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Preface

This diploma thesis is highly related to Gelfond’s sum of digits problems, which he formulated in
his paper Sur les nombres qui ont des propriétés additives et multiplicatives données [I] in 1968.
Gelfond showed in his work that a generalized Thue-Morse sequence tq, = (s4(n) mod m),
is uniformly distributed along arithmetic progressions — provided that ged(¢,m —¢) = 1. In
his work, he also formulated three more problems, which are usually called Gelfond Problems.
These problems deal with uniform distribution of t,,, along special subsequences and similar
results. We cover the definitions and more details in Chapter

The first problem was proven by Besineau [2] and generalized by Kim [3] in 1999. The second
problem was solved by Mauduit and Rivat [4] in 2010.

We mainly consider the third problem which concerns the distribution along arbitrary integer
polynomials. Mauduit and Rivat were able to solve the third problem for quadratic polynomials
in 2009 [5]. Furthermore, there is a solution for prime numbers ¢ which are sufficiently large in
respect to the degree of P(z) by Drmota, Mauduit and Rivat [6]. The treatment of exponential
sums with Fourier-theoretic methods developed by Mauduit and Rivat was a breakthrough in
this field and will surely have a great impact on number theory.

The same method was used by Drmota, Mauduit and Rivat to show that (t272(n2)) is normal,

i.e. every subsequence of length k appears with asymptotic frequency 2.

neN

The main goal of this thesis is to generalize this result, i.e. we show that (tqm(nz)) is

normal — provided that ged(¢ — 1,m) = 1.

neN

The first chapter gives some more information about the sum-of-digits function as well as Gel-
fond’s Problems. Furthermore, an outline of the complete proof as well as a more detailed
description of the following chapters are covered.

The main contribution of this work is to find appropriate bounds for Fourier terms of form

k—1
1 . _
Gi(hd)=— D e<§ asa(u+ 0d +1ig) — hq A)

q 0<u<g =0

in this more general settingll] This is covered in Chapter
Chapter [3] provides the necessary auxiliary results needed for Chapter

Thereafter, we use the structure and ideas of [7] to deal with the occurring exponential sums.
This is done in Chapter

1We denote throughout this work the truncated sum of digits function in base g, i.e. the sum of the first A digits
of n in base g, by sx(n).
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1 Introduction

At the very beginning of this thesis we want to specify the used notations:

e We denote with N, P, Z, R and C the sets of natural numbers, prime numbers, integers, real
numbers and complex numbers respectively. We additionally use U for the set of complex
numbers with absolute value 1.

e We use the abbreviation log x for the natural logarithm of a positive real number zx.
e We denote by ged(m,n) the greatest common divisor of two integers m, n.

e As usual we denote for a real number x:
|z] =min{n € Z:n >z} and ||z|| = min{|z —n| : n € Z}.

Furthermore, we use x = y mod 1 for real numbers x,y iff xt + Z = y + Z.

o We write f(x) = O(g(x)) for (real- or complex- valued) functions f and g if there exists a
constant C' such that |f(x)| < C|g(x)| for all x. We may alternatively write f(x) < g(z).

e We will also use the abbreviation e(z) := exp(2miz) for a real number z.

From now on, ¢ will denote an arbitrary fixed integer > 2 throughout the entire work which will
be used as the base for our expansion of natural numbers.

It is well known that any non-negative integer n has a representation n = ijo g;(n)¢’ in base
q where the integers ¢;(n) satisfy 0 < e;(n) < ¢ —1 and €;(n) = 0 for almost all j > 0.

The sum of digits function in base q is defined by,
sq(n) == Z&?j(n).
Jj=20

Since we fix ¢ at the beginning of this thesis we will use the abbreviation s(n) = sq(n).

1.1 Gelfond’s Problems and their impact

We want to start this section by covering some aspects of the sum of digits function which
will lead us to Gelfond’s Problems. For further information on the sum of digits function see
for example [8, Ch.3] or [9]. A lot of connections between automatic sequences and Gelfond’s
Problems as well as recent developments are covered in [10].

The sum of digits function was studied from 1850 on and arises in solutions of various prob-
lems. At the beginning of the twentieth century the Norwegian mathematician Axel Thue asked
whether there is an infinite binary sequence which is cube free, i.e. no block of digits appears
consecutively three times. He was able to show that the sequence t = (s2(n) mod 2),¢cy solves



1 Introduction

this problem (see [II]], [I2]). This sequence has some important properties and arises in many
fields.

Morse for example rediscovered this sequence in 1921 when working in differential geometry. For
his work he needed to find an infinite sequence which is not periodic but every sub-sequence occurs
infinitely often and with bounded gaps. Therefore, he introduced the sequence t independently
and showed that it solves this problem (see [13] and [I4]). Hence this sequence is called the
Thue-Morse sequence.

A natural generalization of t is
tgm = (8q(n) mod m)pen.

The first distributional property of t4 »,, was found by Gelfond [I] who showed that — in case that
ged(g,m — 1) =1 —for every £ € [0,...,m — 1],

N 1—

{n < N :sq(an+b) =¢mod m}| = —+O(N"")

m

holds for some n > 0. However, this means exactly that linear sub-sequences of t, ,,, are uniformly

distributed on the values {0,1,...,m — 1}.

Gelfond also formulated three problems in this paper [I] which are usually called Gelfond
Problems. All of these problems cover some more distributional properties of t,,, and the
third one is still just partly proven.

1. If 1,92 > 2 are co-prime integers and ged(q1 — 1, m1) = ged(g2 — 1, mg) = 1 then

{n < N :s4,(n) = 1 mod my,sq,(n) = 2 mod ma}| = + O(N)
mims
for all ¢1,£5 and some 1 > 0.
2. If ¢ > 2 and ged(qg — 1,m) = 1 then
N
Hp < N :pePAsy(p) =L modm}| = 7T(m)+O(N1_77)

for all £ and some 7 > 0. Here 7(z) denotes the number of primes < z.

3. If ¢ > 2 and ged(q — 1,m) = 1 then for each integer polynomial P(x)
N 1—
{n < N :s4(P(n)) = ¢ mod m}| :E—'—O(N )

for all £ and some n > 0.

In 1972, Besineau was able to solve the first problem [2] and Kim was able to generalize this
result to g-additive functions (i.e. functions which fulfill f(ag® + b) = f(a) + f(b) for a > 1,
k> 1,0 < b < ¢" and was also able to formulate an explicit error term [3]. However it took
almost 40 years until the second and third problem were solved or came close to a solution. The
second problem was solved by Mauduit and Rivat in 2010 [4]. In 2009, the third problem was
also solved for quadratic polynomials by Mauduit and Rivat [5]. Additionally, there is a solution
by Drmota, Mauduit and Rivat [6] for prime numbers ¢ which are sufficiently large in respect
to the degree of P(x). The treatment of exponential sums with Fourier-theoretic methods that



1.2 Outline

has been developed by Mauduit and Rivat was a breakthrough in this field and will also be used
throughout this thesis.

We define for a sequence (a(n)),en the subword complexity
pa(n) :={b1,...,bp : AN e NAayy; =b; fori=1,...n}|.

It is well known that py,,, (n) is at most of linear order (O(n)). We expect for a (quasi-) random
sequence a(n) with values in {0, ..., m—1} that p,(n) = m™. Therefore, we see that the sequence
ty,m is not random at all. To introduce randomness one could take sub-sequences of the original
sequence without destroying the original densities.

There have been some recent results dealing with sub-sequences along |[n¢| which we will not
cover here. Instead we focus on the case of quadratic polynomials and especially P(z) = z2.
Drmota, Mauduit and Rivat recently proved that (t(n?)),cn is normal, i.e. every sub-sequence
of length k appears with asymptotic frequency 27% [7]. Their work has a huge impact on this
thesis and we will mainly follow their ideas.

1.2 Outline

The goal of this thesis is to give a proof of the following theorem.

Theorem 1.2.1. Let m € N with ged(q — 1,m) = 1. Then (t4m(n?))nen is normal i.e. every
sub-sequence of length k appears with asymptotic frequency q~*.

This is obviously a generalization of the result derived by Drmota, Mauduit and Rivat in [7].
Furthermore, implies that it is possible to generate non-periodic (pseudo-)random numbers
modulo m easily.

In order to prove our main result, we will work with exponential sums. Now we present here
the main theorem on exponential sums which we will prove throughout this thesis and show its
connection to Theorem

From now on we also fix an arbitrary m € N with ged(¢ —1,m) = 1.

Theorem 1.2.2. For any integer k > 1 and (ap,...,ap_1) € {%,...,%}k such that
(g, ... ap—1) #(0,...,0), there exists n > 0 such that

k—1
So = Z e (ez ags((n + 5)2)> < N (1.1)
=0

n<N

Lemma 1.2.3. Theorem implies Theorem [1.2.1)

Proof. Let (bo,...,bx_1) € {0,...,m —1}¥ be an arbitrary sequence of length k. We now count
the number of occurrences of this sequence in (tgm(n?))n<n. Assuming that (1.1) holds we
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obtain by using the well known identity — ZZL:_OI e(;0) = m for £ = 0 mod m and 0 otherwise —

{n < N : (tgm(n?), - tam((n+k—1)%) = (bo, ..., bp_1)}|

= Z l[tn2:bo} T l[t(n+k—1)2:bk—1]

n<N
k—1 m—1 ’
NI D EICCEVERNY
n<N (=0 a%:O

1 a6b0 + -+ O‘;C_lbkfl it 042
=— Z e(— - Ze Z o s((n +0)?)
(ot )E{0,.p—1}F n<N |\ =0~~~
=y

N _
:W+O(N1 77)

with n > 0 obtained in Theorem [1.2.2] To obtain the last equality we separate the term with
(ahy ... 00 _4) =0. O

Therefore, we concentrate on Theorem [1.2.2] The structure of the full proof of Theorem is
presented below.

In Chapter 2] we derive the main ingredients of the proof of Theorem which are upper
bounds on the Fourier terms

k—1
1 . _
Gi(hd)=— > e<za£sA(u+zd+u)—hq A),

q 0<u<g? =0

where I = (ig,...,i5k-1) € N* with some special properties defined later.

It was necessary to introduce a new approach to find these upper bounds in our more general
setting compared to [7] and we deal with them in Chapter [2l The main results of Chapter [2| are
Propositions and Proposition yields a bound on averages of Fourier transforms
and the proof is similar to the proof of the corresponding result in [[7]. Proposition yields
a uniform bound on Fourier transforms and is much harder to proof.

In Chapter [3| we derive some auxiliary results. Section is dedicated to Vaaler’s method and
its application in a multidimensional setting. In Section [3.2] we prove some results on Van-der-
Corput-like inequalities. These play an important role in Chapter 4] where they help us to use
Fourier analytic methods. We also mention one classic result on Gauss sums in Section as
well as a short section about sums of geometric series in Section [3.3] The last Section of
this chapter treats carry propagation. This section gives a quantitative statement that carry
propagation along several digits is rare.

In Chapter [d] we complete the proof for Theorem [I.2.2] We use Van-der-Corput-like inequalities
in order to reduce our problem to sums depending only on few digits of n?, (n+1)2,..., (n+k—1)2.
We are able to reduce these quadratic terms with linear terms, which allows a proper Fourier
analytic treatment. After the Fourier analysis, the remaining sum is split into two sums. The
first sum involves quadratic exponential sums. The result from Section allows us to find a
proper bound here.



1.2 Outline

The Fourier terms Gﬁ(h, d) appear in the second sum and Propositions |2.2.3| and |2.2.4| will
provide the necessary bounds.

For the proof of the main theorem we have to distinguish the cases K = ap+---+ax_1 =0 mod 1
and K # 0 mod 1. Sections and tackle one of these cases each. In Section we prove
that —if K =0 mod 1 - we deduce Theorem|[I.2.2]from Proposition[2.2.3] For K # 0, Section4.2]
shows that we can deduce Theorem from Proposition [2.2.4]






2 Generalization of Bounds on Fourier
Transforms

The goal of this Chapter is to prove Propositions and [2.2.4] To find the necessary bounds
we first need to state one important result on the norm of matrix products. Afterwards, we deal

with Fourier estimates and formulate Proposition and Proposition The following
Sections and give proofs of Proposition and Proposition respectively.

2.1 Norm of matrix products

In this section we find necessary conditions under which the product of matrices decreases ex-
ponentially with respect to the matrix row-sum norm.

Lemma 2.1.1. Let My, £ € N, be N x N-matrices with complex entries My ;, for 1 <i,j < N,
and absolute row sums

N
> Mgl <1 for L<i<N.
j=1

Furthermore, we assume that there exist integers mg > 1 and m; > 1 and constants cyp > 0 and
n > 0 such that

1. every product A = (AZ-J)( e{1,..,N}2 of mo consecutive matrices My has the property that,

Z?J)
N

|Ai1] >co or Z |A;. 5| <1 —n for every row i; (2.1)
j=1

2. every product B = (B; ;) jyeq1,...N}2 of m1 consecutive matrices My has the property

N

> Bl <11 (2.2)

Jj=1

Then there exist constants C > 0 and § > 0 such that

r+k—1

11 ™
l=r

uniformly for all ¥ > 0 and k > 0 (where ||-|| . denotes the matriz row-sum norm).

