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Automatic Sets

Deterministic Finite Automata

Definition (Automaton - DFA)

A=(QE=A0,...,k—1},6,q0,7)
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Automatic Sets

Deterministic Finite Automata

Definition (Automaton - DFA)

A=(QE=A0,...,k—1},6,q0,7)

Example (Thue-Morse sequence)
0 0
1

(o0} Yon)

1
Input: 10110. Output 1.
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Automatic Sets

Automatic sequences/sets

A sequence is called a k-automatic sequence if it is produced by a
k-automaton.
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Automatic Sets
Automatic sequences/sets

Definition
A sequence is called a k-automatic sequence if it is produced by a
k-automaton. A set is called k-automatic if its indicator function is

an automatic sequence.
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Automatic Sets
Automatic sequences/sets

Definition
A sequence is called a k-automatic sequence if it is produced by a
k-automaton. A set is called k-automatic if its indicator function is

an automatic sequence.

Example (Thue-Morse sequence)
0 0
1
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Automatic Sets
Automatic sequences/sets

Definition
A sequence is called a k-automatic sequence if it is produced by a
k-automaton. A set is called k-automatic if its indicator function is

an automatic sequence.

Example (Thue-Morse sequence)
0 0
1

start —

1

(a(n))n=0 = 01101001100101101001011001101001 . .
A={1,2,4,7,8,11,13,14,16,...}

Beyond Cobham's Theorem
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Automatic Sets

Properties

@ Relatively easy to define (structured).
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Automatic Sets
Properties

@ Relatively easy to define (structured).

@ The subword complexity p, of an automatic sequence is (at
most) linear.
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Automatic Sets
Properties

@ Relatively easy to define (structured).

@ The subword complexity p, of an automatic sequence is (at
most) linear.

o Every ultimately periodic sequence is k-automatic for any
k> 2.
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Automatic Sets
Properties

@ Relatively easy to define (structured).

@ The subword complexity p, of an automatic sequence is (at
most) linear.

o Every ultimately periodic sequence is k-automatic for any
k> 2.

@ Complex enough that interesting phenomena appear.
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Automatic Sets

(Simple) Examples

o Thue-Morse: [AN[N]| ~ & = ©(N)
0 0

1
start —
1
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Automatic Sets

(Simple) Examples

o Thue-Morse: [AN[N]| ~ & = ©(N)
0 0

1
start —
1

o Missing digits: |A N [N]| = ©(N'e(3)/1og(4)),
0,13 0123

2
start —> @
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Automatic Sets

(Simple) Examples

o Thue-Morse: [AN[N]| ~ & = ©(N)
0 0

1
start —
1

o Missing digits: |A N [N]| = ©(N'e(3)/1og(4)),
0,13 0123

2
start —> @

e Powers of k: |AN [N]| = O(log(N)).

0 0 0,1

R ORONO
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Automatic Sets
Growth of automatic sets

We distinguish three different growth types:
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Growth of automatic sets

We distinguish three different growth types:
@ Dense automatic sets: |[AN [N]| = ©(N)
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Automatic Sets
Growth of automatic sets

We distinguish three different growth types:
@ Dense automatic sets: |[AN [N]| = ©(N)

@ Sparse automatic sets: there exist 0 < o < 1,r € N s.t.
[AN[N]| = ©(N* log"(N))
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Automatic Sets
Growth of automatic sets

We distinguish three different growth types:
@ Dense automatic sets: |[AN [N]| = ©(N)
@ Sparse automatic sets: there exist 0 < o < 1,r € N s.t.
|AN[N]| = ©(N*log"(N))
@ Arid automatic sets: there exists r € N s.t.
[AN[N]| = ©(log"(N)).
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Intersections of automatic sets
Being automatic in different bases
Can a sequence be automatic in multiple bases?
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Intersections of automatic sets
Being automatic in different bases
Can a sequence be automatic in multiple bases?

Let k, n € N. A sequence is k-automatic if and only if it is
k"-automatic.
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Intersections of automatic sets

Being automatic in different bases

Can a sequence be automatic in multiple bases?

Let k, n € N. A sequence is k-automatic if and only if it is
k"-automatic.

Theorem (Cobham - 1969)

If a sequence (a(n)),>o is both k and / automatic, where
log(k)/ log(l) ¢ Q. Then (a(n)),>o is eventually periodic.

