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Automatic Sets

Deterministic Finite Automata

Definition (Automaton - DFA)

A = (Q,Σ = {0, . . . , k − 1}, δ, q0, τ)

Example (Thue-Morse sequence)

a/0start b/1

0 0

1

1

Input: 10110. Output 1.
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Clemens Müllner Beyond Cobham’s Theorem 24. 06. 2025



Automatic Sets

Deterministic Finite Automata

Definition (Automaton - DFA)

A = (Q,Σ = {0, . . . , k − 1}, δ, q0, τ)

Example (Thue-Morse sequence)

a/0start b/1

0 0

1

1

Input: 10110. Output 1.
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Automatic Sets

Automatic sequences/sets

Definition

A sequence is called a k-automatic sequence if it is produced by a
k-automaton. A set is called k-automatic if its indicator function is
an automatic sequence.

Example (Thue-Morse sequence)

astart b

0 0

1

1

(a(n))n≥0 = 01101001100101101001011001101001 . . .

A = {1, 2, 4, 7, 8, 11, 13, 14, 16, . . .}
Clemens Müllner Beyond Cobham’s Theorem 24. 06. 2025



Automatic Sets

Automatic sequences/sets

Definition

A sequence is called a k-automatic sequence if it is produced by a
k-automaton. A set is called k-automatic if its indicator function is
an automatic sequence.

Example (Thue-Morse sequence)

astart b

0 0

1

1

(a(n))n≥0 = 01101001100101101001011001101001 . . .

A = {1, 2, 4, 7, 8, 11, 13, 14, 16, . . .}
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Automatic Sets

Properties

Relatively easy to define (structured).

The subword complexity pn of an automatic sequence is (at
most) linear.

Every ultimately periodic sequence is k-automatic for any
k ≥ 2.

Complex enough that interesting phenomena appear.
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Automatic Sets

(Simple) Examples

Thue-Morse: |A ∩ [N]| ∼ N
2

= Θ(N)

.

astart b

0 0

1

1

Missing digits: |A ∩ [N]| = Θ(N log(3)/ log(4)).

astart b

0,1,3 0,1,2,3

2

Powers of k : |A ∩ [N]| = Θ(log(N)).

astart b c

0 0

1 1

0,1
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Automatic Sets

Growth of automatic sets

We distinguish three different growth types:

Dense automatic sets: |A ∩ [N]| = Θ(N)

Sparse automatic sets: there exist 0 < α < 1, r ∈ N s.t.
|A ∩ [N]| = Θ(Nα logr (N))

Arid automatic sets: there exists r ∈ N s.t.
|A ∩ [N]| = Θ(logr (N)).
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Intersections of automatic sets

Being automatic in different bases

Question

Can a sequence be automatic in multiple bases?

Lemma

Let k , n ∈ N. A sequence is k-automatic if and only if it is
kn-automatic.

Theorem (Cobham - 1969)

If a sequence (a(n))n≥0 is both k and l automatic, where
log(k)/ log(l) /∈ Q. Then (a(n))n≥0 is eventually periodic.
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Clemens Müllner Beyond Cobham’s Theorem 24. 06. 2025



Intersections of automatic sets

Naive hope for automatic sets

We model an automatic set A by a pseudorandom set where n is
chosen with probability |A∩[n]|

n
.

If A and B are automatic sets that are “independent”, then one
could expect:

|(A ∩ B) ∩ [n]|
n

≈ |A ∩ [n]|
n

· |B ∩ [n]|
n

.

Counter example

A = 3N,B = {n : s10(n) ≡ 1 mod 3} = 3N+1.
A ∩ B = ∅.

We need to capture periodic biases!

Clemens Müllner Beyond Cobham’s Theorem 24. 06. 2025



Intersections of automatic sets

Naive hope for automatic sets

We model an automatic set A by a pseudorandom set where n is
chosen with probability |A∩[n]|

n
.

If A and B are automatic sets that are “independent”, then one
could expect:

|(A ∩ B) ∩ [n]|
n

≈ |A ∩ [n]|
n

· |B ∩ [n]|
n

.

Counter example

A = 3N,B = {n : s10(n) ≡ 1 mod 3} = 3N+1.
A ∩ B = ∅.

We need to capture periodic biases!
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Intersections of automatic sets

Heuristics for primes

PNT: The number of primes ≤ x is asymptotically equal to x
ln(x)

.

Cramér’s model

One can model the prime numbers as a pseudorandom set P ′ where
n is chosen with probability 1

ln(n)
.