< Cq % (2.3)

o0



2 Generalization of Bounds on Fourier Transforms

Proof. 1t is sufficient to show that the product of mgy-+mq consecutive matrices M, has row-sum
norm < 1 — ncg. Indeed this implies

r+k—1 . () N
II M| <a —ncO)L”O*mlJ < L gromim
B — 1—=mnco
l=r 00
< 1 q_nizii OTVLOi"Ll
S 1z
nco
where (x) is obtained by differentiation. Thus we obtain 1} for C = 1_%760 and § = n}géz 7m0§£m1
Let A = (Aij)(ijef1,..ny2 denote the product of mg consecutive matrices My and B =
(Bj,k)(j,k:)e{l,...,N}? the product of the next m; consecutive matrices My. For any i € {1,..., N}

with |A; 1] > co, the i-th absolute row-sum of the product A - B is bounded by

Z ZAJB . <Z|A7:’Z|
k=1
N
= |Aia| Z | Bkl + Z [4i 1> |Bjkl
— j=2 k=1

<A1 (1 =1 +ZyAJ

< !Az',1|(1*77)+1* [ A1 =1—=nl4; 1Co.
For Z;VZI |4; ;| <1 —mn, it holds,
N | N
Z ZAi,j k <Z|A”|Z| ikl < 1=n
k=1 |j=1 j=1
Since ¢g < 1 we have 1 —n < 1 — ¢gn, which completes the proof of Lemma 2.1.1 O

2.2 Fourier estimates

In this section, we discuss some general properties of the occurring Fourier terms. We therefore
need some more definitions.

Definition 2.2.1. For (), u) € N2 with 0 < u < A, we define the truncated g-ary sum-of-digits
function sy and the two-fold restricted g-ary sum of digits function s, ) by

sa(n) = Y gi(n) and sua(n) = Y gi(n) =sx(n) —su(n).

0<j<A P<j<A

For any k € N, we denote by Zj the set of integer vectors I = (ig,...,ix_1) with i9 = 0 and
ig € {ig—1,7p—1 + 1} for 1 < ¢ <k — 1. This set Zj obviously consists of 2F=1 elements. For any
I €Ty, h€Zand (d,\) € N2, we define,

k—1
Gi(h,d) = i}\ Z e <Z agsy(u+0d +ip) — huq_>‘> , (2.4)

4 0<u<q? £=0



2.2 Fourier estimates

for fixed coefficients ap € {2,..., =1} This sum G,(.,d) can be seen as the discrete Fourier
transform of the function

k—1
U e (Zags,\(u—i—ﬁd—kig)) .

=0
Furthermore, we define the important parameter
K:=a0+ -+ ap_1.
We start by giving a recursion for the discrete Fourier transform terms Gﬁ(h, d) defined by (2.4)).

For this purpose, we define, for any (e,¢’) € {0,...,¢ — 1}? and I = (ig,i1,...,9x_1) € Zg, a
transformation on Zj by

o (1) = (Vg—i-és—l-s’J)
- q 0€{0,....k—1} '

If we define f1, = e (Zé:ol areo(le + i + 5’)) for (¢,¢') € {0,...,q — 1}* we immediately get
the following lemma:

Lemma 2.2.2. Let [ € T, h € Z,(d,\) € N? and € € {0,...,q — 1}. It holds
GL(h,qd + €) Z fLe ( ) G D, d). (2.5)
Proof. We evaluate G4 (h, qd + ¢):

k—1
Gh(h,qd +¢) = 5 Z e<Zags>\(u—|—€(qd+6)+ig)—huq_’\>
A

=0

L T (_h(@) o <_hi> I:l:[le(al sa(qu+e + 0(qd +€) +1p))

e'=00<u<gr-1 q q =0

RS . <_hu> . <_h€’>
qA - qA—l qA

O

As I € Tj, implies that T../(I) € Iy, it follows that the vector G (h,d) = (G4 (h,d))rez, can be
determined recursively.

The following propositions are crucial for our proof of the main Theorem [I.2.2]



2 Generalization of Bounds on Fourier Transforms

Proposition 2.2.3. If K =0 mod 1 and %)\ < XN < ), then there exists n > 0 such that for any
I eI,

v X lckmaf <o

0<d<g™

holds uniformly for all integers h.
Proposition 2.2.4. If K # 0 mod 1, then there exists n > 0 such that for any I € Ty,

|GA(h, d)| < 7" max | G5, (h, [d/q"])]
JEIy,
holds uniformly for all non-negative integers h,d and L.

We give proofs for Proposition 2.2.3] and [2.2.4] in the following sections.

2.3 Proof of Proposition 2.2.3]

This section is dedicated to the proof of Proposition|2.2.3] The idea is similar to the corresponding
result in [7].
Using Lemma [2.2.2] it is easy to establish a recursion for
/ 1 —
1,1 bi 7
oy (h) = Py Z G (h,d)GY (R, d).
0<d<g

where h € Z, (\,N') € N? and (I,I') € Z2. For \,\ > 1 we have

/ 1 (81 — &9 TEE DTee, (I’
@i’{\,(h) = 3 Z e< q)> f851 882 /\ i()\’) 12( )(h)

To find this recursion, one has to split up the sum over 0 < d < q)‘/ into the equivalence classes

modulo ¢. This identity gives rise to a vector recursion for Uy y/(h) = (@ﬁ:{\/,(h)>(l I')eIQ:
) K

W (h) = M(h/q") - Ur_y v -1(h)
where the 22(-=1) x 22(-=1_matrix M(3) = (M(LI/)’(J’J/)(ﬁ))((M,)7(J7J,))GI£XI% is independent of
A and ). By construction, all absolute row sums of M(f3) are equal to 1. '

It is useful to interpret these matrices as weighted directed graphs, where the vertices are the
pairs (I,I') € I,f and, starting from each vertex, there are ¢ directed edges to the vertices
(Teey(I), Te ey (I') (where (g,e1,22) € {0,...,q — 1}3) with corresponding weights

1 €1 — ¢
36‘(—( ! 2) )feal eeg”

q q*

Of course, products of m such matrices correspond to oriented paths of length m in these graphs,

which are weighted with the corresponding products. The entries at position ((I,1'),(J,J’)) of
such product matrices correspond to the sum of weights along paths from (I,1’) to (J, J').

10



2.3 Proof of Proposition m

In order to prove Proposition we will use Lemma [2.2 uniformly for h with M; = M(h/q").
Therefore, we need to check Conditions and . Indeed, since %/\ < )\ < )\, we have

Wy x(h) = M(h/q") - M(h/g* T,y o(h).

Lemma 2.3.1. The matrices M; defined above fulfill Condition (2.1) of Lemma |2.1.1]

Proof. We need to show that there exists an integer mg > 1 such that every product
A = (A(Lr),(2,0))(1.17),(J.07))eT2 < T2

of mg consecutive matrices M; = M(h/¢') verifies condition (1) of It is obvious that
(Too)™ (I) = 0 all I € T, for sufficiently large m/. In the graph interpretation this means that
for every vertex (I,I') there is a path of length m' from (I,1’) to (0,0). Let mg be sufficiently
large and fix a row indexed by (I,I’) in the matrix A. From the graph interpretation it is clear
that the entry A1 1) (0,0 is the sum of at least one term of absolute value g3 There are two
possible cases. If the absolute row sum is at most

<1—¢7"™ (2= [1+e((g = an,)])/2

with ng := min{n : ay, # 0}, then we are done. For ged(m, (¢ — 1)) = 1 it follows immediately
that e((q —1)ap,) # 1 and we are bounded by 1 —1n for n = ¢=3™0(2 — |1 +e((g — 1), )|)/2 > 0.

However, if the absolute row sum is strictly greater than
1—q7™(2 — |1+ e((g — a,)|)/2

it follows that |A(; /)00 = gm0 /2: The inequality |Ar,11),000) < q %m0 /2 implies that
A(1,1),(0,0) is the sum of at least two terms of absolute value gm0 Thus the absolute row sum
would be bounded by

! - — Iy 3 _ m _
Z |A(I,I’),(J,J’)| < §q 3m0—|—(1—2-q 3 0) :1_§q 3mo 1 _ g=3mo
(J,J")

which would contradict the assumption that the absolute row sum is strictly greater than
L—q ™2 |1 +e((qg — Dang)])/2 2 1 — ¢~
Thus we yield

|A(1,17),(0,0)| = co for co = g % /2.

Lemma 2.3.2. The matrices M; fulfill Condition (2.2)) of Lemma|2.1.1]

Proof. Thus we need to show that there exists an integer mq > 1 such that for every product
B = (B(1,1),(2,0)) ((1,1"),(J.7")) €2 x T2

of m; consecutive matrices M; = M(h/q!) the absolute rowsum of the first row is bounded by
1 —n. We concentrate on the entry Bg0),(0,0), that is, we consider all possible paths from (0,0)

11



2 Generalization of Bounds on Fourier Transforms

to (0,0) of length m; in the corresponding graph and show that a positive saving for the absolute
row sum is just due to the structure of this entry.

Since Tpo(0) = Ty(g—1)(0) = 0, we have at least two paths from (0,0) to (0,0) and it follows
that the entry B(g,0),(0,0) is certainly a sum of ko = ko(m1) > 2 terms of absolute value ¢~3™
(for every m; > 1). This means that there are ky > 2 paths from (0,0) to (0,0) of length m; in
the corresponding graph.

We now show that we need not worry about the factors of the form e (_(51;%%) since we can

construct a path using transformations (Tbe,, Tos,) which has exactly this weight.

At first, we construct a path from 0 to (0...01...1) =: [y € Zj with exactly ng + 1 zeroes.
Therefore, let (eq,...e,,) be the g-ary representation of ng, i.e. ng = Z?;O e;q’, with n; =
Llogq(k — 1)J For this section, we use the operation

7:{0,...,q—1}—={0,...,qg—1}
r—T:=q—1—=x.

Claim:

ngm o To,enlif1 o...0oTpe o0 Tl,%(o) =1 (2.6)
We define I); = i; for I = (io,...,ix—1) and find that Iy is uniquely characterized by

Lojng < Loj(no+1)> oj(k—1) = 1.
We now show this property for the left hand side of Equation . Therefore we define

ijm = (Tog;0...0 Tl,%(IO))U :

Lemma 2.3.3. For anyn € N

tngn = prasy <ngtin ond ip_1, <1+ =

holds.

Proof. We show this lemma by induction on n.

For n = 0 we find i,,,0 = VOHT_I_SOJ ying4+1,0 = {W] Since

go(no+q—1—eg) =coleo+q—1—ey) =q—1

we conclude that L%J = lng,0 < tng+1,0-

For n +— n + 1 we see that by applying Toe, ;7

ng$1J +q—1-— En+1
q

ng,nt+1 =

12



2.3 Proof of Proposition m

Since gg (L%J +qg—1-— en+1) =cp(ent1 +q¢—1—epnt1) = ¢ — 1 we conclude that L}Z}%J =

ing,n—&—l < Z.ng—i-l,n—l-L

Now we tackle the second part of this lemma. For n = 0 we find 10 = [WJ <
k—14q¢—1 k-1
=g <[5
For n +— n + 1 we find that by applying Toe, =
k—1 k—1
) ih—1n+q¢—1—ent1 1+ LQ"+1J tg-1 {q”“J
l—1,n+1 = < = |1+
q q q
k—1
i)
O

Starting from (0, 0) we iteratively apply the transformations (Tie;, Tieg), - - - and (Toey;, Toen;)
to reach (I1,11). Then we apply the transformation (7o, Tp(4—1)) to reach (0,11) and, finally,
(Tho, Too) to end at (0,0). This corresponds to some path in the graph interpretation from (0, 0)
to (0,0) of length m; = n; + 4 with weight

h T —3m
fafar o(g-1) € <(q_]‘)q)\7nl+1>' a6a ™
I —3m
= 0(1(171) € ((q - l)q)\—ml'f'l) q !
—1) Z —1) __ R g
—(q a)e | (g q)\—m1+1 q
_ _ -1 -1 h —3m1
= e(~(a = Do) ( (0= )y ) 7

Next, we construct some path with weight e((q — 1)h/¢* ™™ 1)g=3™  Starting from (0,0)
we first apply my — 2 times the transformations (Zoo,Zo0), then one time the transformation
(Too, Th(g—1)), and then one time the transformation (Too, Too)- This corresponds in the graph
interpretation to a path from (0,0) to (0,0) of length m; with weight

k—1
e (Z orlg 1>> e (<q - 1>qA_hW) I = o(K(g— 1)) e (<q - 1>qA_”ml+1) g
=0

h —3m
:e<(q_1)q)\—7n1+1>q 3 L,

We finally see that

h h
1B(0,0),(0,0) < (ko —2+ e ((q - 1)(])\—m1+1> te ((q - 1)q)\—m1+1) e(—(q—1)ap,)

= (ko — 2+ |1 +e((g = Dan) g™,

> q—3m1

13



2 Generalization of Bounds on Fourier Transforms

so that
Z 1B(0,0),(7.09] < (ko — 2+ |1+ e((q — Dane)[)a™™ + (1 — kog ™)
(J,J")
<1—(2—[1+e((q—D)am,))) - ¢ ™.

Therefore condition (2.2)) of Lemma is verified with n = (2—|1+e((g—1)ay,)|) ¢ >™. O

At the end of this section we want to recall the important steps of the proof of Proposition [2.2.3]
At first we find that

1
v > G (h ) = @) (h).

0<d<q

and found the recursion

Thus Proposition is equivalent to @i’;\,(h) < ¢ ™. Next we considered the vector

U n(h) = (‘Pi’g/(}#(u,)g%
Waw(h) = M(h/q*) - M(h/g* )85y o(h)

Then we defined M, := M(h/q") and showed that we can apply Lemma [2.1.1, Therefore we

know that — since ‘@ﬁ’f;\,ﬂ’o(h)‘ <1

LI . )
[ (W] < My - Myyiall < Cq N < OgON?

with C and § obtained by Lemma [2.1.1, Thus we know that @i’{\/,(h) < ¢ with n = §/2
uniformly for all h.

2.4 Proof of Proposition 2.2.4

This section deals with the proof of Proposition Compared to [7] we follow a completely
new idea. We have to take many sequences e into account whereas in [7] it was sufficient to find
one specific sequence.

We start by formulating Equation (2.5) as a matrix vector multiplication:

sttt = 10 (o (=55 ) s (1 7]

where for any € € {0,...,¢ — 1} and z € U we have
-1

M*(z) = (1[J:TEE/(I)]f.ela’zsl)(I,J)eI,f‘
/=0

(=}

L)

When iteratively applying this formula, we yield for m’ > 1,

G)\(h’ d) — i/M(ao(d),...,am/_ﬂd)) (e <_h;\>> G)\—m’ <h, L d/J> ,
qm q qm

14



2.4 Proof of Proposition m

where, for any d = (do, ..., dpy—1) € {0,1}", M9(z) denotes the product of the corresponding
matrices, i.e.

