Beyond Cobham's Theorem: Intersections of automatic sets

Clemens Müllner

with Boris Adamczewski and Jakub Konieczny

TU Wien

Tuesday, June 24, 2025

Deterministic Finite Automata

Definition (Automaton - DFA)

$$\mathcal{A} = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

start
$$\rightarrow a/0$$
 $b/1$

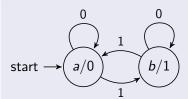
Input: 10110. Output 1.

Deterministic Finite Automata

Definition (Automaton - DFA)

$$\mathcal{A} = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



Input: 10110.

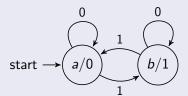
Output 1.

Deterministic Finite Automata

Definition (Automaton - DFA)

$$\mathcal{A} = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



Input: 10110. Output 1.

Definition

A sequence is called a k-automatic sequence if it is produced by a k-automaton. A set is called k-automatic if its indicator function is an automatic sequence.

$$start \rightarrow \begin{array}{c} 0 & 0 \\ 1 & b \end{array}$$

$$(a(n))_{n\geq 0} = 01101001100101101001011001101001...$$

 $A = \{1, 2, 4, 7, 8, 11, 13, 14, 16, ...\}$

Definition

A sequence is called a k-automatic sequence if it is produced by a k-automaton. A set is called k-automatic if its indicator function is an automatic sequence.

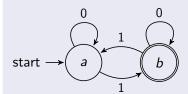
$$start \rightarrow 0 \qquad 0 \qquad 0$$

$$(a(n))_{n\geq 0} = 01101001100101101001011001101001\dots$$

 $A = \{1, 2, 4, 7, 8, 11, 13, 14, 16, \dots\}$

Definition

A sequence is called a k-automatic sequence if it is produced by a k-automaton. A set is called k-automatic if its indicator function is an automatic sequence.

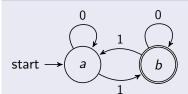


$$(a(n))_{n\geq 0} = 01101001100101101001011001101001...$$

 $A = \{1, 2, 4, 7, 8, 11, 13, 14, 16, ...\}$

Definition

A sequence is called a k-automatic sequence if it is produced by a k-automaton. A set is called k-automatic if its indicator function is an automatic sequence.



$$(a(n))_{n\geq 0} = 01101001100101101001011001101001...$$

 $A = \{1, 2, 4, 7, 8, 11, 13, 14, 16, ...\}$

- Relatively easy to define (structured).
- The subword complexity p_n of an automatic sequence is (at most) linear.
- Every ultimately periodic sequence is k-automatic for any k ≥ 2.
- Complex enough that interesting phenomena appear.

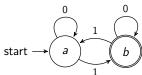
- Relatively easy to define (structured).
- The subword complexity p_n of an automatic sequence is (at most) linear.
- Every ultimately periodic sequence is k-automatic for any k ≥ 2.
- Complex enough that interesting phenomena appear.

- Relatively easy to define (structured).
- The subword complexity p_n of an automatic sequence is (at most) linear.
- Every ultimately periodic sequence is k-automatic for any k > 2.
- Complex enough that interesting phenomena appear.

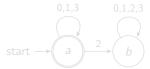
- Relatively easy to define (structured).
- The subword complexity p_n of an automatic sequence is (at most) linear.
- Every ultimately periodic sequence is k-automatic for any $k \ge 2$.
- Complex enough that interesting phenomena appear.

(Simple) Examples

• Thue-Morse: $|A \cap [N]| \sim \frac{N}{2} = \Theta(N)$



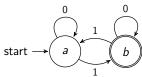
• Missing digits: $|A \cap [N]| = \Theta(N^{\log(3)/\log(4)})$



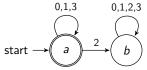
• Powers of $k: |A \cap [N]| = \Theta(\log(N))$.

(Simple) Examples

• Thue-Morse: $|A \cap [N]| \sim \frac{N}{2} = \Theta(N)$



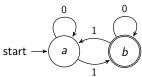
• Missing digits: $|A \cap [N]| = \Theta(N^{\log(3)/\log(4)})$.



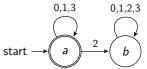
• Powers of $k: |A \cap [N]| = \Theta(\log(N))$.

(Simple) Examples

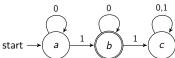
• Thue-Morse: $|A \cap [N]| \sim \frac{N}{2} = \Theta(N)$



• Missing digits: $|A \cap [N]| = \Theta(N^{\log(3)/\log(4)})$.



• Powers of $k: |A \cap [N]| = \Theta(\log(N))$.



