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Normal Sequences

Let A be a finite alphabet with b elements and u = (un)n∈N ∈ AN.

Definition

Let a ∈ A and w = (w0, . . . ,w`−1) ∈ A`.

Nu(a, n) := #{k ≤ n : uk = a}
Nu(w, n) := #{k ≤ n : uk = w0, . . . , uk+`−1 = w`−1}.

Definition (Subword Complexity)

The subword complexity of a sequence u ∈ AN is defined by

pu(n) := #{w ∈ An : ∃k ,Nu(w, k) ≥ 1}.

pu(n) ≤ |A|n
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Normal Sequences

Definition (Simple Normality)

We say that u is simply normal in base b if for every a ∈ A

lim
n→∞

Nu(a, n)

n
=

1

b
.

Definition (Normality)

We say that u is normal in base b if for every w ∈ A∗

lim
n→∞

Nu(w, n)

n
=

1

b|w |
.
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Examples

Almost every sequence u is normal (1909).

Champernowne (1933): The sequence
0123456789101112131415 . . . is normal in base 10.

Copeland-Erdös (1946): The sequence
235711131719232931 . . . is normal in base 10.
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Automatic Sequences

Definition (Automaton - DFA)

A = (Q,Σ = {0, . . . , k − 1}, δ, q0, τ)

Example (Thue-Morse sequence)

a/0start b/1

0 0

1

1

n = 22 = (10110)2, u22 = 1

u = (un)n≥0 = 01101001100101101001011001101001 . . .
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Examples of Automatic Sequences

Periodic sequences.

q-additive function modulo m: un = f (n) mod m

f (n) =
∑
j≥0

f (εj(n)) and f (0) = 0.

q-block-additive function modulo m: un = f (n) mod m

f (n) =
∑
j≥0

f (εj(n), . . . , εj+r (n)) and f (0, . . . , 0) = 0.
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Properties of Automatic Sequences

For every automatic sequence u there exists the logarithmic
density

logdens(u, a) = lim
N→∞

1

log(N)

∑
1≤n≤N

1

n
1[un=a].

The subword complexity pk of an automatic sequence is (at
most) linear.

Every subsequence (uan+b)n≥0 along an arithmetic progression
of an automatic sequence (un)n≥0 is again automatic.

Let u(1)(n), . . . , u(j)(n) be automatic sequences. Then
u(n) = f (u(1)(n), . . . , u(j)(n)) is again automatic.
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General Idea

Start with an automatic sequence un that is uniformly
distributed on the output alphabet.

Consider a relatively sparse subsequence unk that has the same
asymptotic frequencies. (The size of the gaps needs to increase
sufficiently fast.)

This subsequence should be normal.
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Thue-Morse sequence along Piatetski-Shapiro

sequence bncc

Thue-Morse sequence (tn)n≥0:
011010011001011010010110011010011001011001101. . .
Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2017, 2018+)
1 < c < 2:

#{0 ≤ n < N : tbncc = 0} ≈ N

2
,

that is, (tbncc)n∈N is simply normal in base 2.

Clemens Müllner Normal Subsequences of Automatic Sequences 11. 2. 2018 9 / 1



Thue-Morse sequence along Piatetski-Shapiro

sequence bncc

Thue-Morse sequence (tn)n≥0:
011010011001011010010110011010011001011001101. . .
Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2017, 2018+)
1 < c < 2:

#{0 ≤ n < N : tbncc = 0} ≈ N

2
,

that is, (tbncc)n∈N is simply normal in base 2.
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Subsequences along bncc

Theorem (Deshouillers, Drmota and Morgenbesser, 2012)

Let un be a k-automatic sequence (on an alphabet A) and

1 < c < 7/5.

Then for each a ∈ A the asymptotic density dens(ubncc, a) of a in
the subsequence ubncc exists if and only if the asymptotic density of
a in un exists and we have

dens(ubncc, a) = dens(un, a).
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Thue-Morse sequence along squares

Thue-Morse sequence (tn)n≥0:
011010011001011010010110011010011001011001101. . .
Mauduit and Rivat (2009):

#{0 ≤ n < N : tn2 = 0} ≈ N

2
.