/1

).

Md(z) = Mdo(z) . Mdl(zq) e Mdm’—l(zqm

The matrix elements P, (I,.J) € Z? with

Md(z) = (PFJ(Z))(I,J)EI,fa

are polynomials in z and

i) = > IF
|24, = pagema 3 1P o
JETL;

holds.
Using Lemma Proposition follows from the fact that there exists an integer m’ > 1
such that for any d € {0,...,¢— 1} and I € Ty,

d m’
pria Z |Pry(2)] < q™, (2.7)
JEIy

i.e. the trivial bound qm, is not sharp.
Ezample. Consider the case ¢ = 3,1 = (0,...,0),d = (0,0). We want to compute P& (z).

Obviously Tp-(I) = I holds for € € {0,1,2}. Therefore, we know that P§,(2) = 0 for any J # 1.
It is easy to see that fi. = e(Ke). Therefore we find

Pa(2) = (1+ze(K) + 22e(2K)) - (1 + 23 e(K) + 25 e(2K)).
We want to show that the strict inequality 2.7 holds and find that

max »  |Pf(2)| = max |1 + ze(K) + 22 e(2K)| - |1 + 2° e(K) + 2 e(2K)|.
zelU JeT, zeU

We see that |1 + 2z e(K) + 22/ e(2K)| < |1 + 2 e(K)| + |22/ e(2K)| < 3 (with £ = 1,3) and for
equality to hold it is necessary that 2z = e(—K). Therefore e(—3K) = 2% = e(—K) which can
only hold for 2K = 0 mod 1. Since mK € Z, this is equivlaent to 2mK = 0 mod m and by
ged(qg — 1,m) = 1 it follows that mK = 0 mod m and, therefore, K = 0 mod 1 which yields a
contradiction. This example provides some crucial aspects for the proof of Proposition [2.2.4]

For d = (dy,...,dp—1) €1{0,...,q— l}m/, we interpret the coefficients of the matrix M9(2) as
encoding of paths of length m/.

For I € I,,e = (eq,...,ej—1) € {0,...,¢— 1} and i € {1,...,max{m/, j}}, we define
Tz‘de(I) =T, ye; 1 © 0 Tageo(I)
and associate to each of the ¢" paths from the vertex I to the vertices T9¢(I) the weight

de Tds () -1
de _rl eg TY (1) qlel m/—1 q™ e r_
w1, 2) = fiee? fale, % ”'fdm/, 2 m/—1

16m/—1
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2 Generalization of Bounds on Fourier Transforms

Therefore w9e(I, z) = v(I,d, e)zV( holds with

11

Tde(1 T (D) g ;

U(I’ d, e) = féoEo ) fd1le1( ! o fdm/_115m/_1 and N(e) - Z eiqz'
1=0

We need another short lemma:

Lemma 2.4.1. Let (Ip,I1) € Z} and j € {0,...,k — 1} such that Ly; —Iog; = 1 and € €
{0,...,q —1}. Then there exists exactly one € € {0,...,q — 1} such that

Teer(lo))j +1 =T (I1)
and for e" # ¢

Te”e’(IO)\j = Ts”s’ (II)|j-

Proof. We see by definition that T../(I); = V“%MJ Therefore, Lemma, [2.4.1| follows easily
from the fact that T.er(Io)); + 1 = Teer(I1)); holds iff Iy); + je + g =0 mod q. O

We denote by (e of) = (¢, fo,..., fn) for £ = (fo,..., fn) the usual concatenation.

We, furthermore, fix a vector d = (do, ..., dn—1) € {0,...,q¢— l}m/ anda d €{0,...,¢—1} and
define

d :=(60d)
I.:=T.(1)

It is easy to see that T'; = Ty; + 1 for any j € M.

We are now interested in paths starting at Iy, I; and meet along their ways 79¢(.) and end
at the same J € Z; — obviously they do not part again in any position. We say e corrects a
position j € M at step k > 0 if k£ is the minimal integer such that T,?e(IO)U = T3e(I);. We
say e corrects a position j € M if there exists k such that e corrects j at step k.

VA

Lemma 2.4.2. For any sequence e € {0,...,q — 1}m/ that corrects all positions,
vle) i=v(L,d, (00 e)u(l,d, (10€))™" = e(~K) [] elaya— 1)k;))
jeEM

holds, where k;j = kj(e) denotes the step at which position j is corrected and depends on e.

Proof. By the multiplicative structure of v(I,d’,€’), we can compute v(e) for each position
j €40,...,k — 1} independently:

For j & M, Tso(I); = T51(1); holds and, therefore, we know that eo(i; + jé + 1) = | €
{1,...,¢ — 1}. Thus we get a factor e((l — 1)a;) e(—lay) = e(—ay) for v(e) resulting from the
first step.

For the subsequent steps we know that Tidl(ooe) (I); = Tl.d/(loe) (I)); and, therefore, the two factors
always cancel each other out.

16



2.4 Proof of Proposition m

For j € M, we know that T50(])|j +1= T‘Sl(I)U and, therefore, €o(i; + jo + 1) = 0 and thus we
receive a factor e((q — 1)a;) for the first step.

By definition, position j is corrected at step k; and thus for i < k;

T +1 =T D).

(2 7
Therefore we yield

&0 (T;i_g“"e) (D) + jdio1 + e,-_l) —g¢—1and e (T;‘_§1°e) (1) + jdi1 + ei_1> ~0
and we receive a factor e((¢ — 1)cy;) for every step i < k;.

For 1 = k; we know that
eo(TE (D) + jdioy + 1) = 1€ {1,...,q— 1} and eo(TH ) (I); + jdiy +ei1) = 1 — 1.

Therefore we get a factor e(—a;).
As for j ¢ M, we do not get any contribution for ¢ > k;.
Altogether we find v(I,d’, (Ooe))v(I,d’, (1oe))™t = [Tj¢nre(=aj) [Tenr e(e((g—1)k;—1)). O

For any sequence e € {0,...,q — 1}’”/, correcting all positions is equivalent to

m

Therefore, we know by N(1oe) = N(0oe) +1
|2V Oy (1,d’, (00 e)) + 2N1®y(I,d', (10 e))| = v(e) + 2| < 2.

Equality obviously just holds for z = v(e) where v(e) only depends on the values of k;(e). Since
(0oe) and (10 e) encode paths from I to J, the summand mentioned above occurs in Pg(2)
and, by applying the triangle inequality, equality in (2.7)) can only hold for z = v(e).

The rest of this proof is devoted to finding pairs of sequences (e, €’) such that the values of the
corresponding k; do not "‘differ a lot"’. This gives rise to restrictions of the values «; and leads
to a restriction for the value z for which equality in Inequality can hold. To complete the
proof, we use the fact that the row sum norm is submultiplicative to contradict the assumption
K # 0 mod 1 provided that equality holds for (2.7).

Ezample. Let I = (0,...,0),d" = (0,...,0). We want to compute v(e) "‘by hand"’ for all
sequences e. It is easy to see that Iy = I; = I (i.e. the paths never differ) and fl, = 1, fI, = e(K).
Therefore, we find v(e) = e(—K) for any sequence e.

We can also use Lemma to compute v(e). We just need to see that M = () and thus
v(e) = [1;e(~a;) = e(—K).

As we observed in the example above, one possible value of z for which equality in (2.7)) can hold
is e(—K). The factor e(—K) appears in v(e) and we want to show that equality can just hold
for z = e(—K) for arbitrary d’ and I. It would be sufficient to find for all j* € M sequences e, €’

17



2 Generalization of Bounds on Fourier Transforms

such that the values of kj;(e), k;(e’) coincide for all j except j’, where they differ by one. For
equality to hold we would need that z = v(e) = v(e’) and, therefore, the quotient

v(e)
v(e’)

Therefore, we would conclude v(e) = e(—K) for any e that corrects all positions.

=e((¢—1)ay) =1.

Unfortunately, there might be positions j, 7/ that always get corrected at the same step for each
sequence e — even for large values of m/. Therefore, changing the value of k; also changes the
value of kj.

Ezample. Let d’ = (0,...,0),I = (0,1,2,...,¢—2,q —1,q — 1, — 1). A quick computation
yields Iy = (0,...,0),1; = (0,...,0,1,1,1), and M = {q¢—1,q,q + 1}.

Since T9(I}) = ... = T%=2)(I}) = (0,...,0) and T°@~1(I;) = I;, we see that position ¢ — 1 is
corrected at step k iff e is of form (¢ —1,...,¢ — 1,z,...) where 0 < 2 < ¢ — 1. This sequence
also corrects positions g and g+ 1 at step k and, therefore, positions ¢ — 1, q, g + 1 are corrected
at the same step for each sequence e.

To deal with the problem stated above, we define M(e,n) to be the positions which are not
corrected by e after n steps and with this notation we define

Definition 2.4.3 (admissible starting-sequence). e € {0,...,q — 1}! is called an admissible
starting-sequence of length [ iff for n < [—2 it holds that M (e,n) # M (e,n+2) or M(e,n) = 0.

Definition 2.4.4 (admissible sequence). An admissible starting-sequence of length m’ is called
an admissible sequence.

It m’ > 2(k — 1), it is easy to see that any position will be corrected by an admissible sequence
and we will assume from now on that m’ > 2(k — 1), if not stated otherwise.

Lemma 2.4.5. Every admissible starting-sequence e of length | < m' can be extended to an
admissible sequence € = (eg,...,€1_1,€, ., €m—1).

Proof. We define e; for j > [ recursively: Let ¢; be the minimal index for which Tjde(Io)m +1=
Tjde(Il)‘ij. By Lemma , we know that e; = 0 or e; = 1 implies that e corrects position i;
at step j. If there is no such index i;, we define e; arbitrarily. O

Lemma 2.4.6. For any j € M and for any integer 0 < | < m’, there exists ezactly one

e €{0,...,q— 1} such that T3 (Iy);; + 1 = T(I1));.

Proof. This results follows by induction on [:
Let e = (e, ..., ei—1) and Tj%¢(Ip); + 1 = T2¢(11));. By Lemma position j is corrected at
step I + 1 for exactly one ¢ =&’ € {0,...,q — 1}. O

It follows easily that for each subset M’ C M there is at most one (admissible starting) sequence
of length [ that does not correct M’.

We now define a relation ~ on M as follows:

1 ~ j < each admissible sequence e corrects ¢ at step k iff it corrects j at step k.

18



2.4 Proof of Proposition m

Obviously ~ is an equivalence relation and corresponds to a partition P = {Py,..., P,} of M.

If e is an admissible sequence and 1 < j < n, then all 7 € P; are corrected at the same step by
e, which we define as nj(e). By definition, k;(e) = n;(e),Vi € P;.

Instead of finding pairs of sequences e, € for all j/ € M such that the values of k;(e), kj(e’)
coincide for all j except j', we combine the positions according to ~. We want to motivate this
by the following example:

Ezample. Let ¢ =3, 1 =(0,0,0,1,1,2,3,4), d" = (1,1,1,1). We find
Iy = (07070’ 1’ 172a3a3)7-[1 = (0707 1, 1’2,27374)
and, therefore, M = {2,4,7}. We compute

T'(Ip) = (0,0,0,1,1,2,3,3), T'(I;) = (0,0,1,1,2,2,3,3)
T (Io) = (0,0,1,1,2,2,3,3), T*(I;) = (0,0,1,1,2,2, 3, 4).
Consequently M((0,0,0),1) = {2,4} and M((1,1, ) ) = {7}. As (0,0,0,1,1,2,3,3),

(0,0,1,1,2,2,3,3) are fixed points of 7% and (0,0, 2,3,3), (0,0,1,1,2,2,3,4) are fixed
points of TH, we see that P = {{2,4},{7}}.

We find the following sequences

= (0,0,1) with ni(e1) =3, na(e;) =1
= (0,1,0) with ni(e}) = 2, na(e}) =1
= (1,1,0) with ni(e2) =1, na(ez) =3
= (1,0,2) with ny(e}) =1, na(e)) = 2.

So we found pairs of sequences for which their values of n; coincide or differ by one once. We
want to prove that it is always possible to find such sequences:

Lemma 2.4.7. For any 1 < j < n, there are two admissible sequences e, €’ such that n;(e) =
ni(€’) for any i # j and n;(e) +1 =n;(€').

Proof. For this proof, we denote with € an arbitrary integer with 0 <€ < ¢—1 and € # . Let

e = (ep,...,en—1) be an admissible sequence which maximizes n;(e’).

Since any position is corrected by €' and nj(e’) is maximal we show that nj(e') > nj ()
for all 7/ < n: If nj(e) > nj(e’) we could find an admissible starting sequence e* =
(eo, . - ,enj(e/),l,w). e” does not correct P; and corrects at least P at the last step and is
therefore extendable to an admissible sequence f with n;(f) > n;(€e’) which yields a contradiction
to the maximality of n;(e).

Next, we observe that no position is corrected by €' at step nj(e’) — 1; otherwise e* =
(eoy- -, €n;(e')—1s En, (e/)) would again be an admissible starting sequence and would be extendable
to an admissible sequence f with n;(f) > n;(e’).

Therefore, we know that e = (e, . .. »€n;(e")—25 ny(e)—1,0; - - - ,0) is an admissible sequence with
nj(e) + 1 =n;(e).