Refined Cramér’s model

Obviously no prime number (except 2) is even.
We define P ′2 where each odd integer n is chosen with probability
2

ln(n)
and each even n with probability 0.

We can do the same for all primes ≤ w to obtain P ′w .

The refined Cramér’s model also captures periodic biases up to w .
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Intersections of automatic sets

Conjectures for automatic sets

Conjecture

Unless there is an (obvious) periodic bias, we expect that

|(A ∩ B) ∩ [N]|
N

≈ |A ∩ [N]|
N

· |B ∩ [N]|
N

.

If there is no periodic bias we expect for |(A ∩ B) ∩ [N]|:

B
A

dense sparse (Nα+o(1)) arid (log(N)r )

dense Θ(N) Θ(Nα) Θ(log(N)r )
sparse (Nβ+o(1)) — Θ(Nmax(0,α+β−1)+o(1)) O(1)

arid (log(N)s) — — O(1)
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Background

Gelfond Problem(s)

1. Gelfond Problem (Kim; 1999)

It would be interesting to prove that for coprime bases k , l ≥ 2, and
integers m1,m2 such that gcd(m1, k − 1) = gcd(m2, l − 1) = 1 and
r , s ∈ Z the following holds. There exists some λ > 0 such that

#{n ≤ N : sk(n) ≡ r mod m1, sl(n) ≡ s mod m2}

=
N

m1m2
+ O(N1−λ).

A = {n : sk(n) ≡ r mod m1}, |A ∩ [N]| ∼ N

m1

B = {n : sl(n) ≡ s mod m2}, |B ∩ [N]| ∼ N

m2
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Background

Erdös conjecture

Conjecture (Erdös; 1979)

The base 3 expansion of every sufficiently large power of 2 contains
the digit 2.

A = {2n : n ∈ N},
B = {n : n has not digit 2 in base 3}.

A is arid, B is sparse. ⇒ A ∩ B is expected to be finite.
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Background

Furstenberg’s dimension conjecture

Conjecture (Furstenberg; 1969)

Let k and l be multiplicatively independent natural numbers, and let
x ∈ [0, 1) be an irrational real number. Then

dimHOk(x) + dimHOl(x) ≥ 1.

As observed by Furstenberg, his conjecture implies that any finite
block of digits occurs in the decimal expansion of 2n, as soon as n is
large enough.
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Background

Furstenberg’s dimension conjecture

Furstenbergs dimension conjecture inspired people to look into
applications for sets of integers.

Theorem (Glasscock, Moreira, Richter; 2025)

Let A be a set with missing digits in base k s.t. |A ∩ [N]| = Θ(Nα)
and B be a set with missing digits in base l s.t. |B ∩ [N]| = Θ(Nβ),
where k , l are multiplicatively independent. Then

|A ∩ B ∩ [N]| � Nmax(0,α+β−1)+o(1).

Expected upper bound for the intersection of sparse automatic sets.
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Decomposition of automatic sequences

Arithmetic regularity lemma for (dense) automatic

sequences

Theorem (Byszewski, Konieczny, M.; 2023)

Let a : N→ C be a primitive k-automatic sequence. Then it has a
decomposition as a = astr + auni , where

astr is a structured part of a, i.e. it can be very well
approximated by a periodic sequence.

auni is uniform in the sense that for each d ≥ 2 there exists
κ > 0 such that ||auni ||Ud [N] � N−κ.

We expect auni to only behave like random noise that cancels out!
Remark: We can also assume that astr and auni satisfy a carry
property if we allow them to be matrix-valued.
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Decomposition of automatic sequences

Structured part of an automatic sequence

Example:

astart b

c

ed

0

1
0

1

0

1
0

10,1

S0 = {a, b, c}, S1 = {d , e, c}

u(n) a e c b b c c d c d b c b c
S(n) S0 S1 S0 S0 S0 S1 S0 S1 S0 S1 S0 S0 S0 S1
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Decomposition of automatic sequences

General philosophy

The sequence S(n) gives a “coarse picture”, which is highly
structured, i.e. S(n) is “almost periodic”.

Which element from S(n) is chosen for u(n) behaves
“randomly”.
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Clemens Müllner Beyond Cobham’s Theorem 24. 06. 2025



Decomposition of automatic sequences

Addendum

Theorem (Shubin, M.; in preparation)

For pairwise coprime q1, . . . , qm and Ai being a qi -automatic set, we
have

|P ∩ A1 ∩ . . . ∩ Am ∩ [N]| =
∑
p≤N

1A1,str (p) · · · 1Am,str (p).