Solution of a Conjecture of Gelfond (1968).
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Subsequences along squares

Theorem (M., 2017+)

Let un be a k-automatic sequence (on an alphabet A) generated by
a strongly connected automaton such that a initial state is mapped
to itself under 0. Then for each a ∈ A the asymptotic density

dens(un2 , a)

exists (and can be computed).
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Thue-Morse sequence along primes

Thue-Morse sequence (tn)n≥0:
011010011001011010010110011010011001011001101. . .
Mauduit and Rivat (2010):

#{0 ≤ p < N : tp = 0} ≈ π(N)

2
.

Solution of a Conjecture of Gelfond (1968).
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Subsequences along primes

Theorem (M., 2017)

Let un be a k-automatic sequence (on an alphabet A) generated by
a strongly connected automaton such that the initial state is
mapped to itself under 0. Then for each a ∈ A the asymptotic
density

dens(upn , a)

exists, where pn denotes the n-th prime number (and can be
computed).

Clemens Müllner Normal Subsequences of Automatic Sequences 11. 2. 2018 14 / 1



Sarnak Conjecture for automatic sequences

Theorem (M., 2016)

Let un be a complex-valued automatic sequence.
Then we have∑

n≤N

unµ(n) = o(N),

where µ(n) denotes the Möbius function.

This generalizes several results by Dartyge and Tenenbaum
(Thue-Morse); Mauduit and Rivat (Rudin-Shapiro); Tao
(Rudin-Shapiro); Drmota (invertible); Ferenczi, Kulaga-Przymus,
Lemanczyk, and Mauduit (invertible); Deshoulliers, Drmota and M.
(synchronizing).
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Thue-Morse sequence along squares

p
(2)
k . . . subword complexity of (tn2)n≥0.

Conjecture (Allouche and Shallit, 2003)

p
(2)
k = 2k

Equivalently: every block B ∈ {0, 1}k , k ≥ 1, appears in (tn2)n≥0.

(Moshe, 2007): p
(2)
k = 2k .

But what can be said about the frequency of a given block?

Clemens Müllner Normal Subsequences of Automatic Sequences 11. 2. 2018 16 / 1



Thue-Morse sequence along squares

p
(2)
k . . . subword complexity of (tn2)n≥0.

Conjecture (Allouche and Shallit, 2003)

p
(2)
k = 2k

Equivalently: every block B ∈ {0, 1}k , k ≥ 1, appears in (tn2)n≥0.

(Moshe, 2007): p
(2)
k = 2k .

But what can be said about the frequency of a given block?
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Normal subsequences of the Thue-Morse sequence

Theorem (Drmota + Mauduit + Rivat, 2013+)

The sequence (tn2) is normal.

Theorem (M. + Spiegelhofer, 2017)

Suppose that 1 < c < 3/2. Then the sequence (tbncc) is normal.
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Normal subsequences

Theorem (M., 2018+)

Let f (n) be a block-additive function and un = f (n) mod m an
automatic sequence which is uniformly distributed on the alphabet
{0, . . . ,m − 1} along arithmetic subsequences.
Then the sequence (ubncc)n≥0 is normal for all c with 1 < c < 4/3.
Furthermore, (un2)n≥0 is normal.

Clemens Müllner Normal Subsequences of Automatic Sequences 11. 2. 2018 18 / 1



Conjecture (Drmota)

Suppose that c > 1 and c /∈ Z. Then for every automatic sequence
un (on an alphabet A) the asymptotic density dens(ubncc, a) of
a ∈ A in the subsequence (ubncc) exists if and only if the asymptotic
density of a in un exists and we have up to periodic behavior

lim
N→∞

#{n < N , ubncc = b0, . . . , ub(n+k−1)cc = bk−1}

= dens(un, b0) · · · dens(un, bk−1)

for every k ≥ 1 and for all b0, . . . , bk−1 ∈ A.
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Conjecture (Drmota)

Let P(x) be a positive integer valued polynomial and un an
automatic sequence generated by a strongly connected automaton.
Then, for every a ∈ A the densities δa = dens(uP(n), a) exists and
we have (up to periodic behavior)

lim
N→∞

#{n < N , uP(n) = b0, . . . , uP(n+k−1) = bk−1}

= δb0 · · · δbk−1

for every k ≥ 1 and for all b0, . . . , bk−1 ∈ A.
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Let un be an automatic sequence and φ(n) a positive sequence such
that φ(n)/n is non-decreasing.