It remains to show that n;(e) = n;(€') for all i # j; assume that n;(e) # n;(e’). We note
that n;(e’) < nj(€’) and n;(e’) # nj(e’) — 1 by the arguments above. Furthermore, n;(e’) <
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2 Generalization of Bounds on Fourier Transforms

nj(e’) — 2 would imply that n;(e) = n;(e’). Therefore, it remains to consider the case n;(e’) =
nj(e’). By Lemma [2.4.6, we know that any admissible starting-sequence of length ny < n;(e)
which does correct P; at step ng is of form (e, ..., €ny—1,€n,). By Lemma we know that

(€0,---,€ng—1,€ny) also corrects P; at step ng. Since any admissible sequence f corrects P; at
step n;(f) < nj(e’) we know that it also corrects P; at step n;(f) and, therefore, P; ~ P; which
yields a contradiction. O

This proof also shows that e, e’ are distinct for all ;.

We define 8; = ;¢ P, and immediately obtain the following corollary.

Corollary 2.4.8. For any admissible sequence e

l
o(I,d, (00 e))o(I,d, (1oe)™" =e(—K) [ e(g — 1)Bjn,) (2.8)
j=1

holds, where nj = nj(e).
Proof. This is an immediate consequence of Lemma [2.4.2 O

We are now prepared to show the following lemma.

Lemma 2.4.9. For z € U and m' > 2k —1

> IPHR) =™ (2.9)

JETL;

holds at most for z = e(—K).

Proof. At first we want to show that, if there exists a z € U such that holds, it follows that
(¢q—1)B;=0 mod 1forj=1,...,n

By Lemma we know that there exist, for any 1 < j < n, admissible sequences e, e’ such
that nj(e’) = nj(e) + 1 and for any i # j : n;(e’) = n;(e). We already observed that for any
admissible sequence f, 7900 (1) = 79'(0°D () holds. We see that

1PY(2) =]...+o(I,d, (00£)2t N Ly, d (106)21 VO .
By applying the triangle inequality we can isolate the term:

(I, d’, (10£)zN D] |o(f) + 2.
=1
For equality to hold at Equation (2.9)) there has to hold z = v(f). Using this fact for e, € obtained
by Lemma we yield
l

z=v(e) =e(—K) He((q — 1)n;(e)B;)
i=1
l
z=wv(e) =e(—K) He((q —1)ni(e')B;)

i=1
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2.4 Proof of Proposition m

and therefore

l

1= He((q — Dni(e)B;) e(—(g — 1)n;(e)B;)
i1
!

= [T elta — Dnile’) = mi(e))5:) = e((q — 1)B;).

i=1

We conclude that (¢ —1)5; =0 mod 1 for j =1,...,n.
By considering Corollary for any admissible sequence, we note that (2.9) can only hold if

z=¢e —K+an (qg—1)Bj | =e(—K).
j=1

We finally obtain the following theorem.

Theorem 2.4.10. For any m' > 2k, there exists no z € U such that (2.9)) holds.

Proof. By Lemma [2.4.9] we know that equality can just hold for z = e(—K).
We have already seen that for d’ = (4, dp, . .., dn—2) it follows that

MY (2) = M°(2)M9(29).

||.|lo is sub-multiplicative and thus, for equality to hold, we need 2z¢ = e(—K) for the second
factor (M9(z%)) as well as z = e(—K) for the product (M9 (z)), by Lemma So we
conclude z = 27 = e(—K). Therefore, we see that 2¢ = e(—qK) = e(—K) which can just
hold for (¢ — 1)K = Omod 1. This is equivalent to (¢ — 1)mK = 0 mod m. Since mK €
Z and ged(q — 1,m) = 1, we know that mK = Omodm or K = 0mod 1 which yields a
contradiction. O

21






3 Auxiliary Results

In this chapter, we present some auxiliary results which are used in Chapter [4] to prove the main
theorem. For this proof, it is crucial to approximate characteristic functions of the intervals
[0,) mod 1 where 0 < a < 1 by trigonometric polynomials. This is done by using Vaaler’s
method and Section is dedicated to this step. As we deal with exponential sums we also
use a generalization of Van-der-Corput’s inequality which we prove in Section [3.2] In Section
B.3] we acquire some results dealing with sums of geometric series which we use to bound linear
exponential sums. Section is dedicated to one classic result on Gauss sums and allows us
to find appropriate bounds on the occurring quadratic exponential sums in Chapter [dl The last
section of this chapter deals with carry propagation. We find a quantitative statement that carry
propagation along several digits is rare, i.e. exponentially decreasing.

3.1 Vaaler's method

The following theorem is a classical method to detect real numbers in an interval modulo 1 by
means of exponential sums. For a € R with 0 < a < 1, we denote by x, the characteristic
function of the interval [0, &) modulo 1:

Xa(z) = 2] — |z —af. (3.1)

The main purpose of this section is to prove Theorem by Vaaler [15].

Theorem 3.1.1. For all o € R with 0 < a < 1 and all integer H > 1, there exist real-valued
trigonometric polynomials Aq p(x) and Bo g(x) such that for all z € R

IXa(2) = Ao, 1 (7)| < Ba,n(z). (3.2)

The trigonometric polynomials are defined by

Aa(x) = Y an(o, H)e(hz), Bau(x)= > byla, H)e(hz), (3.3)

|h|<H |h|<H

with coefficients ap (o, H) and by (a, H) satisfying

ap(a, H) = o, |ap(a, H)| < min (a, ﬁ) , bp(a, H)| < ﬁ (3.4)

In order to prove Theorem [3.1.1} we use the ideas and notation of Vaaler in [15]. We, therefore,
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3 Auxiliary Results

use the following specific functions:

1) = (Si“ffz))Q( > Sgn(m)(z—m)_2+22_1)

J() = SH () o
K(z) = (Singz>)2

The definition of H(z), K(z) was motivated by a related function
B(z) = H(2) + K(2)

which was considered by A. Beurling in the late 1930s. He observed that B(z) is the unique entire
function of exponential type 27 which fulfills B(z) > sgn(z) and minimizes [*_B(z)—sgn(z)dz.

We find some important properties of these functions.

Lemma 3.1.2. For all x € R,

holds.
Proof. Since H(z) and sgn(z) are odd functions it suffices to show that for all z > 0
1-K(z) <H(x) <1 (3.5)

Assume x > 0 from now on. The identity

> = ()

m=—0oQ

on meromorphic functions C — Co, gives another representation of H(z),

. 2 [ee]
His) =14 <s1n§T7T3?)> (295_1 —a 223 @ +m)_2> _
m=1

We use the arithmetic-geometric mean inequality to show the second inequality of Condi-

tion (3.5):

H(z) =1+ (singrmc)>2 <2:c1 —x -2 i (x + m)2>

m=1
. 2 [e'e]
=1+ <Sm;m)> (295‘1 - (Z(m +m) 2+ (z+m+ 1)_2>>
m=0
<1+ <Sin§rm"))2 <2x_1 ) (i(z +m) a4+ m+ 1)_1>>
m=0
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3.1 Vaaler’s method

By expansion into partial fractions we obtain a telescoping sum and yield

sin(mz)

H(z) <1+ ( )2 2z~ ' =271 = 1.

™

Next we show the first inequality of Condition (3.5)):

o) =1 (B0) (Ml e i(ﬂm)_Q)
m=1
> 1+ (Sin(”)>2 <2x1 —z72 -2 i@f +m) "+ m+ 1)1>
m=0

— 1+ <Sin(”)>2 el —z72—227Y) =1 - K()

3

O

We are now interested in the Fourier transform of E(x) := H(x) —sgn(z). We use the following
definition of the Fourier transform and its inverse.

F(t) = / h e(—tz)F(z)dx

F(z) = / e(tz)F(t)dt

—0o0

Lemma 3.1.3. The function x € R — J(x) satisfies
J(z) < (1+]z))7?

and is, therefore, integrable. Its Fourier transform is given by

R 1, ift=0
J(t) =< wt(1—|t|) cot(mt) + |t]|, if0<|t| <1
0, if [t > 1

Proof. We define the partial sum of H:

. 2 N
Hy(z) = <Sm§fz)) ( Y sgu(m)(z —m)~2 +221> .

m=—N

It follows easily that
. B N B
A}1_r>noo Hp(z) = H(z) and A}gnoo §HN(Z) =J(z)

uniformly on compact subsets of C. Some analytic computations show that
1
K(z) = / (1— |t]) elt2)dt
1 1
2K (z) = / sgn(t) e(tz)dt.

2w )y
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3 Auxiliary Results

We use these identities to rewrite Hy(z),

N
Hy(z) = Z sgn(m)K(z —m) + 22K (z)
m=—N
1 N

1 1
= 9 m;N sgn(m)(1 — |t|) e(—mit) e(tz)dt + P /_1 sgn(t) e(tz)dt.

We see that
N N
* 2N +1
n:Z_:N sgn(n) e(—nt) = Qi; sin(—2mnt) ® cot(mt) + iCOS(Zgn(W:)_ )
where Equality (%) can be shown by induction on N. Applying %% to both sides, we see that
1d .. ! , .cos(m(2N + 1)t) 1
J(z) = 2L A}gnoo /1(1 — |t]) e(tz) (—1 cot(mt) + 1 Sin(rt) > + . sgn(t) e(tz)dt
1 1 2N + 1)t
_ / (L — |¢])mt cot(mt) + |t]) e(t2)dt + lim / (1= e TCN DY o
_1 N—oo |4 sin(mt)
where
! 2N + 1)t
im [ (1 e TCNEDD o — o
N—oo J 4 sin(7t)

by the Riemann-Lebesgue Lemma. Therefore, we can identify the Fourier transform of J(x).
We define ¢(t) = mwt(1 —t) cot(nt) 4+t for t € [—1,2]\ {0, 1} and defined at 0,1 by continuity. We
conclude that

1
J(z) = 2/0 @(t) cos(2mtz)dt.

By iteratively integrating by parts three times we find
2

— 1 ! " . 471' .
J(z) = W 2 ; @ (t) sin(2wtz)dt — ES sin(27z) | .
This completes the proof, since J(0) is bounded and J(z) < z 3. O

Let E be the function defined by E(x) = H(x) — sgn(z).
Corollary 3.1.4. The fourier transform of E is given by
) 0, ift=0

L ()TN = 1), ift#£0

Ty —1= ;/OO o(—ta)dE(x).

— 00

By integrating by parts we find that

% /_ O; o(—tz)dE(z) @ _Ze(—tx)E(x)da: _ %E(t).
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3.1 Vaaler’s method

The functions mentioned above were used in [I5] to approximate characteristic functions of
intervalls [a, b] in R.

For the periodic case he introduced some related functions. Therefore he needed the following
definition.

Definition 3.1.5. Let F' be any of the functions above. We define Fs(z) := §F(0x).

One computes easily that F;(x) = F(67'2) and we define

Jn(z) = Z Inyi(z +m) Z Inii(n Z Ini1(n)e(nz),

N
kn(z) == Z Kyyi(z +m) Z Kysi(n)e(nz) = Y Kyii(n)e(nz).
m=—00 n=-—oo n=—N

The second equalities hold by Poisson’s summation formula and the third equalities hold since
JInt1(n) = Knyi(n) =0if [n| > N + 1.

Furthermore we define

— 1
ww={ " 39
and denote by
1/2
frg(x) = flz—&)g(§)dg
—-1/2

the convolution of two periodic functions f, g with period 1 and by

R 1/2
f(n) = f(z) e(—nz)dx
—-1/2
the n-th Fourier coefficient of f.

Lemma 3.1.6. For any x € R

() =1 (@) (3.7
and

[ % jin(z) = ()] < (2N +2)" ky(2).
hold.

Proof. An easy computation yields

N
Y * jn(z Z Tn+1(n ) x9()(z) = — Z jNH(n)e(nx)%lm-
n=—N
n#0

27



3 Auxiliary Results

Differentiation yields Equation (3.7). We find by Poisson’s summation formula and Corol-

lary that

(2N +2)~ Z Engi(z+m) = (2N +2)~ Z Eny1(n)e(nz)
= > @rin) "' (J(n) = De(nz) = ¢ = jn(2) — (x)
"0

Using Lemma [3.1.2] we yield

[ * v () — ()] < (2N +2)7 Z Knii(z +m) = (2N +2)" ky(2). .

We call a function f : R — C normalized if for all x € R

fla) = lim S(fe )+ flz 1)

t—0+

holds. Note that x, is obviously not normalized.

We denote with V; the total variation of f on [—3, 3] and with Vy(z) the total variation of f on
[—2,z]. There obviously holds V; = Vj(3). We write dV; * kx for the convolution
1/2
@)+ k@) = [ Fale = avi(©)

We are now ready to proof one of the main results of [15].

Theorem 3.1.7. Let f be a normalized function f : R — C with bounded variation on any
interval of length 1. Then f * jn(x) and (dVy) * kn(z) are trigonometric polynomials of degree
at most N which satisfy

|f(z) = f*jn(@)] < (2N +2)"1(dVy) * kn (). (3.8)

Proof. For all continuity points z of f we see by Equation (3.7 that

1/2
fla = &)d( = jn(€) —(€))
—1/2
1/2 1/2
= [z =& —jn(§)dE — [z = &)dp(E)
—1/2 -1/2

= f(z) — fxjn(z).

Integrating the left side of the equation above by parts yields again at all continuity points x of
/s

1/2

flx) = f*jn(x) = 2¢*jN($—€)—¢(x—§)df(§)-
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3.1 Vaaler’s method

Since f is continuous almost everywhere, we conclude

1/2
@) = fxin(@)] < /_ PNt =)~ vl = 914V
1/2
<@N+2)! / k(e — €)dVy(€)
~1/2

= (2N +2)"1dV}) x kn(2).
Since f is normalized, we conclude that Inequality holds for all z € R. O
We are now prepared to prove Theorem [3.1.1]
Proof (by [4]). In order to apply Theorem we have to normalize x,(x):
Ko@) = Jim 2 (xa(z + 1) + Xalz ~ 1)

By Theorem we find trigonometric polynomials A g (x) = Xa * ju(2), Ba,u(xz) = (2N +
2)~H(dVy) x ky (x) satisfying

Xa(z) — Aa,u(2)| < Ba,u(x).