- Dense automatic sets: $|A \cap [N]| = \Theta(N)$
- Sparse automatic sets: there exist $0 < \alpha < 1, r \in \mathbb{N}$ s.t. $|A \cap [N]| = \Theta(N^{\alpha} \log^r(N))$
- Arid automatic sets: there exists $r \in \mathbb{N}$ s.t. $|A \cap [N]| = \Theta(\log^r(N))$.

- Dense automatic sets: $|A \cap [N]| = \Theta(N)$
- Sparse automatic sets: there exist $0 < \alpha < 1, r \in \mathbb{N}$ s.t. $|A \cap [N]| = \Theta(N^{\alpha} \log^r(N))$
- Arid automatic sets: there exists $r \in \mathbb{N}$ s.t. $|A \cap [N]| = \Theta(\log^r(N))$.

- Dense automatic sets: $|A \cap [N]| = \Theta(N)$
- Sparse automatic sets: there exist $0 < \alpha < 1, r \in \mathbb{N}$ s.t. $|A \cap [N]| = \Theta(N^{\alpha} \log^{r}(N))$
- Arid automatic sets: there exists $r \in \mathbb{N}$ s.t. $|A \cap [N]| = \Theta(\log^r(N))$.

- Dense automatic sets: $|A \cap [N]| = \Theta(N)$
- Sparse automatic sets: there exist $0 < \alpha < 1, r \in \mathbb{N}$ s.t. $|A \cap [N]| = \Theta(N^{\alpha} \log^{r}(N))$
- Arid automatic sets: there exists $r \in \mathbb{N}$ s.t. $|A \cap [N]| = \Theta(\log^r(N))$.

Being automatic in different bases

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $k, n \in \mathbb{N}$. A sequence is k-automatic if and only if it is k^n -automatic.

Theorem (Cobham - 1969)

If a sequence $(a(n))_{n\geq 0}$ is both k and l automatic, where $\log(k)/\log(l)\notin\mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

Being automatic in different bases

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $k, n \in \mathbb{N}$. A sequence is k-automatic if and only if it is k^n -automatic.

Theorem (Cobham - 1969)

If a sequence $(a(n))_{n\geq 0}$ is both k and l automatic, where $\log(k)/\log(l)\notin\mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

Being automatic in different bases

Question

Can a sequence be automatic in multiple bases?

Lemma

Let $k, n \in \mathbb{N}$. A sequence is k-automatic if and only if it is k^n -automatic.

Theorem (Cobham - 1969)

If a sequence $(a(n))_{n\geq 0}$ is both k and l automatic, where $\log(k)/\log(l) \notin \mathbb{Q}$. Then $(a(n))_{n\geq 0}$ is eventually periodic.

We model an automatic set A by a pseudorandom set where n is chosen with probability $\frac{|A \cap [n]|}{n}$.

If A and B are automatic sets that are "independent", then one could expect:

$$\frac{|(A\cap B)\cap [n]|}{n}\approx \frac{|A\cap [n]|}{n}\cdot \frac{|B\cap [n]|}{n}.$$

Counter example

$$A = 3 \mathbb{N}, B = \{n : s_{10}(n) \equiv 1 \mod 3\} = 3 \mathbb{N} + 1.$$

 $A \cap B = \emptyset.$

We model an automatic set A by a pseudorandom set where n is chosen with probability $\frac{|A \cap [n]|}{n}$.

If A and B are automatic sets that are "independent", then one could expect:

$$\frac{|(A \cap B) \cap [n]|}{n} \approx \frac{|A \cap [n]|}{n} \cdot \frac{|B \cap [n]|}{n}.$$

Counter example

$$A = 3 \mathbb{N}, B = \{n : s_{10}(n) \equiv 1 \mod 3\} = 3 \mathbb{N} + 1.$$

 $A \cap B = \emptyset.$

We model an automatic set A by a pseudorandom set where n is chosen with probability $\frac{|A \cap [n]|}{n}$.

If A and B are automatic sets that are "independent", then one could expect:

$$\frac{|(A \cap B) \cap [n]|}{n} \approx \frac{|A \cap [n]|}{n} \cdot \frac{|B \cap [n]|}{n}.$$

Counter example

$$A = 3 \mathbb{N}, B = \{n : s_{10}(n) \equiv 1 \mod 3\} = 3 \mathbb{N} + 1.$$

 $A \cap B = \emptyset.$

We model an automatic set A by a pseudorandom set where n is chosen with probability $\frac{|A \cap [n]|}{n}$.