What can be said about ubφ(n)c?

We cannot expect general results for exponentially growing
sequences φ(n).

If φ(n) = an + b with integers a, b. Then uφ(n) is again an
automatic sequence.

If φ(n) = n log2(n) then tbϕ(n)c behaves like the Thue-Morse
sequence tn, but the density for blocks of length 2 does not
exist. (Deshouillers + Drmota + Morgenbesser (2012))
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General Strategy

Rewrite the statement in terms of exponential sums.
E.g. dens(tn2 , 0) = 1/2 holds if∣∣∣∣∣∑

n≤N

e

(
s2(n2)

2

)∣∣∣∣∣ = o(N),

where e(x) = exp(2πix).
Use independence of

”
high“ and

”
low“ digits.

Statement involving the discrete Fourier transform

Fλ(h, α) =
1

2λ

∑
u<2λ

e(αs2(u)− hu2−λ).

Recursive structure:

|Fλ(h, 1/2)| ≤ 2−ηm |Fλ−m(h, 1/2)| .
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Fλ(h, α) =
1

2λ

∑
u<2λ

e(αs2(u)− hu2−λ).

Recursive structure:

|Fλ(h, 1/2)| ≤ 2−ηm |Fλ−m(h, 1/2)| .
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Representation of automatic sequences

Example (Rudin-Shapiro)

astart b

c d

1

0

1

0

0

1

0

1

a, bstart

c , d

0 | id

1 | id0 | id

1 | (12)
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Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally
induced transducer TA. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Example:

q′0start

q′1 q′2

q′3 q′4

01

0

1

0

1

0

1 0,1

q′0, q
′
1, q
′
2start

q′0, q
′
3, q
′
4

0|(12)

1|(23)0|(12)
1| id
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Definition

Denote by

T (q,w1 . . .wr ) := λ(q,w1) ◦ λ(δ(q,w1),w2) ◦ . . .
◦ λ(δ(q,w1 . . .wr−1),wr ).

Lemma

Let A be a strongly connected automaton and TA a naturally
induced transducer. Then,

δ′(q′0,w) = π1(T (q0,w) · δ(q0,w))

holds for all w ∈ Σ∗.
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Thue-Morse vs. automatic sequences: Similarities

s2(n) mod 2 T (q0, n)

Rewrite the statement in terms of exponential sums:∑
`<2

1

2
e

(
`(s2(n)− a)

2

) ∑
D

cD · D(T (q0, n))

Independence of ”high” and ”low”digits

s2(w1w2) T (q0,w1w0w2)

= s2(w1) + s2(w2) = T (q0,w1w0)T (q0,w2)

Discrete Fourier transform / Recursive structure

Fλ(h, α) =
1

2λ

∑
n<2λ

e(αs2(n)− hn2−λ)

F ′λ(h,D) =
1

2λ

∑
n<2λ

D(T (q0, n)) e(−hn2−λ).
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Thue-Morse vs. automatic sequences: Differences

s2(n) mod 2 T (q, n)

e(αs2(n)) D(T (q, n))

complex valued matrix valued (not commuting!)

each digit independently depends on q.
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Clemens Müllner Normal Subsequences of Automatic Sequences 11. 2. 2018 27 / 1



Thue-Morse vs. automatic sequences: Differences

s2(n) mod 2 T (q, n)

e(αs2(n)) D(T (q, n))

complex valued matrix valued (not commuting!)

each digit independently depends on q.
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Fibonacci Base

Theorem (Drmota, M., Spiegelhofer, 2017+)

Let sϕ(n) be the Zeckendorf sum-of-digits function and m(n) a
bounded multiplicative function. Then we have∑

n<N

(−1)sϕ(n)m(n) = o(N) (N →∞).

This implies that the Zeckendorf sum-of-digits function is
orthogonal to the Möbius function.
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