Clemens Miillner Beyond Cobham's Theorem 24. 06. 2025



Intersections of automatic sets

Naive hope for automatic sets

We model an automatic set A by a pseudorandom set where n is
chosen with probability 'Am["“
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Intersections of automatic sets

Naive hope for automatic sets

We model an automatic set A by a pseudorandom set where n is
chosen with probability 'Am["“

If A and B are automatic sets that are “independent”, then one
could expect:

((AnB)N[nll  [AN[A]]  [BO[n]]

n n n
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Intersections of automatic sets

Naive hope for automatic sets

We model an automatic set A by a pseudorandom set where n is
chosen with probability 'Am["“

If A and B are automatic sets that are “independent”, then one
could expect:

((AnB)N[nll  [AN[A]]  [BO[n]]

n n n

Counter example

A=3N,B = {n:s;p(n) =1mod3} =3N+1.
ANB =0.
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Intersections of automatic sets

Naive hope for automatic sets

We model an automatic set A by a pseudorandom set where n is
chosen with probability 'Am["“

If A and B are automatic sets that are “independent”, then one
could expect:

((AnB)N[nll  [AN[A]]  [BO[n]]

n n n

Counter example

A=3N,B = {n:s;p(n) =1mod3} =3N+1.
ANB =0.

We need to capture periodic biases!
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Intersections of automatic sets
Heuristics for primes

X

PNT: The number of primes < x is asymptotically equal to ok

Cramér’'s model

One can model the prime numbers as a pseudorandom set P’ where
n is chosen with probability ﬁ
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Intersections of automatic sets
Heuristics for primes

X

PNT: The number of primes < x is asymptotically equal to HOR

Cramér’'s model

One can model the prime numbers as a pseudorandom set P’ where
n is chosen with probability ﬁ

Refined Cramér's model

Obviously no prime number (except 2) is even.

We define P} where each odd integer n is chosen with probability
ﬁ and each even n with probability 0.
We can do the same for all primes < w to obtain P,.

The refined Cramér’'s model also captures periodic biases up to w.
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Intersections of automatic sets
Conjectures for automatic sets

Unless there is an (obvious) periodic bias, we expect that

((AnB)n [N _ AN [BOIN]
N N N
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Intersections of automatic sets
Conjectures for automatic sets

Unless there is an (obvious) periodic bias, we expect that

((AnB)n [N _ AN [BOIN]
N N N

If there is no periodic bias we expect for |(AN B) N [N]|:

B A dense sparse (NeFo(1)) arid (log(N)")

dense O(N) O(N®) O(log(N)")
sparse (Nﬁ+o(1)) _ e(Nmax(O,aJrﬂfl)Jro(l)) O(l)
arid (log(N)*) — — 0O(1)
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Background

Gelfond Problem(s)

1. Gelfond Problem (Kim; 1999)

It would be interesting to prove that for coprime bases k,/ > 2, and
integers mq, my such that ged(my, k — 1) = ged(my, / — 1) =1 and
r,s € 7 the following holds.
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Background

Gelfond Problem(s)

1. Gelfond Problem (Kim; 1999)

It would be interesting to prove that for coprime bases k,/ > 2, and
integers mq, my such that ged(my, k — 1) = ged(my, / — 1) =1 and
r,s € 7 the following holds. There exists some A > 0 such that

#{n < N : si(n) = r mod my,s(n) =s mod my}

_ N + O(N'™).

mymy
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Background

Gelfond Problem(s)

1. Gelfond Problem (Kim; 1999)

It would be interesting to prove that for coprime bases k,/ > 2, and
integers mq, my such that ged(my, k — 1) = ged(my, / — 1) =1 and
r,s € 7 the following holds. There exists some A > 0 such that

#{n < N : si(n) = r mod my,s(n) =s mod my}

N
= + O(N*™).
mymoy )
N
A= {n:s(n)=rmod m}, |AN[N]| ~ o
1
N
B ={n:s/(n)=smod m}, |BO[N]|~F
2
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Background
Erdos conjecture

Conjecture (Erdds; 1979)

The base 3 expansion of every sufficiently large power of 2 contains
the digit 2.
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Background
Erdos conjecture

Conjecture (Erdds; 1979)

The base 3 expansion of every sufficiently large power of 2 contains
the digit 2.