One computes by Lemma [3.1.3]

H
Vi@ = 3 Taah)elh- ) Xa)(@)
h=—H

2o 1
= > Tuaa(h) 5 (e(ha) - e(h(x — a)))

2mih
h=—H
H .
- ha'\ sin(rah) h || 7|h |h|
h_ZHe(hm)e<2) hr <7TH+1<1H+1 o \mri)TEe1)

:=a} (o, H)
and thus
ha\
Ao ()= ) e(hx)e — ) k(e H)
|h|<H

where a}, (a, H) € R. A quick calculation shows that A, g (z) is real-valued:

a;L(O[7H) = a/—h(av H)

Agp(z) = a+h§;a’h(a,H) (e (h (95 - %)) Te (‘h (x B %)))

=a+ Z2a’h(a,H) cos (27rh <a; - %)) .

h=1
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3 Auxiliary Results

™

o e (i) St

with ¢ defined as in the proof of Lemma [3.1.3] Since %‘ < min (oz, ﬁ

to note that ¢ is non-negative and strictly decreasing on [0, 1], which is easily verifiable by
differentiating.
Similarly one sees that

Ban(@) = Y e(hz)e (-’?) Hl+1 <1 - H'L) cos(rha).

Ihl<H

To show |ap(a, H)| < min (a, ﬁ), we observe that

) it is sufficient

This completes the proof of Theorem O

Using this method we can detect points in a d-dimensional box (modulo 1):

Lemma 3.1.8. For (aq,...,aq) € [0,1)% and (Hy,...,Hy) € N with Hy > 1,..., Hy > 1, we
have for all (x1,...,14) € R?

d d
I xe @) =TT Aeym @) < > T xes @) [ Bay.s, () (3.9)
i=1 i=1 O£IC{L, e d} 2T jeJ

where A 1 (.) and Bq () are the real valued trigonometric polynomials defined by (3.3)).

Proof (by [7]). We have

d d
H XOéj(xj) - HAOéj,Hj(xj) < Z H ’Xaj($j)’ H ‘XOéj (mj) - Aaj,Hj(xj)’
=1 j=1

0£IC{1, . d} JET jeJ
Since xq; > 0 and (3.2), we get (3.9). O

Let (Uy,...,Uy) € N® with Uy > 1,...,U; > 1 and define a1 = 1/Uy,...,aq = 1/U;. For
j=1,...,d and x € R we have

> Xy (m - ;Z) =1 (3.10)

OSuj <U]'

Let N € Nwith N > 1, f:{l,...,N} - R?and g: {1,...,N} — C such that |g| < 1. If
f=(f1,..., fn), we can express the sum

N
S=> g(n)
n=1

as

S-S Y v (f1<n>—§1l)-~ Y e (fdm)—gj).

n=1 0<ui<U; 0<ug<Uyg
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3.1 Vaaler’s method

We now define (Hy,..., Hy) € N® with Hy > 1,..., H; > 1,

N

5= 00 3 Aw (00— 12) o X v, (fam) - 2.

n=1 0<u;<U; 0<uqg<Uq

Lemma 3.1.9. With the notations from above, we have

R IED DI v

(=11sji<<ge 0 g ’hh’SHh/Uh ’hjg,SHiz/sz
N
Ze (hlej1fj1 (’I’L) +ot hszjesz(n)) :
n=1

Proof (by [7]). By (3.9), we have

’S—ﬂgi!g(n)\ > (1L > x (ﬁ(n)—%)

n—1 P#£JC{1,....d} \JgJ 0<u,;<U;

Wi
' H Z Ba;,n; (fj(”) - Uj)
jeJ 0<u, <U; J
which by (3.10]) gives
s=3[ <l 3 T X Buwm (50— 12).
n=1 P£JC{1,...,d} j€J 0<u;<U; J

Since By, . > 0 and |g| < 1, we conclude
J25

n

’S—N‘S > iH >y bhj(OémHj)e(hjfj(n)—h{?)-

@#Jg{l,‘..,d} n=1jeJ 0<u; <Uj ‘hj|§H]'
Observing that

Z o _hjUj _ Uj if hjEOmOd Uj
U; 0 otherwise
OSUj<U]'

we obtain

N
’S—g‘g N TIo >. Y. b ey, Hy)e(hUifi(n).

0£JC{1,....d} n=1jeJ  0<u;<Uj|h;|<H;/U;

(3.11)

Expanding the product, reversing the order of summations and using (3.4)) leads to (3.11). O
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3.2 Van-der-Corput’s inequality

The following lemma is a generalization of Van-der-Corput’s inequality.

Lemma 3.2.1. For all complex numbers z1,...,zn and oll integers Q > 1 and R > 1, we have

2

Y oa <MFEEECL S P 3 (1-0) Y R | 612

1<n<N 1<n<N 1<r<R 1<n<N-Qr

where R(z) denotes the real part of z € C.

Proof (by [3]). We set z, =0 for n <0 or n > N and use the following identity,

N R-1 R—1
RZzn = RZzn = Z szrQr = Z Z Zn+Qr-
n=1 n

r=0 n n r=0

where each of the sums is actually finite. The summands in the inner sum vanish if n + Qr ¢
{1,..., N} forall 0 <r < R—1. Therefore, we can bound the valuesof n by 1-Q(R—1) <n < N
and thus there are at most N + Q(R — 1) non-vanishing summands. By applying the Cauchy-
Schwarz inequality, one finds

2 N 2 2
LR D ST S R Lot o) S
n n=1-Q(R-1) r=0 n
R—1 R—1
< (N + Q - 1 Z Z Zn+Qry Zn-I-QrQ
n r1=0rs=0
1 R—-1

R—
(N+Q - 1 Z sz-i-Q (r1—r2)

ri= 07‘2 0 m

= (N+Q(R_ 1)) Z |7"| sz-I—Qrzm

r=—R
N—-Qr
=(N+Q(R-1) RZ |2 |* + 2 Z ) Y R(zniorzn)-
n=1
Dividing both sides by R? yields the desired result. O

3.3 Sums of geometric series

We will often make use of the following upper bound for geometric series with ratio (), € R
and Ly, Lo € Z, L1 < Lo:

> e(td)| <min(Ly — Ly, sinwg| ™), (3.13)

L1<t<Ls
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3.3 Sums of geometric series

which is obtained from the formula for finite geometric series.

The following results allow us to find useful estimates for special double and triple sums involving
geometric series.

Lemma 3.3.1. Let (a,m) € Z* with m > 1, § = ged(a,m) and b € R. For any real number
U > 0, we have

Z min( )

0<n<m-—1

(W%H’)rl) < 0 min <U,

—1
sin (w%)’ > n 27m10g(2m). (3.14)

Proof (by [3] and [7]). The result is trivial for m = 1 and 6 = m. Hence we assume d # m and
consequently 1 < d < . Let a = a'd,m = m/d, b =0b'd+r with o/, € Z,m' e N,r € R, —% <

r < % and
sin Wcm—l—b -1
m

S = mz:lmin <U, , [sin (%(a’n +b + g)) ’_1> .

Since ged(a’, m') = 1 we know that a’n+ = x mod m' has exactly ¢ solutions for 0 <n < m-—1.

(S 05

We want to drop the absolute value: The argument is negative if n+3 < 0 which can only happen
for r < 0. In this case we exchange r by —r, n by —n and change the order of summation. Thus
we can assume that 0 <n + 5 < m/ and, therefore, drop the absolute value and find

S = dmin (U, sin (;Zﬂd>1> + 0 min <U sin (m (1 — ;))1>
m =2 3
+0 nZ::l min (U, sin (% (n—i— d)) 1) )
Since t — (sint)~! is a convex function on (0, 7), we find

S < dmin <U,sin <£Td>_1> + Jsin (% (1—7 +5/m 3/28111 %(t—i—d))_ldt.

m’'—1

SzéZmin(

Let
m'—3/2

h(z) := sin (%(1 - x))il + /1/2 sin (%(t + :L')) - dt.

By noting that ¢ ~ sin(¢)~! is convex on (0, ), it follows directly that h is convex on [0,1/2]

and, therefore, attains its maximum on a boundary point. Next we show that the maximum is
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3 Auxiliary Results

obtained at %
1 -1 -1 m/—1 -1 -1
h{=|—h(0)=sin < T ) — sin (i> + / sin (it> dt — sin <lt> dt
2 2m/ m’ m'—3/2 m/ 1/2 m/
. T \—1 . ™\l 1 . 3r\7' 1 . T \—1
2 sin (2m’) - (W) tosmlgw ) Tt <2m’)
L. (W)—1+. 3m\ ! _ (77)—1>0
= — | sin sin —sin [ — .
2 2m/ 2m/ m/ -

Where the last inequality holds by convexity. Hence h indeed attains it maximum at % We
yield

1 —1 m'—l t -1
S < dmin <U,sin (TZTd) ) —|—5sin<2;/) —1—5/1 sin <:;,> dt.

—1.

To compute the integral, we note that (logtan 5)" = sin(t)

S < dmin <U, sin <’r7r7d)1> + d sin (2;/)71 + 2

Since 0 < & — ¥ = 2 < I we can identify 5 = ||4||. Using cot (5%
sin(x) is concave on [0, 7], we observe:
/

/

,) < QTT”I and the fact that

2m/ 6 2m/

., T 1 2md 0 LT
6sm(2m,) + log cot P < 55111(2—ml) + log -
2m’s . 2m’'s _ 2m/é
. -1
< sm(%m/) + - log - < - log(2m’6)
For m = m’d > 2 which holds by assumption. O

Lemma 3.3.2. Let m > 1 and A > 1 be integers and b € R. For any real number U > 0, we
have

Z Z min (U, |sin (ﬂ%“’)‘_l) < 7(m) U+ mlogm (3.15)

1<a<A0<n<m
and, if |b| <1 5, we have an even sharper bound

Z Z mm( in (7 ‘m+b)‘ ><<T(m)min< :

1<a<A 0<n<m

(ﬂ%) |_1) + mlogm, (3.16)

where T(m) denotes the number of divisors of m.

Proof (by [7]). Using (3.14) we have for all b € R, that

Z min (U, ‘sin (W%M)‘_l> < ged(a,m) U + mlogm.
0<n<m
Since ged(a, m) ||b/ ged(a, m)|| = |b| for [b|] < 3, this can be sharpened using (3.14) to

Z min< )

0<n<m

(W%er)‘_l> < ged(a, m) min ( ,

(W%) ‘_1> + mlogm.

34



3.4 Gauss sums

By observing that

Y ogedlam)=)"d > 1<>d Y 1:2%‘:” < A 1(m), (3.17)

1<a<A d|m 1<a<A dlm 1<a<A d|m
d<A gecd(a,m)=d d<A dla d<A

we immediately get (3.15)) and (3.16). O

3.4 Gauss sums

In the proof of the main theorem, we will meet quadratic exponential sums. We first consider
Gauss sums G(a, b; m) which are defined by:

m—1 )

an® + bn

G(a, b; = — .

(asbim) = 3 o ()
n=0

In this chapter, we want to prove one classic result on Gauss sums, namely Theorem

Theorem 3.4.1. For all (a,b,m) € Z3 with m > 1,

m—1
Z e (WTH”L) < v/2mged(a,m) (3.18)
n=0

holds.
To prove Theorem we simplify the expressions step by step following [16]. At first, we
relate G(a, b;m) to some G(a',V';m’) with ged(a’,m’) = 1.
Lemma 3.4.2. Let d := ged(a,m).
1. Ifd | b, then G(a,b;m) =d G(a/d,b/d;m/d).
2. If d 1 b, then G(a,b;m) = 0.

Proof. Using m' = m/d,a’ = a/d and the fact that dm’ | (2da’km/r +da'k*m’?) and e(z) = e(y)
if x =y mod 1, we see that,

m'—1d—1 / / 2 /
G(a,bym) = o da'(km' 4 r)* + b(km' + r)
dm/’
r=0 k=0
m'—1 ;9 d—1
a'r br bk
_ (m +dm,>2e<d>.
r=0 k=0
Since
dz—fe(l’]‘:)—{ d, ford | b
= d 0, ford 1 b
the desired results follow directly. O
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As we have seen that d { b implies G(a, b;m) = 0, we now assume that d | b and define b’ = b/d.
We have seen above that G(a,b;m) = d G(da/,b’;m’). Therefore it is easy to see that it is sufficient
to show that G(a,b;m) < v/2m for gcd(a, m) =1 in order to prove Theorem

Next, we want to reduce the problem to b =0 or b = 1.

Lemma 3.4.3. Let a denote the multiplicative inverse of a mod m (i.e. aa =1 mod m,).

(1) If m is odd, it follows that

ab?
G(a,b;m) =e <_4m> G(a,0;m).
(2) If b is even, it follows that
a,bym)=e| ——= a,0;m).

(8) If b is odd, it follows that

— 72
G(a,b;m) =e (_ab !

m 4

> G(a, 1;m).

Proof. We shift n — n + ¢ with ¢ € Z. This just changes the order of summation since e is a
periodic function with period 1. Thus one yields

m—1 2 2
2 b b
G(a,b;m) = E e(CL:I >e< ZZLC-I-L;L +777:LL+’I76L>

n=0
! (an2> <2ac+b a62+bc>
= E el— Jeln + .
m m m
n=0

By choosing ¢ = —2ab for (1), one finds that 2ac + b= 0 mod m and the first result follows.
For (2), we choose ¢ = —%E and find again that 2ac + b = 0 mod m.
For (3), we choose ¢ = —%51@ and find that 2ac + b = 1 mod m. O

Lemma 3.4.4. If gcd(m,n) =1 then
G(a,b;mn) = G(an,b;m) G(am, b;n).

Proof. By the Extended Euclidean Algorithm, we know that for every k& we can find unique
k1 mod m and ko mod n such that k = nk; + mks mod mn. We conclude

mn—1 )
G(a,b;mn) = Z e <M>

mn

mn

n—1
ank? + bk Z amk3 + bks
ka=0

= G(an, b;m) G(am, b;n).