If A and B are automatic sets that are "independent", then one could expect:

$$\frac{|(A \cap B) \cap [n]|}{n} \approx \frac{|A \cap [n]|}{n} \cdot \frac{|B \cap [n]|}{n}.$$

Counter example

$$A = 3 \mathbb{N}, B = \{n : s_{10}(n) \equiv 1 \mod 3\} = 3 \mathbb{N} + 1.$$

 $A \cap B = \emptyset.$

Heuristics for primes

PNT: The number of primes $\leq x$ is asymptotically equal to $\frac{x}{\ln(x)}$.

Cramér's model

One can model the prime numbers as a pseudorandom set \mathcal{P}' where n is chosen with probability $\frac{1}{\ln(n)}$.

Refined Cramér's model

Obviously no prime number (except 2) is even.

We define \mathcal{P}_2' where each odd integer n is chosen with probability $\frac{2}{\ln(n)}$ and each even n with probability 0.

We can do the same for all primes $\leq w$ to obtain \mathcal{P}'_w .

The refined Cramér's model also captures periodic biases up to w.

Heuristics for primes

PNT: The number of primes $\leq x$ is asymptotically equal to $\frac{x}{\ln(x)}$.

Cramér's model

One can model the prime numbers as a pseudorandom set \mathcal{P}' where n is chosen with probability $\frac{1}{\ln(n)}$.

Refined Cramér's model

Obviously no prime number (except 2) is even.

We define \mathcal{P}_2' where each odd integer n is chosen with probability $\frac{2}{\ln(n)}$ and each even n with probability 0.

We can do the same for all primes $\leq w$ to obtain \mathcal{P}'_w .

The refined Cramér's model also captures periodic biases up to w.

Conjectures for automatic sets

Conjecture

Unless there is an (obvious) periodic bias, we expect that

$$\frac{|(A \cap B) \cap [N]|}{N} \approx \frac{|A \cap [N]|}{N} \cdot \frac{|B \cap [N]|}{N}.$$

If there is no periodic bias we expect for $|(A \cap B) \cap [N]|$

A B	dense	sparse $(N^{lpha+o(1)})$	arid $(\log(N)^r)$
dense	$\Theta(N)$	$\Theta(N^{\alpha})$	$\Theta(\log(N)^r)$
sparse $(N^{\beta+o(1)})$		$\Theta(N^{max(0,\alpha+\beta-1)+o(1)})$	O(1)
arid $(\log(N)^s)$			O(1)

Conjectures for automatic sets

Conjecture

Unless there is an (obvious) periodic bias, we expect that

$$\frac{|(A \cap B) \cap [N]|}{N} \approx \frac{|A \cap [N]|}{N} \cdot \frac{|B \cap [N]|}{N}.$$

If there is no periodic bias we expect for $|(A \cap B) \cap [N]|$:

B A	dense	sparse $(N^{lpha+o(1)})$	arid $(\log(N)^r)$
dense	$\Theta(N)$	$\Theta(\mathit{N}^{lpha})$	$\Theta(\log(N)^r)$
sparse $(N^{\beta+o(1)})$	—	$\Theta(N^{max(0,\alpha+\beta-1)+o(1)})$	O(1)
arid $(\log(N)^s)$	_		O(1)

Gelfond Problem(s)

1. Gelfond Problem (Kim; 1999)

It would be interesting to prove that for coprime bases $k,l \geq 2$, and integers m_1,m_2 such that $\gcd(m_1,k-1)=\gcd(m_2,l-1)=1$ and $r,s\in\mathbb{Z}$ the following holds. There exists some $\lambda>0$ such that

$$\#\{n \leq N : s_k(n) \equiv r \mod m_1, s_l(n) \equiv s \mod m_2\}$$

$$= \frac{N}{m_1 m_2} + O(N^{1-\lambda}).$$

$$A = \{n : s_k(n) \equiv r \mod m_1\}, \qquad |A \cap [N]| \sim \frac{N}{m_1}$$
 $B = \{n : s_l(n) \equiv s \mod m_2\}, \qquad |B \cap [N]| \sim \frac{N}{m_2}$

Gelfond Problem(s)

1. Gelfond Problem (Kim; 1999)

It would be interesting to prove that for coprime bases $k, l \geq 2$, and integers m_1, m_2 such that $\gcd(m_1, k-1) = \gcd(m_2, l-1) = 1$ and $r, s \in \mathbb{Z}$ the following holds. There exists some $\lambda > 0$ such that

$$\#\{n \leq N : s_k(n) \equiv r \mod m_1, s_l(n) \equiv s \mod m_2\}$$

$$= \frac{N}{m_1 m_2} + O(N^{1-\lambda}).$$

$$A = \{n : s_k(n) \equiv r \mod m_1\}, \qquad |A \cap [N]| \sim rac{N}{m_1}$$
 $B = \{n : s_l(n) \equiv s \mod m_2\}, \qquad |B \cap [N]| \sim rac{N}{m_2}$

