\alpha s_2(n) - hn2^{-\lambda})$$

$$F'_{\lambda}(h,D) = \frac{1}{2^{\lambda}} \sum D(T(q_0,n)) e(-hn2^{-\lambda}).$$

$$s_2(n) \mod 2$$
 $T(q_0, n)$

Rewrite the statement in terms of exponential sums:

$$\sum_{\ell<2} \frac{1}{2} e\left(\frac{\ell(s_2(n)-a)}{2}\right) \qquad \sum_{D} c_D \cdot D(T(q_0,n))$$

Independence of "high" and "low" digits

$$s_2(\mathbf{w}_1 \, \mathbf{w}_2)$$
 $T(q_0, \mathbf{w}_1 \, \mathbf{w}_0 \, \mathbf{w}_2)$
= $s_2(\mathbf{w}_1) + s_2(\mathbf{w}_2)$ = $T(q_0, \mathbf{w}_1 \, \mathbf{w}_0) T(q_0, \mathbf{w}_2)$

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{n < 2^{\lambda}} e(\alpha s_2(n) - hn2^{-\lambda})$$

$$F'_{\lambda}(h,D) = \frac{1}{2^{\lambda}} \sum_{n} D(T(q_0,n)) e(-hn2^{-\lambda}).$$

 $s_2(n) \mod 2$

T(q, n)

 $e(\alpha s_2(n))$

D(T(q, n))

complex valued

matrix valued (not commuting!)

each digit independently

 $s_2(n) \mod 2$

T(q, n)

 $e(\alpha s_2(n))$

D(T(q, n))

complex valued

matrix valued (not commuting!)

each digit independently

 $s_2(n) \mod 2$

T(q, n)

 $e(\alpha s_2(n))$

D(T(q, n))

complex valued

matrix valued (not commuting!)

each digit independently

 $s_2(n) \mod 2$

T(q, n)

 $e(\alpha s_2(n))$

D(T(q,n))

complex valued

matrix valued (not commuting!)

each digit independently

Fibonacci Base

Theorem (Drmota, M., Spiegelhofer, 2017+)

Let $s_{\varphi}(n)$ be the Zeckendorf sum-of-digits function and m(n) a bounded multiplicative function. Then we have

$$\sum_{n < N} (-1)^{s_{\varphi}(n)} m(n) = o(N) \qquad (N \to \infty).$$

This implies that the Zeckendorf sum-of-digits function is orthogonal to the Möbius function.

Fibonacci Base

Theorem (Drmota, M., Spiegelhofer, 2017+)

Let $s_{\varphi}(n)$ be the Zeckendorf sum-of-digits function and m(n) a bounded multiplicative function. Then we have

$$\sum_{n < N} (-1)^{s_{\varphi}(n)} m(n) = o(N) \qquad (N \to \infty).$$

This implies that the Zeckendorf sum-of-digits function is orthogonal to the Möbius function.