A={2":ne N},
B = {n: n has not digit 2 in base 3}.
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Background
Erdos conjecture

Conjecture (Erdds; 1979)

The base 3 expansion of every sufficiently large power of 2 contains
the digit 2.

A={2":ne N},
B = {n: n has not digit 2 in base 3}.

Ais arid, B is sparse. = AN B is expected to be finite.
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Background

Furstenberg’'s dimension conjecture

Conjecture (Furstenberg; 1969)

Let k and / be multiplicatively independent natural numbers, and let
x € [0,1) be an irrational real number. Then

d/mH(’)k( )—|— d/mH(’)/( )
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Background

Furstenberg’'s dimension conjecture

Conjecture (Furstenberg; 1969)

Let k and / be multiplicatively independent natural numbers, and let
x € [0,1) be an irrational real number. Then

d/mH(’)k( )—|— d/mH(’)/( )

As observed by Furstenberg, his conjecture implies that any finite
block of digits occurs in the decimal expansion of 27, as soon as n is
large enough.
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Background
Furstenberg’'s dimension conjecture

Furstenbergs dimension conjecture inspired people to look into
applications for sets of integers.
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Background

Furstenberg’'s dimension conjecture

Furstenbergs dimension conjecture inspired people to look into
applications for sets of integers.

Theorem (Glasscock, Moreira, Richter; 2025)

Let A be a set with missing digits in base k s.t. |[AN [N]| = ©(N%)
and B be a set with missing digits in base / s.t. |[B N [N]| = ©(N?),
where k, | are multiplicatively independent.
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Background

Furstenberg’'s dimension conjecture

Furstenbergs dimension conjecture inspired people to look into
applications for sets of integers.

Theorem (Glasscock, Moreira, Richter; 2025)

Let A be a set with missing digits in base k s.t. |[AN [N]| = ©(N%)
and B be a set with missing digits in base / s.t. |[B N [N]| = ©(N?),
where k, | are multiplicatively independent. Then

|A N BN [N]| < Nmax(O,a—i—ﬁ—l)-l—o(l)‘
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Background

Furstenberg’'s dimension conjecture

Furstenbergs dimension conjecture inspired people to look into
applications for sets of integers.

Theorem (Glasscock, Moreira, Richter; 2025)

Let A be a set with missing digits in base k s.t. |[AN [N]| = ©(N*)
and B be a set with missing digits in base / s.t. |[B N [N]| = ©(N?),
where k, | are multiplicatively independent. Then

|A N BN [N” < Nmax(O,a—i—ﬁ—l)—!—o(l)‘

v

Expected upper bound for the intersection of sparse automatic sets.
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Decomposition of automatic sequences

Arithmetic regularity lemma for (dense) automatic
sequences

Theorem (Byszewski, Konieczny, M.; 2023)

Let a: N — C be a primitive k-automatic sequence. Then it has a
decomposition as a = as, + auni, Where

@ a., is a structured part of a, i.e. it can be very well
approximated by a periodic sequence.
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Decomposition of automatic sequences

Arithmetic regularity lemma for (dense) automatic
sequences

Theorem (Byszewski, Konieczny, M.; 2023)

Let a: N — C be a primitive k-automatic sequence. Then it has a
decomposition as a = as, + auni, Where

@ a., is a structured part of a, i.e. it can be very well
approximated by a periodic sequence.

@ a,n; is uniform in the sense that for each d > 2 there exists
Kk > 0 such that ||ayn|| g < N7
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Decomposition of automatic sequences

Arithmetic regularity lemma for (dense) automatic
sequences

Theorem (Byszewski, Konieczny, M.; 2023)

Let a: N — C be a primitive k-automatic sequence. Then it has a
decomposition as a = as, + auni, Where

@ a., is a structured part of a, i.e. it can be very well
approximated by a periodic sequence.

@ a,n; is uniform in the sense that for each d > 2 there exists
Kk > 0 such that ||ayn|| g < N7

We expect a,,; to only behave like random noise that cancels out!
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Decomposition of automatic sequences

Arithmetic regularity lemma for (dense) automatic
sequences

Theorem (Byszewski, Konieczny, M.; 2023)

Let a: N — C be a primitive k-automatic sequence. Then it has a
decomposition as a = as, + auni, Where

@ a., is a structured part of a, i.e. it can be very well
approximated by a periodic sequence.