Gelfond Problem(s)

1. Gelfond Problem (Kim; 1999)

It would be interesting to prove that for coprime bases $k,l\geq 2$, and integers m_1,m_2 such that $\gcd(m_1,k-1)=\gcd(m_2,l-1)=1$ and $r,s\in\mathbb{Z}$ the following holds. There exists some $\lambda>0$ such that

$$\#\{n \leq N : s_k(n) \equiv r \mod m_1, s_l(n) \equiv s \mod m_2\}$$

$$= \frac{N}{m_1 m_2} + O(N^{1-\lambda}).$$

$$A = \{n : s_k(n) \equiv r \mod m_1\}, \qquad |A \cap [N]| \sim \frac{N}{m_1}$$
 $B = \{n : s_l(n) \equiv s \mod m_2\}, \qquad |B \cap [N]| \sim \frac{N}{m_2}$

Erdös conjecture

Conjecture (Erdös; 1979)

The base 3 expansion of every sufficiently large power of 2 contains the digit 2.

$$A = \{2^n : n \in \mathbb{N}\},$$

 $B = \{n : n \text{ has not digit 2 in base 3}\}.$

A is arid, B is sparse. $\Rightarrow A \cap B$ is expected to be finite.

Erdös conjecture

Conjecture (Erdös; 1979)

The base 3 expansion of every sufficiently large power of 2 contains the digit 2.

$$A = \{2^n : n \in \mathbb{N}\},\$$

$$B = \{n : n \text{ has not digit 2 in base 3}\}.$$

A is arid, B is sparse. $\Rightarrow A \cap B$ is expected to be finite.

Erdös conjecture

Conjecture (Erdös; 1979)

The base 3 expansion of every sufficiently large power of 2 contains the digit 2.

$$A = \{2^n : n \in \mathbb{N}\},$$

$$B = \{n : n \text{ has not digit 2 in base 3}\}.$$

A is arid, B is sparse. $\Rightarrow A \cap B$ is expected to be finite.

Conjecture (Furstenberg; 1969)

Let k and l be multiplicatively independent natural numbers, and let $x \in [0,1)$ be an irrational real number. Then

$$dim_H \overline{\mathcal{O}_k(x)} + dim_H \overline{\mathcal{O}_l(x)} \ge 1.$$

As observed by Furstenberg, his conjecture implies that any finite block of digits occurs in the decimal expansion of 2^n , as soon as n is large enough.

Conjecture (Furstenberg; 1969)

Let k and l be multiplicatively independent natural numbers, and let $x \in [0,1)$ be an irrational real number. Then

$$dim_H \overline{\mathcal{O}_k(x)} + dim_H \overline{\mathcal{O}_l(x)} \ge 1.$$

As observed by Furstenberg, his conjecture implies that any finite block of digits occurs in the decimal expansion of 2^n , as soon as n is large enough.

Furstenbergs dimension conjecture inspired people to look into applications for sets of integers.

Theorem (Glasscock, Moreira, Richter; 2025)

Let A be a set with missing digits in base k s.t. $|A \cap [N]| = \Theta(N^{\alpha})$ and B be a set with missing digits in base l s.t. $|B \cap [N]| = \Theta(N^{\beta})$ where k, l are multiplicatively independent. Then

$$|A \cap B \cap [N]| \ll N^{\max(0,\alpha+\beta-1)+o(1)}$$
.

Furstenbergs dimension conjecture inspired people to look into applications for sets of integers.

Theorem (Glasscock, Moreira, Richter; 2025)

Let A be a set with missing digits in base k s.t. $|A \cap [N]| = \Theta(N^{\alpha})$ and B be a set with missing digits in base I s.t. $|B \cap [N]| = \Theta(N^{\beta})$, where k, I are multiplicatively independent. Then

$$|A \cap B \cap [N]| \ll N^{\max(0,\alpha+\beta-1)+o(1)}$$
.

Furstenbergs dimension conjecture inspired people to look into applications for sets of integers.

Theorem (Glasscock, Moreira, Richter; 2025)

Let A be a set with missing digits in base k s.t. $|A \cap [N]| = \Theta(N^{\alpha})$ and B be a set with missing digits in base I s.t. $|B \cap [N]| = \Theta(N^{\beta})$, where k, I are multiplicatively independent. Then

$$|A \cap B \cap [N]| \ll N^{\max(0,\alpha+\beta-1)+o(1)}$$
.