For Ai being sum of digits modulo mi , we have 1Ai ,str is periodic,
which recovers the presented theorem.
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Decomposition of automatic sequences

Structure of sparse automatic sequences

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse automatic set with
|A ∩ [N]| = Θ(Nα logr (N)).Then there exists a decomposition

1A = 1A,str + 1A,uni

where we have

sup
θ∈R

∣∣∣∣∣∑
n≤N

1A,uni(n)e(θn)

∣∣∣∣∣ = o(Nα logr (N)),

and 1A,str is “structured”.
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Decomposition of automatic sequences

Example

Thue-Morse and “no block 11”.

astart b

cd

0

1

0

0
1

0

{a, c}/1
2start {b, d}/1

2

0
1

0
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New results

Our results (Overview)

B
A

dense sparse (Nα+o(1)) arid (log(N)r )

dense 33 3 7

sparse (Nβ+o(1)) — � ∼
arid (log(N)s) — — 33

Remark: These results can be used to give a new (and very long)
proof of Cobham’s Theorem.
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New results

New results (dense-dense)

Theorem (Adamczewski, Konieczny, M.; in preparation)

Let A be a dense k-automatic set and let B be a dense l-automtic
set, where k and l are multiplicatively independent.
Then there exists ε > 0 such that

|(A ∩ B) ∩ [N]| =
∑
n≤N

1str ,A(n) · 1str ,B(n) + O(N1−ε).

Corollary

The first Gelfond Problem is also true for multiplicatively
independent k and l (and not only for coprime k , l).

Methods: Carry property + Fourier estimates.
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New results

New results (dense-sparse)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a dense k-automatic set and let B be a sparse l-automtic
set with |B ∩ [N]| = Θ (Nα logr N), where k and l are coprime.
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∑
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New results

New results (dense-sparse)

Alternative Formulation (Periodic Bias)

If |(A ∩ B) ∩ [N]| = o(Nα logr N) then there is a periodic bias:
There exists a periodic set P such that

|(A ∩ (N \P)) ∩ [N]| = o(N), |(B ∩ P) ∩ [N]| = o(Nα logr N).

Method: Working directly with the structure of automata and
explicitly constructing elements.
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New results

New results (sparse-sparse)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with |A ∩ [N]| = Nα+o(1) and let
B be a sparse l-automtic set with |B ∩ [N]| = Nβ+o(1), where k and
l are multiplicatively independent. Then

|(A ∩ B) ∩ [N]| ≤ Nmax(α+β−1,0)+o(1).

This is basically the expected upper bound (for the pseudorandom
independent model).
The proof relies heavily on the result by Glasscock, Moreira, Richter
which in turn utilizes recent progress by Shmerkin and Wu on
Furstenberg’s conjecture .
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New results

New results (sparse-arid)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with |A ∩ [N]| = Nα+o(1) and let
B be an arid l -automtic set with |B ∩ [N]| = Θ(logr (N)), where k
and l are multiplicatively independent. Then there exists η > 0 such
that

|(A ∩ B) ∩ [N]| ≤ logr−η(N).
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New results

New results (arid-arid)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be an arid k-automatic set with |A ∩ [N]| = Θ(logr (N)) and
let B be an arid l-automtic set with |B ∩ [N]| = logs(N), where k
and l are multiplicatively independent.
Then their intersection is finite and there exists an explicitly
computable N0 such that A ∩ B ⊂ [N0].

Method: We follow a strategy developed by Stewart that utilizes
Baker’s theorem on linear forms of logarithms.
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New results

Conclusion

Automatic sets give a very nice and natural framework for
many problems related to digits.

We expect automatic sequences in multiplicatively independent
basis to behave independently (up to periodic bias).

To get a good intuition for concrete examples, it should be
sufficient to look at the structured part.

Thank you!
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New results

Structured part of sk(n) mod m

a(n) =

{
1 s3(n) ≡ 0 mod 4

0 otherwise
astr (n) =

{
1
2

n ≡ 0 mod 2

0 otherwise

astart b

cd

0

1

2

0

1
2

0

1

2

0

1
2

{a, c}/0.5start

{b, d}/0

0,2

1

0,2

1

Lemma (Adamczewski, Konieczny, M; in preparation)

If a(n) = 1 iff sk(n) ≡ r mod m.

Then astr (n) = gcd(m,k−1)
m

iff n ≡ r mod gcd(m, k − 1).
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