@ a,n; is uniform in the sense that for each d > 2 there exists
Kk > 0 such that ||ayn|| g < N7

We expect a,,; to only behave like random noise that cancels out!
Remark: We can also assume that ag; and a,,; satisfy a carry
property if we allow them to be matrix-valued.

Clemens Miillner Beyond Cobham's Theorem 24. 06. 2025



Decomposition of automatic sequences

Structured part of an automatic sequence
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Decomposition of automatic sequences

Structured part of an automatic sequence

So = {a, b, c}, Sy ={d,e c}
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Decomposition of automatic sequences

Structured part of an automatic sequence

0
start H

So = {a, b, c}, Sy ={d,e c}
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Decomposition of automatic sequences

Structured part of an automatic sequence

0
start H

0,1 1

So = {a, b, c}, Sy ={d,e c}

uln)|a e ¢ b b c ¢ d c d b c b c
SN) [ S St S S S S1 S S S S S S S S
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Decomposition of automatic sequences

General philosophy

@ The sequence S(n) gives a “coarse picture”, which is highly
structured, i.e. S(n) is “almost periodic”.
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Decomposition of automatic sequences
General philosophy

@ The sequence S(n) gives a “coarse picture”, which is highly
structured, i.e. S(n) is “almost periodic”.

@ Which element from S(n) is chosen for u(n) behaves
“randomly” .
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Decomposition of automatic sequences

Addendum

Theorem (Shubin, M.; in preparation)

For pairwise coprime qi, ..., gm and A; being a g;-automatic set, we
have

PNAN...OAN[N] =) 1a.(p) - - Lay.cer(p)-

p<N
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Decomposition of automatic sequences

Addendum

Theorem (Shubin, M.; in preparation)

For pairwise coprime qi, ..., gm and A; being a g;-automatic set, we
have

PNAN...OAN[N] =) 1a.(p) - - Lay.cer(p)-

p<N

For A; being sum of digits modulo m;, we have 14,  is periodic,
which recovers the presented theorem.
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Decomposition of automatic sequences

Structure of sparse automatic sequences

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse automatic set with
|AN [N]| = ©(N*log"(N)).
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Decomposition of automatic sequences

Structure of sparse automatic sequences

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse automatic set with
|AN[N]| = ©(N*log"(N)).Then there exists a decomposition

]-A = ]-A,str + ]-A,uni

where we have

sup
R

Z La uni(n)e(@n)

n<N

= o(N*log"(N)),

and 14, is “structured”.
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Decomposition of automatic sequences

Example

Thue-Morse and “no block 11".
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Decomposition of automatic sequences

Example

Thue-Morse and “no block 11".

start —

0

start —

:
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New results

Our results (Overview)

B A dense | sparse (N°+°M) | arid (log(N)")
dense 4 v/ X
sparse (NAT°) I — < ~
arid (log(N)*) — — v/
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New results

Our results (Overview)

B A dense | sparse (N°+°M) | arid (log(N)")
dense 4 v/ X
sparse (NAT°) I — < ~
arid (log(N)*) — — v/

Remark: These results can be used to give a new (and very long)
proof of Cobham’s Theorem.
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New results

New results (dense-dense)

Theorem (Adamczewski, Konieczny, M.; in preparation)

Let A be a dense k-automatic set and let B be a dense /-automtic
set, where k and / are multiplicatively independent.
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New results

New results (dense-dense)

Theorem (Adamczewski, Konieczny, M.; in preparation)

Let A be a dense k-automatic set and let B be a dense /-automtic
set, where k and / are multiplicatively independent.
Then there exists € > 0 such that

(AN B)N[N]| =) Lara(n) - Lars(n) + O(N™).

n<N
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New results

New results (dense-dense)

Theorem (Adamczewski, Konieczny, M.; in preparation)

Let A be a dense k-automatic set and let B be a dense /-automtic
set, where k and / are multiplicatively independent.
Then there exists € > 0 such that

(AN B)N[N]| =) Lara(n) - Lars(n) + O(N™).

n<N

The first Gelfond Problem is also true for multiplicatively
independent k and / (and not only for coprime k, /).
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New results

New results (dense-dense)

Theorem (Adamczewski, Konieczny, M.; in preparation)

Let A be a dense k-automatic set and let B be a dense /-automtic
set, where k and / are multiplicatively independent.
Then there exists € > 0 such that

(AN B)N[N]| =) Lara(n) - Lars(n) + O(N™).

n<N

The first Gelfond Problem is also true for multiplicatively
independent k and / (and not only for coprime k, /).