Furstenbergs dimension conjecture inspired people to look into applications for sets of integers.

Theorem (Glasscock, Moreira, Richter; 2025)

Let A be a set with missing digits in base k s.t. $|A \cap [N]| = \Theta(N^{\alpha})$ and B be a set with missing digits in base I s.t. $|B \cap [N]| = \Theta(N^{\beta})$, where k, I are multiplicatively independent. Then

$$|A \cap B \cap [N]| \ll N^{\max(0,\alpha+\beta-1)+o(1)}$$
.

Arithmetic regularity lemma for (dense) automatic sequences

Theorem (Byszewski, Konieczny, M.; 2023)

Let $a: \mathbb{N} \to \mathbb{C}$ be a primitive k-automatic sequence. Then it has a decomposition as $a = a_{str} + a_{uni}$, where

- a_{str} is a structured part of a, i.e. it can be very well approximated by a periodic sequence.
- a_{uni} is uniform in the sense that for each $d \ge 2$ there exists $\kappa > 0$ such that $||a_{uni}||_{U^d[N]} \ll N^{-\kappa}$.

We expect a_{uni} to only behave like random noise that cancels out! Remark: We can also assume that a_{str} and a_{uni} satisfy a *carry* property if we allow them to be matrix-valued.

Arithmetic regularity lemma for (dense) automatic sequences

Theorem (Byszewski, Konieczny, M.; 2023)

Let $a: \mathbb{N} \to \mathbb{C}$ be a primitive k-automatic sequence. Then it has a decomposition as $a = a_{str} + a_{uni}$, where

- a_{str} is a structured part of a, i.e. it can be very well approximated by a periodic sequence.
- a_{uni} is uniform in the sense that for each $d \ge 2$ there exists $\kappa > 0$ such that $||a_{uni}||_{U^d[N]} \ll N^{-\kappa}$.

We expect a_{uni} to only behave like random noise that cancels out! Remark: We can also assume that a_{str} and a_{uni} satisfy a carry property if we allow them to be matrix-valued.

Arithmetic regularity lemma for (dense) automatic sequences

Theorem (Byszewski, Konieczny, M.; 2023)

Let $a: \mathbb{N} \to \mathbb{C}$ be a primitive k-automatic sequence. Then it has a decomposition as $a = a_{str} + a_{uni}$, where

- a_{str} is a structured part of a, i.e. it can be very well approximated by a periodic sequence.
- a_{uni} is uniform in the sense that for each d > 2 there exists $\kappa > 0$ such that $||a_{uni}||_{U^d[N]} \ll N^{-\kappa}$.

We expect a_{uni} to only behave like random noise that cancels out!

Arithmetic regularity lemma for (dense) automatic sequences

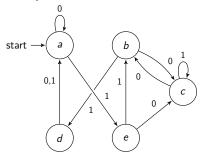
Theorem (Byszewski, Konieczny, M.; 2023)

Let $a: \mathbb{N} \to \mathbb{C}$ be a primitive k-automatic sequence. Then it has a decomposition as $a = a_{str} + a_{uni}$, where

- a_{str} is a structured part of a, i.e. it can be very well approximated by a periodic sequence.
- a_{uni} is uniform in the sense that for each $d \ge 2$ there exists $\kappa > 0$ such that $||a_{uni}||_{U^d[N]} \ll N^{-\kappa}$.

We expect a_{uni} to only behave like random noise that cancels out! Remark: We can also assume that a_{str} and a_{uni} satisfy a *carry property* if we allow them to be matrix-valued.

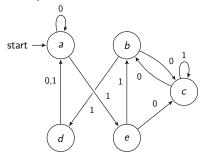
Example:



$$S_0 = \{a, b, c\}, \qquad S_1 = \{d, e, c\}$$

$$u(n)$$
 | a | e | c | b | b | c | c | d | c | d | b | c | b | c | S(n) | S_0 | S_1 | S_0 | S_0

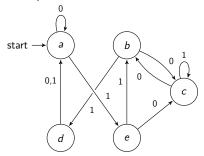
Example:

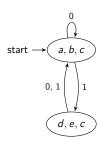


$$S_0 = \{a, b, c\}, \qquad S_1 = \{d, e, c\}$$

$$\frac{u(n)}{S(n)}$$
 a e c b b c c d c d b c b c S_1 S_2 S_3 S_4 S_5 S_5 S_5 S_5 S_6 S_7 S_8 S_8 S_8 S_8 S_8 S_8 S_9 S_9 S_9 S_9 S_9 S_9 S_9