Thus the result is proven. O

”i . <a(nk1 + mkg)? + b(nk + mk2)>

Il
o
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3.4 Gauss sums

Thus we can reduce the computation of G(a, b;m) to G(a, b; p®) where p is a prime number. The
next step is to reduce the exponent «.

Lemma 3.4.5. If p is an odd prime number and o > 2, then G(a,0;p%) = p G(a,0; p*?).

Proof. We compute G(a, 0; p®)

_ a—1_ a—1_ _
g ”’Zl < 0“1+k)2) ' <ak2)pi <2ajk>
- g e _— (§] .
j=0 k= pe k=0 L p
As the inner sum is 0 for p 1 k and p otherwise, the result follows immediately. O

Unfortunately there is one piece that was not covered in [16]:

Lemma 3.4.6. For a >4 and a € Z,
G(a,0;2%) = 2G(a,0;27%)

and G(a,0;2) = 0,G(a,0;4) =2+2¢($),G(a,0;8) =4e (%) hold.

Proof. We find that by using Z?:o e(akj/2) =4 -1y

29721 3 20721 3 .
a(k —|—]2a 2)2 ak? 2ak;j20 2
G007 = 323 e (" = % o) e (M
k=0 j=0
20721 3 . 2031
ak? akj a(2k)?
= (G2 (F) = T ("
k=0 j=0 k=0
20731 2\ 1 Ha—3 2620—6
ak 2akj2%7° 4+ aj°2°*
=2 Y e(g) Lo (M)
k=0 §=0
=1
20731 1 )
a(k: + 2a_3j)2 oa—2
The rest of this lemma is obtained by an easy computation. O

For the next lemma, we denote the Legendre Symbol of a mod p by <a>' This factor occurs
p
when we relate G(a, 0;p) to G(1,0;p).

Lemma 3.4.7. Let p be an odd prime. Then

G(a,0;p) = <Z> G(1,0;p).
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3 Auxiliary Results
Proof. We know that the number of solutions of ak? = n mod p is 1 + ( ) Therefore,
ak? Ly an 1 /n a n

()£ E)-EO6E
() -G 0 () -G 6) G
Ly n a

)2 () - () eon
— \p/\p p

p—1

(

G(a,0;p) =

iNng

SRS

It remains to consider the case p = 2.

Lemma 3.4.8. Let b be odd. Then G(a,b;2) =2 and G(a,b;2%) =0 for a > 2.

Proof. G(a,b;2) = 2 is trivial. For the second assertion, we observe that

12(11

N (G2 L+ k)2 4+ b(j2 + k
G(a, b;2 :ZZ (] )QT ¥ )>

Jj=
2(:«—1

-2(F 2 (3)

J

Since [ is odd, the inner sum is 0.

To complete the proof of Theorem one has to compute G(1,0,m).

Lemma 3.4.9. For any positive m,

G(1,0:m) = %(1 (14 i),

Proof. We consider the Fourier series of the function f(z) = 2”;016 (%) with f(0) =

G(1,0;m). Evaluating this Fourier series at = = 0 gives
m—1 oo
d2 m SU2
— | = — | dz.
e(m> Z/o e(vx—i—m> x
d=0 v=—00

By changes of variables, we find a different representation:

e 2

=m Z /Ole (m(z* +vz)) dz =m i e <—m:> /V/2H e(my?)dy.

v=—00 v=—00 v/2

Breaking this sum into odd and even v yields

L=m(l4d") /00 e(my?)dy.

—00
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3.4 Gauss sums

By another change of variable, we find that

=1 +¢-m)2\/m/ooo

We will just sketch how to evaluate this remaining integral. We consider the integral over the
path C which goes along the straight line from 0 to z € R4 along the circular arc from x to
x e(1/8) and along a straight line back to 0. Since the integrand is entire we find that the integral
over the path C equals 0. The integral over the arc is < l The integral over the straight line
from xe(1/8) to 0 tends to — e(1/8) as z tends to mﬁmty (with an error term < 1/x). This

completes this proof. O
Now we can prove Theorem

Proof of Theorem[3.4.1. We denote by d = ged(a, m) and find, using the lemmas above, that

|G(a,b;m)| < d|G(a/d, b/d;m/d)
~— =
a’ 4 m/

and thus by assuming that m’ = pg® - - p& with pp = 2 and aj, > 1 for k > 1 we find that

<dH aTk,b' k| <d G(ao,b;ZO‘U)HG(ak,b’;pg’“) .
k=1

ak
We have also seen that for odd ¥/,
G(a,8;2%)| < 14102 < V227
We also concluded, that for even b’
|G(a,b';2%)| = |G(a,0;2%)| < V2o+1,

Thus we observe

|G(a, b;m)| <d\/22aH}G a, V' pr ‘—d\/22O‘H‘G ak, 0; py, )|

=avaze T o T1 /v 1C a0 0|

1<k<r 1<k<r
2| ay 2} oy
=dav22e T[T e I Ve 1G5 m)]
1<k<r 1<k<r
2] ay 2} oy
—avas I o T1 Veevim
1<k<r 1<k<r
2|O(k 2J(ak
=d 2Hpak: (m'd)d = v2md.
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3 Auxiliary Results

Consequently we obtain the following result for incomplete quadratic Gauss sums.
Lemma 3.4.10. For all (a,b,m, N,ng) € Z5 with m > 1 and N > 0, we have
no+N

S o)

n=ng+1

< (A 41+ 2log 22) \/2mged(a, m). (3.19)

Proof. The following argument is a variant of a method known at least since Vinogradov.

For m = 1 the result is true; thus we assume that m > 2. There are | N/m] complete sums
whose absolute values are bounded from above by /2m ged(a, m). The remaining sum is either
empty or of the form

ni+L

D

n=ni+1

for some n; € Z and 1 < L < m. Therefore we see that,

ni+L m—1 1 m—1
P OE
u=n1+1 n=0 m k=0
m—1 ni1+L m—1
Z Z (an2+(b+k)n>
m
k: 0 u=ni1+1 n:O

1m 1 m—1 2 )
k| btk
§<— > min <L7|Sm% )‘§,6<W)
k=0 n=0

We observe, by convexity of ¢ — 1/sin(nt/m), that,

1= m-1/2 2 m
7Zmin(L,}simfn—"C <1—|— / ;7 =1+ —logcot -—.
m o= m sin 7 0 2m

Applying Theorem with b replaced by b+ k we obtain (3.19)). O

3.5 Carry Lemmas

As mentioned before, we want to find a quantitative statement on how rare carry propagation
along several digits is.

Lemma 3.5.1. Let (v, )\, p) € N? such that v+ p < X\ < 2v. For any integer r with 0 < r < ¢”,
the number of integers n < q" for which there exists an integer j > X with £;((n +1)?) # £;(n?)
is < q*'tP~. Hence, the number of integers n < ¢ with

sx((n+7)?) —sx(n”) # s((n +1)?) —s(n?)

is also < ¢?vtP—2,
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3.5 Carry Lemmas

Proof. We follow the idea of [17] with some minor changes to suit our case better.

First we suppose that A > v + p + 3; otherwise we know that the number of all integers n < ¢”
is bounded by ¢” < q”‘/\+V+p+? =% q2V+p—A_

We know that 2nr+r? < 2¢P"4-¢* < 3¢P" < ¢Pt7+2. In order to affect the j-th digit for j > A,
it is necessary to transfer a carry for the digits p+ v + 2 to j. Therefore, for p+v+2 < j' < A,
ajy = ¢ — 1 must hold. Hence there exists m € N such that [n?/¢”™ 2| = ¢ 72m —1. In
other words:

2

qA—V—p—Qm —1< < qA_V_p_Qm.

n
qvTrt2
Therefore, we can bound m € N

? 4> 1 -2
— v—
<m§{q/\+q/\_u_p_2Jq .

For fixed m, there are at most \/¢*m—+/¢*m — ¢v+r+2 = \/¢*m (1 — /1 - W) integers
n such that |n?/¢" PT2| = g}=v=P=2m — 1.

For 0 < w < 1 it holds that 1 — v/I — u < u. Since mg*¥~P~2 > 1, we know that the number of
integers n < ¢” for which there exists an integer j > A with &;((n +7)?) # £;(n?) is bounded by

Qy‘ 3

22—\ 20—\ 20—\
5 Vi (1 i ) £ X S Y
g¢m|1— 1—>\2>§ ﬁ:qlfp a =
m=1 mq e m=1 q Tt m m=1 \/m
(2 2P
The last inequality (%) holds since
q" n  q'—1 n
1 —n 1 e o1y L
——=q ) =<1+ (¢ —d)
m=1 m l=1 m=qg¢t-1 \/m /=1 qf—l
<1—|—Z<qz+71—q%l> :1+q%—1:q%q%
(=1
This completes the proof. O

The next lemma helps to replace quadratic exponential sums by linear exponential sums.

Lemma 3.5.2. Let (A, p,v,p') € N* such that 0 < p<v <X, 20 <pu<v—p and A\ —v <
2 — p)and set ' =y — p'. For integers n < ¢, s > 1 and 1 < r < ¢ /2 we set

n? = ulq“/ + w; mod ¢* (0<w; < q”l7 0<u < qA*“erl)

(n+ r)2 = ugq“/ + we mod ¢* (0 <wy < q“l, 0<uy < q)‘f’”p/) (3.20)
2n = uzg” + ws mod ¢ (0<wsg < g, 0<ug < g'tirmte)
2sn = v mod ¢*H, (0<v< g™
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3 Auxiliary Results

where the integers uy = ui(n), ug = uz(n) ,uz = ug(n), v = v(n) ,w1 = wi(n), wa = wa(n)
and ws = ws(n) satisfy the above conditions. Then for any integer ¢ > 1 the number of integers
n < ¢ for which one of the following conditions

sua((n+0)?

sua((n + €+ s¢")?)
sua((n+7r+ 0)?
sua((n+71+ L+ s¢")?)

# S/ a—ptp (W1 + Lug)
# S A—ppp (U1 + Luz + vg” + 20sq”) (3.21)
75 Sp/7)\_u+p/ (’LL2 + EU?,)

(

# Sy A—ptp (U2 + lus + vg” +2(0 +1)sq”)

~— ~— — —

is satisfied is < ¢~ "'

Proof (by [7]). We first consider the case (n + £)2. The other cases are similar and we will
comment on them at the end of the proof. We find that

(n +0)% = (us + Luz)g” + wy + lws + €2 mod ¢*.

If wy + fws + €2 < ¢ and 0 < j < X — g, we have e, ;((n + £)?) = e;(us + Luz). For wy +
lws + 02 > ¢* | there is a carry propagation. We show that there are only few exceptions where
more than p’ digits are changed. The proof is split into the following two steps:

1. If the digits block (gj((n+¢)?)),<;<x differ from the digits block (g (w1 +Cu3)) y<j<r—ptp's
where u; = u1(n) and ug = uz(n) are defined by (3.20)), it follows that

(n+€)2_{(n+£)2J C o (n+€)2_{(n+€)2

< =
q* q* q"

C
<5 " J -1- 9 (3.22)

qP
for some constant C' = C(¥).
2. The number of integers n < ¢” with is < ¢v ="'
Obviously these two properties are sufficient to prove Lemma [3.5.2]
We start with the proof of the first property. As mentioned above we just have to consider the
case wy + lws + (2 > ¢ = ¢" 7. Since wi, w3 < ¢ the carry

W = Lq_“/ (w1 + lws + EZ)J

is bounded and, thus, can only attain finitely many values {1,2,..., D} (where D is a constant
depending on ¢). These values of w will certainly affect some digits (of lower order) of u; + fus.
Let ¥ := uy + fuz mod ¢ with 0 < ¥ < ¢#'. The digits £;(u1 + fus), p' < j < A — 4/ might be
affected by this carry if o € {¢” — 1, ¢ —2,....¢" — D}. Since

(n+02%  up+Llug  wy+ lws + 2

pn = i + T mod 1
v L 0
= U pmr et
q° q* +p

it immediately follows that (3.22) holds with C' = D + 1. This completes the proof of the first
part.
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3.5 Carry Lemmas

Next, let Z denote the number of integers n < ¢” with (3.22)). By Lemma we have

Z=>" (Xa (@ +0?) +xa (¢ *(n+0)%))

n<q”
1 (n + 0)?
§2Z<Q+H> Ze(hqu >
|n|<H n<g”

with & = C¢~*". We can set H = ¢~ .

It is clear that the main contribution comes from the term corresponding to A = 0 which gives
an upper bound of form O(¢*~*"). Each h # 0 with |h| < H = ¢” can be written as h = h'd,
where d | ¢" and ged(h/, q) = 1. Therefore, we have by Lemma [3.4.10

T <h(n +ﬂ€)2> o (qy_u/g\/g+ﬂqu/z\/g)

n<q” q

and, consequently,

= 7pl 1/7;1,/2 /1'/2 qul
O @ "2+ ug"?) Y~V

g Z

I

0#|h|<ge" In<q” d|g*
d<q”’
This equals O (ql’fﬂ/2 + uq“) since
w(q) 1
—-1/2
> s I
d|gt J=1 VPj
where p1,...,p, () are exactly the prime divisors of ¢. Since 20 < u <wv-—p, all contributions

are < ¢”~*'. This completes the proof of the second part.

Finally, we comment on the other cases. First, there is no change for (n + £ + sq*)? since the
term sg* does not affect the discussed carry propagation. For (n + ¢ + )2, we have

(n+0+71)? = (ug + lus)g” + wa + lws + 0% + 2r/.

Here we have to assure that ¢ # (wy 4 fws + ¢? 4+ 2rf) remains bounded. However, this is
ensured by the assumption A — v < 2(u — p’). The same argument applies for the final case
(n+ 0+ sq" +1)2. O
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4 Proof of the Main Theorem

In this chapter, we complete the proof of Theorem following the ideas and structure of
[7]. We use Proposition for the cases K = 0 mod 1 and Proposition for the case
K # 0 mod 1.