Methods: Carry property + Fourier estimates.
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New results

New results (dense-sparse)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a dense k-automatic set and let B be a sparse /-automtic
set with |[B N [N]| = © (N*log" N), where k and / are coprime.
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New results

New results (dense-sparse)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a dense k-automatic set and let B be a sparse /-automtic
set with |[B N [N]| = © (N*log" N), where k and / are coprime.

(AN B) N [N]| = O(N° log" N)
< Z 1str,A(n) : 1str,B(n) = e(Na Iogr N)

n<N
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New results

New results (dense-sparse)

Alternative Formulation (Periodic Bias)

If (AN B) N [N]| = o(N*log" N) then there is a periodic bias:
There exists a periodic set P such that

(AN (N\P)) N [N]| = o(N), (BN P)N[N]| = o(N* log" N).
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New results

New results (dense-sparse)

Alternative Formulation (Periodic Bias)

If (AN B) N [N]| = o(N*log" N) then there is a periodic bias:
There exists a periodic set P such that

(AN (N\P)) N [N]| = o(N), (BN P)N[N]| = o(N* log" N).

Method: Working directly with the structure of automata and
explicitly constructing elements.
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New results

New results (sparse-sparse)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with AN [N]| = N*F°(1) and let
B be a sparse l-automtic set with |B N [N]| = N®+°() where k and
| are multiplicatively independent.
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New results

New results (sparse-sparse)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with AN [N]| = N*F°(1) and let
B be a sparse l-automtic set with |B N [N]| = N®+°() where k and
I are multiplicatively independent. Then

|(A N B) N [N]| < Nmax(a—l—,@—l,o)—l—o(l)‘
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New results

New results (sparse-sparse)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with AN [N]| = N*F°(1) and let
B be a sparse l-automtic set with |B N [N]| = N®+°() where k and
I are multiplicatively independent. Then

|(A N B) N [N]| < Nmax(a—l—,@—l,o)—l—o(l)‘

This is basically the expected upper bound (for the pseudorandom
independent model).
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New results

New results (sparse-sparse)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with |A N [N]| = N+°() and let
B be a sparse [-automtic set with [B N [N]| = NA+°() where k and
I are multiplicatively independent. Then

|(A N B) N [N” < Nmax(a—l—,@—l,o)—l—o(l)‘

This is basically the expected upper bound (for the pseudorandom
independent model).

The proof relies heavily on the result by Glasscock, Moreira, Richter
which in turn utilizes recent progress by Shmerkin and Wu on
Furstenberg's conjecture .
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New results

New results (sparse-arid)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with |A N [N]| = N*F°(1) and let
B be an arid /-automtic set with |[B N [N]| = ©(log"(N)), where k
and / are multiplicatively independent.

Clemens Miillner Beyond Cobham's Theorem 24. 06. 2025



New results

New results (sparse-arid)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be a sparse k-automatic set with |A N [N]| = N*F°(1) and let
B be an arid /-automtic set with |[B N [N]| = ©(log"(N)), where k
and / are multiplicatively independent. Then there exists 1 > 0 such
that

(AN B) N [N]| < log™"(N).
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New results (arid-arid)

Theorem (Adamczewski, Konieczny, M; in preparation)

Let A be an arid k-automatic set with |[AN [N]| = ©(log"(N)) and
let B be an arid /-automtic set with |B N [N]| = log®(N), where k
and / are multiplicatively independent.

Then their intersection is finite and there exists an explicitly
computable Ny such that AN B C [Ng].

Method: We follow a strategy developed by Stewart that utilizes
Baker's theorem on linear forms of logarithms.
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New results
Conclusion

@ Automatic sets give a very nice and natural framework for
many problems related to digits.

@ We expect automatic sequences in multiplicatively independent
basis to behave independently (up to periodic bias).

@ To get a good intuition for concrete examples, it should be
sufficient to look at the structured part.

Thank you!
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Structured part of sx(n) mod m

()_{ s3(n) =0 mod 4 astr(n):{g nEOrhon

0 otherwise otherwise

Lemma (Adamczewski, Konieczny, M; in preparation)
If a(n) = 1 iff s,(n) = r mod m.
Then ag,(n) = M iff n = r mod ged(m, k — 1).
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