Example:



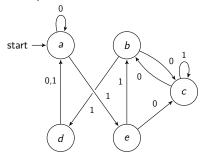


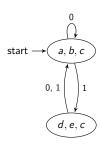
$$S_0 = \{a, b, c\}, \qquad S_1 = \{d, e, c\}$$

$$S_1 = \{d, e, c\}$$

$$u(n)$$
 a e c b b c c d b c d b c b c c $S(n)$ $S(n$

Example:





$$S_0 = \{a, b, c\}, \qquad S_1 = \{d, e, c\}$$

Clemens Müllner Bevond Cobham's Theorem 24, 06, 2025

General philosophy

- The sequence S(n) gives a "coarse picture", which is highly structured, i.e. S(n) is "almost periodic".
- Which element from S(n) is chosen for u(n) behaves "randomly".

General philosophy

- The sequence S(n) gives a "coarse picture", which is highly structured, i.e. S(n) is "almost periodic".
- Which element from S(n) is chosen for u(n) behaves "randomly".

Addendum

Theorem (Shubin, M.; in preparation)

For pairwise coprime q_1, \ldots, q_m and A_i being a q_i -automatic set, we have

$$|\mathbb{P} \cap A_1 \cap \ldots \cap A_m \cap [N]| = \sum_{p \leq N} 1_{A_1, str}(p) \cdots 1_{A_m, str}(p).$$

For A_i being sum of digits modulo m_i , we have $1_{A_i,str}$ is periodic, which recovers the presented theorem.

Addendum

Theorem (Shubin, M.; in preparation)

For pairwise coprime q_1, \ldots, q_m and A_i being a q_i -automatic set, we have

$$|\mathbb{P} \cap A_1 \cap \ldots \cap A_m \cap [N]| = \sum_{p \leq N} 1_{A_1, str}(p) \cdots 1_{A_m, str}(p).$$

For A_i being sum of digits modulo m_i , we have $1_{A_i,str}$ is periodic, which recovers the presented theorem.

Structure of sparse automatic sequences

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse automatic set with

 $|A \cap [N]| = \Theta(N^{\alpha} \log^r(N))$. Then there exists a decomposition

$$1_A = 1_{A,str} + 1_{A,uni}$$

where we have

$$\sup_{\theta \in \mathbb{R}} \left| \sum_{n \leq N} 1_{A,uni}(n) e(\theta n) \right| = o(N^{\alpha} \log^{r}(N)),$$

and $1_{\Delta str}$ is "structured".

Structure of sparse automatic sequences

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse automatic set with $|A \cap [N]| = \Theta(N^{\alpha} \log^r(N))$. Then there exists a decomposition

$$1_{A}=1_{A,str}+1_{A,uni}$$

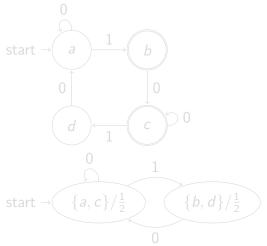
where we have

$$\sup_{\theta \in \mathbb{R}} \left| \sum_{n < N} 1_{A,uni}(n) e(\theta n) \right| = o(N^{\alpha} \log^{r}(N)),$$

and $1_{A,str}$ is "structured".

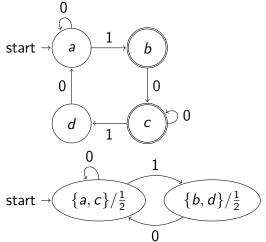
Example

Thue-Morse and "no block 11".



Example

Thue-Morse and "no block 11".



Our results (Overview)

B A	dense	sparse $(N^{\alpha+o(1)})$	arid $(\log(N)^r)$
dense	11	✓	Х
sparse $(N^{\beta+o(1)})$	_	«	~
arid $(\log(N)^s)$	_	_	11

Remark: These results can be used to give a new (and very long) proof of Cobham's Theorem.

Our results (Overview)

B	dense	sparse $(N^{\alpha+o(1)})$	arid $(\log(N)^r)$
dense	11	✓	Х
sparse $(N^{\beta+o(1)})$	_	«	~
arid $(\log(N)^s)$	_		11

Remark: These results can be used to give a new (and very long) proof of Cobham's Theorem.

Theorem (Adamczewski, Konieczny, M.; in preparation)

Let A be a dense k-automatic set and let B be a dense l-automtic set, where k and l are multiplicatively independent.