The structure of the proof is similar for both cases: At first we want to substitute the function s
by s,.a. This can be done by applying Lemma and Lemma in the case K =0 mod 1.
For the case K # 0 mod 1 we have to use Lemma first.

Thereafter, we apply Lemma to reduce the quadratic terms to linear ones. Next, we use
characteristic functions to detect suitable values for u;(n),u2(n),uz(n). Lemma allows us
to replace the characteristic functions by exponential sums. We split the remaining exponential
sum into a quadratic and a linear part and find that the quadratic part is negligibly small. For
the remaining sum, we need Proposition or — depending on the value of K mod 1.
The case K # 0 mod 1 needs more effort to deal with.

4.1 The case K =0 mod 1

In this section, we show that, if K = ap + -+ + ax—; = 0 mod 1, Proposition 2.2.3] provides an
upper bound for the sum

k—1
So = Z e (Z ags((n +€)2)> .
n<N =0
Let v be the unique integer such that ¢“~! < N < ¢ and (\, ) € N2 such that
p<v<land A\—v=v-—p=3(A—p). (4.1)
The precise values will be specified later.

We will choose all occurring exponents, e.g. i, A, as fractions of v. Therefore we are not concerned
about sums of form, O(¢* ) = O(N'~""), for example.
By using Lemma [3.5.1] it follows that the number of integers n < N such that the j-th digits
of n2, (n+1)2, ..., (n+k — 1)? coincide for j > X is equal to N — O(Ng~**)). Furthermore,
since K = 0 mod 1 it follows that we obtain for those n

k—1

Zae Sh,00((n + 0)?) = KS)\,OO(TLQ) € Z, where s) o =S —s).

=0

Consequently, if we set

k—1
S| = Z e (ZZ o s,\((n—|—€)2)> ,
=0

n<N
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4 Proof of the Main Theorem

the summands of Sy and S; coincide except for at most O(Ng~**)) and thus
So=51+0 (q”*H)) . (4.2)

Now we use Lemma to substitute sy by s, x.
By applying Lemma with Q = ¢* and S = ¢”# we obtain

N2 N
2
—_— 4+ — 4.
1 < -+ FR(S2), (43)
with
S
Sp= 3 (1—5)55(3)
1<s<S
and

k—1
Sy(s)= ) e (Z ae(sua((n+6)%) = sua((n + £+ SQ“)2))> :
)

nel(N,s =0
where I(N, s) is an interval included in [0, N — 1] (which we do not specify).
Since %2 = O(g¥~"/?) is negligible, we are just concerned about %?R(Sg).

The right-hand side of S5(s) depends only on the digits of (n +£)? and (n + ¢+ sq*)? between
and \. Next we use Lemma[3.5.2] to reduce these quadratic terms to linear terms with a negligible
error term. Therefore, we have to take the digits between y' = u — p’ and p into account, where
p' > 0 will be chosen in a proper way (as a fraction of v). We set the integers u; = wuy(n),
uz = ug(n), v =v(n), w1 = wi(n), and wz = ws(n) to satisfy the conditions of Lemma [3.5.2}

n2zu1q“/+w1 mod ¢* (0 <wy <q“/, 0§U1<U1:q)\_ul)
2n:u;3q“/+w3 (0 <ws <q“/, 0<ug <U3:qyiu/+1)
2sn = v mod ¢* (0<v< ™).

By assuming that
20 > A, (4.4)
we have

(n +0)% = (uy + Luz)g” + wy + Lws + €2 mod ¢*,
(n+ £+ s¢")? = (uy + luz + vg” + €23q’°/)q“/ + wy + lws + 2 mod ¢

By Lemma, it follows that

SM)\((” + 5)2) = Sp/ A—p+p’ (u1 + KU3),

sur((n+£+ sq“)Q)) = Sp/ A—ptp (U1 + luz + qu, + 2£sqp,)

for any integer n < N with at most O(¢” _”l) exceptions. Hence it suffices to consider the sum

k—1
Sa(s) = Z ¢ (Z v (Spr a—ptpr (U1 + Lug) — 8y a—pppr (U1 + lug + vg” + 2€qu,)>
nel(N,s) =0
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4.1 The case K =0 mod 1

- where u; = u1(n),us = ug(n),v = v(n) - since there again holds
S3(s) = S5(s) + O(g"™""). (4.5)

Next, we implement our definitions of uq(n),us(n) by using characteristic functions. We define

S4(s) as

SR YD YD

0<u1 <U1 0<uz<Us n€Il(N,s)

k—1
e (Z ag(Sp/’)\_lH_p/ (u1 + KUS) = Sp/ A—p+p’ (u1 + €U3 + v(n)qpl -+ 2fsqpl)>
=0

n® 2n Uu3
X' =X S U X' —v-1 o0 )

where Y, is defined by . Lemma allows us to replace the product of characteristic
functions x by a product of trigonometric polynomials. More precisely, using with H; =
Urg”" and Hs = Usq®” for some suitable p” > 0 (which is chosen later and again as a fraction of
v), we have

Sé(s) = 54(8) + O(El) + O(Eg) + O(Eljg), (4.6)

where Ey, E3 and Ej 3 are the error terms specified in (3.11)) and

Sis) = D> > D,

0<u1<U;1 0<u3<Us 0<v<gr—H

k—1
Z ¢ (Z (Spr A—prpr (U1 + luz) — Spr x—pyp (w1 + luz + vg” + %qul)))

nel(N,s) =0
2
n U1 2n U3 1 < 2sn — U)
A — = — | A, _—— =) = el h—— ],
Uy " Hy <q)\ Ul) Us " ,H3 <ql/+1 U3> q/\*li 0<}gq:)\” q)\*ﬂ

the inner most sum filters the correct value of v = v(n).

The error terms F1, E3, E 3 can easily be estimated with the help of Lemma |3.4.10

1 E TL2 17" ’ 7
Bi=— Y D < qlu, ) < ¢+l < g,
|h1|<gr” | ™

1 Ean v—o' ’ "
_ —p /N V— v—p

E3 - 77 B E E € ( qu/ > < q + P q <q )
|h3|<ge” I 7

1 E n2 E 2n "
Pa= g XX (Xt M) <o
T e Falze | ! !
provided that
ol <y'/2 and i < ¢ (4.7)
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4 Proof of the Main Theorem

Therefore, the error terms Ey, E3, and E} 3 are negligible (since p” — o0) and so we just have
to concentrate on Sy(s). By using the representations of AUl—l 7, and AU; 4> We obtain

1 _ _
Sa(s) = —u Z Z Z ah1(U1 lle)ahs(U3 17H3)
q |h1|<H;i |h3|<Hsz 0<h<gr—H
h1U1 h3U3 hv
DD DD DR e iy it =
U Us g+

0<uy <U; 0<u3<Us 0<v<gr—+

k—1
¢ (Z Sy A—ptpr (W1 +0uz) — Sy a—pppr (w1 + Lug + v2! + 255(1’),)))

=0
Ze <h1n2 N hsn N 2h5n)
~ q @ )
where by (3.4),
Jan, (UL HY[ S U and g, (U Hy)| < Uy (4.8)

The first step in the analysis of S4(s) is to observe that we only have to take the term that
corresponds to h; = 0 into account. For h; # 0, we can estimate the exponential sum in the
following way: By Lemma [3.4.10| we have

hin®?  hsn  2hsn ) N 2 /2 A
Ze( — + +W><<(Nq +1+)\> g ged(hy, @) < Mg 4/ ged(hi, ¢).

~ q q’

Furthermore we find
H; 1
d(hy, ) < d 1= d— =H —_. 4.9
N;H Veed(h,a) <D Vd ) > Vi~ 12\@ (4.9)
<hi1<Hi dlg* 1<hi<H:/d dlg* d|g*

€w(q)

Let q = p‘il . .pw(;)

1 —e e/
Ya= X X w "

be the prime decomposition of ¢. Then

d|g* ej<erA e:‘)<q)§ew(q>)\
00 e/ oo 6/w(q) w(q)
1 \° 1 1
(2 (5)) | 2 () )T
=0 VP el =0 \VPe0 1T

is constant since we fixed ¢. In conclusion, by using |e(xz)] = 1 and (4.8), we can bound the
absolute value of the contribution of h; # 0 by

hin?® h 2h
)IED DI DI B (- Ry

14
0<|h1|<H1 |h3|<H30<h<grH | 1 9 9

< /\H1H3q)‘/2+/\_‘u.

We assume that

(v = p) + 20— p) +2(p" + p") < A/4 (4.10)
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4.1 The case K =0 mod 1

(which will be justified later) so that
Su(s) = Ss(s) + OGP, (4.11)
where S5(s) denotes the part of Sy(s) with h; = 0.

By applying the triangle inequality and by estimating the remaining exponential sum by ({3.13)),
we obtain

S0 o X X

|hs|<Hs 0<h<qr—# 0<uz<Us

k—1
’ ’ h'U
Z Z e(Z ap(Spr A—ptp (U1 +Lug) — Sy r—ptpr (U1 + lug +vg” + 20sq” ) — W) ‘

0<u1 <U1 0<w<gr—#  \€=0

. . hs  2hs
- min <N7 sin (7r <q” + qAH>)

By setting u; = u/ 4 ¢” u} and uz = ufj + ¢”'u}y (where 0 < uf,u < ¢*') we get

Spr At (W1 4 Lug) = sa_p, (u] + lus + ig),

St At p (U1 + Cuz +vg” + 2057 ) = sy_,(u) + v + L(uf + 28) + i)

with ig = [(u? + u)/q” |. As T = (ig)o<oer = ([ (U + Cul) /" |)o<i<r is contained in Ty, we
have

S56) € e L Y X

|h3|<H3 0<h<g*# 0<uf<qv—r+!

— . . hv
Z Z e<z ap(sa—p(uy + lus +ig) — sa—p(u) + v+ 0(us + 28) +ig) — q/\u> ‘

0<uf <g*—+ 0<v<gr—H £=0

max
I1€Ty,

. . hs  2hs
- min (N, sin <7r (q” + qA“)>

By substituting v} 4+ v by another variable @}, using the definition of Gﬁ_ #(h, d) and replacing
the maximum by a sum we obtain

DS qu+11u 3 Z’G (h,ub)Gh_, (h,y + 25)

|hs|<H3 0<h<g*~# 0<uf<qv—rt1 I€T}

: . hs . 2hs \\| ™'
- min (N, sin <7T ((]l’+q’\_“>) >

Using the estimate ’Gﬁ_u(h, uly + 25)‘ < 1 and the Cauchy-Schwarz inequality, we yield

1/2
S G )G o) < g2 S |G

0<uy<gv =+t 0<uf<gv—Ht1

We now replace A by A — p1, X by v — p+ 1 and use (4.1)) and apply Proposition [2.2.3]

hs  2hs \\|7"
S5(s) < ¢ "MA=m/2 min | NV, |sin (7‘(‘ <3—|— >> )
o <rtn Yy 2

|h3|<H3 0<h<g*
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4 Proof of the Main Theorem

We now take the dependency on s into account and average according to it. Since |hs|/q” < 1/2,
we obtain from (3.16]) that
, hs . 2hs \\| ™'
Sin | T qT =+ F

§X X s
sin <7TZS> 1) + (X — )

1<s<S 0<h<gr—H
-1
<vg’

1
5 D 1Ss(s) < g AR 4 g AR (A — )
1<s<S8

< 0 i 4

Finally, we have

Z min (q”,

|h3|<H3

) ( hs3 )
smm | mT—
ql/

and thus we obtain the estimate

< ¢ MA=m/2 @)+ g
provided that
v—u +p +N—p < (4.12)
Putting all these estimates — (4.2)), (4.3), (4.5), (4.6) and (4.11)) — together and recalling that
' = p— p', we finally find the upper bound

|SO‘ < qzzf()\fzx) + V(W(q)+1)/2q’/q*77()‘*l’)/2 _’_qufp’/2 _’_qzzfp”/Q + )\1/2ql//2+3/\/8

— provided that the conditions (4.1)) (4.4), (4.7), (4.10), (4.12)) hold, i.e.

2 Sp<v—p, pl<pl/2, g <2 2l >\
v —=p)+2A—p)+2(0" +p") <N4 v +p" +A-p <

For example, the choice

1% 1%
N = LiJ do = — LiJ
v lgg) A== 5

ensures that the above conditions are satisfied.