Then there exists $\epsilon > 0$ such that

$$|(A \cap B) \cap [N]| = \sum_{n \leq N} 1_{str,A}(n) \cdot 1_{str,B}(n) + O(N^{1-\epsilon}).$$

Corollary

The first Gelfond Problem is also true for multiplicatively independent k and l (and not only for coprime k, l).

Theorem (Adamczewski, Konieczny, M.; in preparation)

Let A be a dense k-automatic set and let B be a dense l-automtic set, where k and l are multiplicatively independent.

Then there exists $\epsilon > 0$ such that

$$|(A \cap B) \cap [N]| = \sum_{n \leq N} 1_{str,A}(n) \cdot 1_{str,B}(n) + O(N^{1-\epsilon}).$$

Corollary

The first Gelfond Problem is also true for multiplicatively independent k and l (and not only for coprime k, l).

Theorem (Adamczewski, Konieczny, M.; in preparation)

Let A be a dense k-automatic set and let B be a dense l-automatic set, where k and l are multiplicatively independent.

Then there exists $\epsilon > 0$ such that

$$|(A \cap B) \cap [N]| = \sum_{n \leq N} 1_{str,A}(n) \cdot 1_{str,B}(n) + O(N^{1-\epsilon}).$$

Corollary

The first Gelfond Problem is also true for multiplicatively independent k and l (and not only for coprime k, l).

Theorem (Adamczewski, Konieczny, M.; in preparation)

Let A be a dense k-automatic set and let B be a dense l-automatic set, where k and l are multiplicatively independent.

Then there exists $\epsilon > 0$ such that

$$|(A \cap B) \cap [N]| = \sum_{n \leq N} 1_{str,A}(n) \cdot 1_{str,B}(n) + O(N^{1-\epsilon}).$$

Corollary

The first Gelfond Problem is also true for multiplicatively independent k and l (and not only for coprime k, l).

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a dense k-automatic set and let B be a sparse l-automatic set with $|B \cap [N]| = \Theta(N^{\alpha} \log^r N)$, where k and l are coprime.

$$|(A \cap B) \cap [N]| = \Theta(N^{\alpha} \log^{r} N)$$

 $\Leftrightarrow \sum_{n \leq N} 1_{str,A}(n) \cdot 1_{str,B}(n) = \Theta(N^{\alpha} \log^{r} N)$

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a dense k-automatic set and let B be a sparse l-automatic set with $|B \cap [N]| = \Theta(N^{\alpha} \log^r N)$, where k and l are coprime.

$$|(A \cap B) \cap [N]| = \Theta(N^{\alpha} \log^{r} N)$$

 $\Leftrightarrow \sum_{n \leq N} 1_{str,A}(n) \cdot 1_{str,B}(n) = \Theta(N^{\alpha} \log^{r} N)$

Alternative Formulation (Periodic Bias)

If $|(A \cap B) \cap [N]| = o(N^{\alpha} \log^r N)$ then there is a periodic bias: There exists a periodic set P such that

$$|(A \cap (\mathbb{N} \setminus P)) \cap [N]| = o(N), |(B \cap P) \cap [N]| = o(N^{\alpha} \log^r N).$$

Method: Working directly with the structure of automata and explicitly constructing elements.

Alternative Formulation (Periodic Bias)

If $|(A \cap B) \cap [N]| = o(N^{\alpha} \log^r N)$ then there is a periodic bias: There exists a periodic set P such that

$$|(A \cap (\mathbb{N} \setminus P)) \cap [N]| = o(N), |(B \cap P) \cap [N]| = o(N^{\alpha} \log^{r} N).$$

Method: Working directly with the structure of automata and explicitly constructing elements.

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with $|A \cap [N]| = N^{\alpha+o(1)}$ and let B be a sparse l-automtic set with $|B \cap [N]| = N^{\beta+o(1)}$, where k and l are multiplicatively independent. Then

$$|(A\cap B)\cap [N]|\leq N^{\max(\alpha+\beta-1,0)+o(1)}.$$

This is basically the expected upper bound (for the pseudorandom independent model).

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with $|A \cap [N]| = N^{\alpha+o(1)}$ and let B be a sparse l-automtic set with $|B \cap [N]| = N^{\beta+o(1)}$, where k and l are multiplicatively independent. Then

$$|(A \cap B) \cap [N]| \leq N^{\max(\alpha+\beta-1,0)+o(1)}.$$

This is basically the expected upper bound (for the pseudorandom independent model).

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with $|A \cap [N]| = N^{\alpha+o(1)}$ and let B be a sparse l-automtic set with $|B \cap [N]| = N^{\beta+o(1)}$, where k and l are multiplicatively independent. Then

$$|(A \cap B) \cap [N]| \leq N^{\max(\alpha+\beta-1,0)+o(1)}.$$

This is basically the expected upper bound (for the pseudorandom independent model).

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with $|A \cap [N]| = N^{\alpha+o(1)}$ and let B be a sparse l-automtic set with $|B \cap [N]| = N^{\beta+o(1)}$, where k and l are multiplicatively independent. Then

$$|(A \cap B) \cap [N]| \leq N^{\max(\alpha+\beta-1,0)+o(1)}.$$

This is basically the expected upper bound (for the pseudorandom independent model).

New results (sparse-arid)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with $|A \cap [N]| = N^{\alpha + o(1)}$ and let B be an arid I-automtic set with $|B \cap [N]| = \Theta(\log^r(N))$, where k and I are multiplicatively independent. Then there exists $\eta > 0$ such that

$$|(A \cap B) \cap [N]| \le \log^{r-\eta}(N).$$

New results (sparse-arid)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with $|A \cap [N]| = N^{\alpha + o(1)}$ and let B be an arid l-automatic set with $|B \cap [N]| = \Theta(\log^r(N))$, where k and l are multiplicatively independent. Then there exists $\eta > 0$ such that

$$|(A \cap B) \cap [N]| \le \log^{r-\eta}(N).$$

New results (arid-arid)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be an arid k-automatic set with $|A \cap [N]| = \Theta(\log^r(N))$ and let B be an arid l-automatic set with $|B \cap [N]| = \log^s(N)$, where k and l are multiplicatively independent.

Then their intersection is finite and there exists an explicitly computable N_0 such that $A \cap B \subset [N_0]$.

Method: We follow a strategy developed by Stewart that utilizes Baker's theorem on linear forms of logarithms.

New results (arid-arid)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be an arid k-automatic set with $|A \cap [N]| = \Theta(\log^r(N))$ and let B be an arid l-automatic set with $|B \cap [N]| = \log^s(N)$, where k and l are multiplicatively independent.

Then their intersection is finite and there exists an explicitly computable N_0 such that $A \cap B \subset [N_0]$.

Method: We follow a strategy developed by Stewart that utilizes Baker's theorem on linear forms of logarithms.

New results (arid-arid)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be an arid k-automatic set with $|A \cap [N]| = \Theta(\log^r(N))$ and let B be an arid l-automatic set with $|B \cap [N]| = \log^s(N)$, where k and l are multiplicatively independent.

Then their intersection is finite and there exists an explicitly computable N_0 such that $A \cap B \subset [N_0]$.

Method: We follow a strategy developed by Stewart that utilizes Baker's theorem on linear forms of logarithms.

- Automatic sets give a very nice and natural framework for many problems related to digits.
- We expect automatic sequences in multiplicatively independent basis to behave independently (up to periodic bias).
- To get a good intuition for concrete examples, it should be sufficient to look at the structured part.

- Automatic sets give a very nice and natural framework for many problems related to digits.
- We expect automatic sequences in multiplicatively independent basis to behave independently (up to periodic bias).
- To get a good intuition for concrete examples, it should be sufficient to look at the structured part.

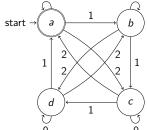
- Automatic sets give a very nice and natural framework for many problems related to digits.
- We expect automatic sequences in multiplicatively independent basis to behave independently (up to periodic bias).
- To get a good intuition for concrete examples, it should be sufficient to look at the structured part.

- Automatic sets give a very nice and natural framework for many problems related to digits.
- We expect automatic sequences in multiplicatively independent basis to behave independently (up to periodic bias).
- To get a good intuition for concrete examples, it should be sufficient to look at the structured part.

Structured part of $s_k(n)$ mod m

$$a(n) = \begin{cases} 1 & s_3(n) \equiv 0 \mod 4 \\ 0 & otherwise \end{cases}$$

$$a_{str}(n) = \begin{cases} 1 & s_3(n) \equiv 0 \mod 4 \\ 0 & otherwise \end{cases} \qquad a_{str}(n) = \begin{cases} \frac{1}{2} & n \equiv 0 \mod 2 \\ 0 & otherwise \end{cases}$$



start $\rightarrow (\{a,c\}/0.5)$ $\{b, d\}/0$

Lemma (Adamczewski, Konieczny, M; in preparation)

If
$$a(n) = 1$$
 iff $s_k(n) \equiv r \mod m$.
Then $a_{str}(n) = \frac{\gcd(m, k-1)}{m}$ iff $n \equiv r \mod \gcd(m, k-1)$.