Summing up we proved that there exists ' > 0 with
Sp < ¢/ <« NI

which is precisely the statement of Theorem [1.2.2]

50



4.2 The case K # 0 mod 1

4.2 The case K #Z 0 mod 1

In this section, we show that, for K = ag+ -4+ ar_1 # 0 mod 1, Proposition provides an
upper bound for the sum

E—1
= 3 o(Sousto+ 7)),
n<N =0
Let u, A, p and p; be integers satisfying
0<p1<p<pu=v—-2p<v<A=v+2p<2v (4.13)

to be chosen later. Since K # 0 mod 1 we can not use Lemma directly. Therefore, we apply
Lemma with @ =1 and R = ¢°. Summing trivially for 1 <r < R; = ¢ yields

sof? < RN S (1 Dy s

R R
Ri<r<R
where
Sir)= > (ZW (n+0)?) — ((n+r+€)2))>
neli(r)

and I;(r) is an interval included in [0, N —1]. By Lemma we conclude that sy oo ((n+£)?) =
Sx.c0((n + 1+ £)2) for all but O(Ng~A=¥=9)) values of n. Therefore, we see that

Si(r) = Si(r) + O(q"~ =),
with
Si(r) = Z (Zaz sa((n+4) )—s,\((n+r+€)2))>.
neli(r) =0
This leads to
|SO‘2 < q2V*P+P1 4 q3V+P*)\ + qﬁ Z ‘Si (7’)‘
Ri<r<R

and, by using the Cauchy-Schwarz inequality to

2v
|SO‘4 < q41/—2p+2p1 + q611+2p—2/\ + % Z ‘Si(r)f '
Ri<r<R

For |5} (r)]* we can use Lemma again: Let p’ € N to be chosen later such that 1 < p/ < p.
After applying Lemma with @ = ¢ and

S=qg* < g ", (4.14)
we observe that for any m € N we have

sa((m +5¢")%) = sx(m?) = sua((m+ 5q")?) = sua(m?),
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4 Proof of the Main Theorem

and thus

4 _ - q q
‘S()‘ <K q4V 2ot201 + q6y+2p 2/\ ? Rf Z Z ’SQ r, 8 (415)
Ri<r<R1<s<S

with

k—1
Solrs) = ) e(Zae (sur((n+0)%) = sua((n+7+0)?)
)

nels (7" =0

—sun((n+sg" + %) + s ((n+sg" +7r+ 6)2))> ,

where I5(r, s) is an interval included in [0, N — 1].
We now make a Fourier analysis similar to the case K = 0 mod 1.
Let /' = pu—p' >0 and
U= q)‘*u+p’7 U3 _ qV*N+p’+1’ V = q)\*l/«_ (416)

We again choose the integers u; = wui(n), ug = wuz(n), uz = usz(n), v = v(n), w; = wi(n),
wg = wa(n), and ws = ws(n) verifying the conditions of Lemma

n? = u1q” + wy mod ¢* (0<u; <U, 0<w <qg"),
(n+1)% = ugg” + wy mod ¢ (0<wug <U, 0<wy < q"),
2n = u;gq“/ + ws (0<ug<Us, 0<w3< qy/)a

2sn = v mod ¢* 0<v<V),

Assuming that A < 24/, we have

(n+0)% = (ug + Luz)g” + w1 + lws + €% mod ¢,
(n+ €+ 5¢")? = (uy + lus + vg” + 2€sqp/)q“/ + wy + fws + 2 mod ¢,
(n+0+7)° = (uz + Eu;;)q“/ + wg + bws + 2 + 2r¢ mod ¢,
(n+ 0+ sg" + 1) = (ug + Lus + vg” + 200+ r)sq” )¢" + wy + lws + > + 2rf mod ¢

According to Lemma for fixed integers r, s,¢ > 1, the number of integers n < ¢” for which
at least one of the following conditions

spa((n+02) # sy a—pypr (ur + Lug),
sur((n+ €+ sq ) )) # Spt A—ptpr (U1 + Luz + qu’ + 2€sqp/)
Sun((n+ 1+ 0)%) # 8 A pr (U2 + Cug),
sur((n+r+0+ sq“) )) 7 Sp a—ptp (U2 + lus + vqp +2(¢+ 'r)sq” )

is satisfied is < ¢“ . As in Section we use characteristic functions to filter the right values

52



4.2 The case K # 0 mod 1

of uy, ug, us, and obtain

Sares) = > >, ),

0<u1 <U 0<ua<U 0<u3<Us

k—1
Z e <Z ay (Sp’,k—/ﬁ—p’(ul + Eu?,) — Sp! A—ptp (U2 + Eu;;)

nelz(r,s) /=0

— Sp’)\—;ri-p’ (Ul + Ku;g + U(?’L)qpl + 2€qul)
+8pr A—ptpr (U2 + lus + U(n)q”/ +2(¢+ r)sqp,))>
n_u (n4r)° _u 2 _us
XU71 qA - U XU71 q)\ - U XU;I qy U3
+0(¢" 7).
Furthermore, we use Lemma to replace the product of characteristic functions y by a

product of trigonometric polynomials. Using (3.11) with U; = Uy = U, H; = Hy = U¢”? and
Hj3 = U3q”?, and integers pa, ps verifying

pr<p—p, p3<p—rp, (4.17)
we obtain
SQ(T’, 8) = Sg(?“, S) + O(qyfp/) + O (Ego(?’)) + 0O (Egl(())) + 0O (E31 (7’)) (4.18)

+ O (E32(0)) + O (Es2(r)) + O (Es3(r)) + O (Esa(r))

for the error terms obtained by

Sars) = > > D> )

0<u1 <U 0<u2<U 0<u3<Us 0<o<V

k—1
e <Z Qyp (Sp/7/\—u+p'(u1 + €U3) — Spl7A_M+pl(u2 + Eu;),)
=0

— Syt (w1 + Lz + vg” + 2Usq”)
+ 8o/ A—ptp (U2 + luz + ’qul +2(¢+ r)sqp,))>

n? (n+71)?  uy o2n  us
> v (55 ) v (U5 8 ) e (- )

nelz(r,s)

1 2sn — v
= X

0<h<gr—H

As in Section [£.I] we use the inner sum to filter the right value for v.

Next we estimate the error terms:
U3 U3 2h, U3n
Ex(r)= ="+ = Y D e <3V
n<q” q

Y

H H
3 3 1 <h<Hs/Us
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4 Proof of the Main Theorem

which by (3.15)) and (4.16)) gives
~1

!
2mhg < q' P 4 @ gp—r'=ps  gv=pa

sin ——55

Eso(r) < ¢" 7P + ¢ #3 Z
1<h4<q’3

where w(q) denotes the number of prime divisors of gq.

Similarly,
U hh(n + r)?
E?,l(r):F Z Ze<2()\/U)>'
n<q” q

2 hy|<ta/U

holds. By (3.18) — with ¢“~#*#" complete sums — ([&.9) and ({#.17) we conclude

Eai(r) < ¢ +q " > ¢ ged(hhy, g )
1<hy<qe?

< qV*PZ + ql’*,UJJFPI < qV*PZ_

Next, we consider

PRCEE= D SIS

H, Hs
|hy|<Ha/U |y |<Hs/Us

which can be estimated by (3.18), (4.9) and (4.17), with a trivial summation over hj:

Ep(r) < ¢ +q 7 Y ¢ [ged(hy, ) < ¢

1<hfy<qr2

Z . (h’2(7z—|—7“)2 N 2h4n >
/U q"/Us

n<q¥

)

For E33(r) we yield

Pa) =gz Y %

2 gl <o | <Ha

Using (3.18)), (4.9) and (4.17) as well as substituting b’ = h} + h}, we conclude

Ess(r) <q" " +q¢ ™ > ¢’ M Jged (W, ghr') < q" P2
1<h/ <gr2tl

()

n<q”

Similarly, we have

2
B)=fpg > X%

2 W< H U | <Ha /U [hy|<Ha Us

)

U q"/Us

Z . <h’1n2 + hly(n +1)? N 2h4n >

n<q’

and, by (3.18)), (4.9) and (4.17)), substituting A’ = k) + k), with a trivial summation over hf, we
get

Eu(r) < ¢ 74q 7 Y ¢\ ged(W g ) < g
1<h/<gP2t1
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4.2 The case K # 0 mod 1

In conclusion we deduce that
Sa(r,s) = S3(r,8) + O(¢" ") + O(¢" ") + O(¢" ™). (4.19)
We now reformulate S3(r, s) by expanding the trigonometric polynomials. Restructuring yields

Sy(r,s) = qf_“ SN @ LH) Y anU L H) Y an (U H)

0<h<g —* |h1|<H1 |ho|<H2 |h3|<H3

Z Z Z Z < hiuy + haus B h[?}Z:s B qi\w#>

0<u1 <U 0<ugs<U 0<u3z<Us 0<v<V

k—1
e (Z ay (Sp”)\flqup’ <U1 + lug) — Sp! A—ptp! (UQ + lug)
=0

—Sp/ A—ptp (U1 + Luz + vg” + 20sq”)

+8p A ptpr (U2 + lus + vg” +2(0 + r)sqp/))>

2 2
Z o <h1n + ho(n + ) N 2h3n N 2h5n) '

A v A—p
nelz(r,s) q q 4

We now split the sum Ss(r, ) into two parts:
S3(r,s) = Sa(r,s) + Sy(r, s), (4.20)

where S4(r, s) denotes the contribution of the terms for which h; + he = 0 while S)(r, s) denotes
the contribution of the terms for which hy + hg # 0. We have by (3.19))

Si(rs) < > an,(UTLHY) Y an, (U Hy) Y ap, (Ut Hs)
|h1|<H1 |ha|<H2 |hs3|<H3
UUsV AP Jged(n + ha, )

< UPUsVIM?\/2H,
< V4qu+ (BA=9u+T7p +p2)

Therefore it remains to consider 54(7' s) Setting u1 = u + ¢”'u), ug = uj + ¢’ ufy and uz =
5+ ¢~ uy, (where 0 < uf,ufy,uf < ¢”") we can replace the two-fold restricted sum of digits
functlons by a truncated sum of digits functions

= Sx- u( 1+ ul + L |+ luz)/q° J)
+ lufy + { )+ luly)/q” D
+U+€u3+25)+t( + 0uy)/q” J)

Spr A—ptpr (U1 + Lus

Spr A—ptp (U2 +luz) = Sx_p

(v
or (14
(

= Sacp (uh+ v+ 2sr + L(uf + 2s) + {(ué’—}-@ué’)/q”lp.

) u
)
Sp' A—ptp (U1 + Cug + vq”/ + %sqp )
Sp/ A—ptpr (U2 + fus + vg” + 200+ r)sqp ) u
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4 Proof of the Main Theorem

Using the periodicity modulo V := ¢ *, we replace the variable v by v; such that v; =
u} + v mod ¢* . Furthermore we introduce a new variable vy such that

vy = uh + v + 257 = vy + uh — u) + 257 mod ¢

If we observe that U/¢” = V and write U; = Us/q” , we obtain a slightly messy formula for
S4(r, s) which yields a good estimation for Sy(r, s). We use a summation over h to filter the right
value of v; and a summation over A’ to filter the right value of vs.

Su(rys) = ¢ Y S0 Y an, (U Hy)an, (U Hy) > an,(Us', Ha)

0<h<g*H 0<h/ <g*~H |ha|<H2 |h3|<H3

—hott! + hou!! hat!
I S R

0§u’1’<qpl O§u5’<qpl 0§ué’<qﬁl

hsuf 2K sr
el — +
Ul g H

(]

0<uf<U}
k-1
/ —ho — h + W)

o QUSA—p (u’l + fuly + [(u'{ +€u§)/qu { - Jua

0<u) <V =0 q
k-1
/ h/ —h 'LL/

Z el = arsay (ué—i—ﬁué%— [(u’g’—l—ﬁug)/q”D +()\_i)2>

0<ufb<V =0 q

sy (Ul + 0(uf + 2s) + {(u,f + Kug)/q”’J) +

le]
/\/\ D
7
M
—
=
Q
>
==
S
S
\_/

0<v1 <V (=0
k—1 / e
Z e Sy (vg + (uf + 2s) + L(ug + ol /g J) -2
0<va<V =0 q
horn 4 hor?  2hsn  2hsn
¢ A v A—p |
q q q

Using (2.4)), we yield
Su(rys) < g7 > ) min(U %A% D min(Us kgt

0<h<g*—H 0<hW <g*~# |ho|<Ha |hs|<H3

)IEEDIEED SN

0§u’1’<qpl 0§u’2’<qf’/ 0§ué’<qf’/ 0<us<U;

GBI = = o,y |G (= ha, )
AT B — b +29)| | G4 (0 4 29)
2horn  2hgn  2hsn
Z ¢ q)\ + q” + q)\—u K
nel(r,s)
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4.2 The case K # 0 mod 1

with

T(u, @) = Q;J , V;ﬂuJ {WD for (u, ) € N,

Bounding the sum over n by (3.13), leads to

Sy(r,s) < ¢ Z Z min(U 2, hy?) Z min(U; !, hat)

0<u/! ulf ulf <gr' |ha|<Ha |ha|<Hs
-1
. . 2har + 2q)\7yh3 +2¢"hs noonon
Z min (q”, sin 7 > Ss(h, ha, s, uy, uy, u3),
0<h<gr—H

where

Sshoha s, yufaf) = 30 3 |G b= by )| |G W b, uh)|

0<ul,<Uj 0<h/ <gr—h

17 /1

‘G YUY (B! — ol + 2s) ‘ ‘G u2’u3)(h’,ug —1—23)‘.
This sum can be bounded from above by using the Cauchy-Schwarz inequality:

" " "
SB(h) h27 S, Up, Ug, ’LL3)

< D ‘G YD) (B — g, )

0<ufy<U} 0<h/<gr—H

1/2
i 1"

2
‘G ul’u3)(h' — h,uf + 2s)

1/2

" 17

PDID DR N CRERY

0<uf <UL 0<h <gr—H

17 1 2
‘G Y2 (n! ol 4 23)‘

By periodicity modulo ¢*~# and taking h” = h’ — h, the first parenthesis is independent of h and
we get

SS(h) h?) S, ulll’ u,2/7 Ug) S 56(h27 S u17u3)1/2S6(h25 S u27 ug)1/2a
with

Se(hz, s,u” uf) Z Z )Gi(i‘;’“g)(h’ — ho,uj) 2

0<ul <UL O<h/<gr—#

AW w4967 (421
‘ A—pu ( 7U’3+ S) : ( )

We obtain

Sy(r,s) < ¢ Z Z min(U "2, hy?) Z min(U; !, hs't)

0<uf uf uf <q' |ha2| <Ho Iha|<Hs
Se(ha, s, U17U3)1/256(h273 UQng)l/z
: ( v 2har + ¢*V2h3 + ¢"2hs 1)
Z min | g7, :

A
0<h<g*—H q

sin 7
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4 Proof of the Main Theorem

Assuming
A=2u+p +pp+p< -3 X—2u+p +p3+1<-3 (4.22)
we can verify
’2hzr + qA*”2h3‘ Jq" < (2HaR + ¢ V2Hz) gt < 2070 Hpbe oA "2t et <

and thus we can actually use the sharper bound in (3.14)) to bound the inner sum:

= ol )

0<h<grA—H
-1
< ged(2s, ¢* ) min <q”, > + (A= ) A

2hor + 2¢*Vhs + ¢"2hs
A
q

sinm

sinw

2h2r+2q’\_”h3
qA

2h27‘+2q>‘_uh3
q>\

Since ¢** < min (q”, sin

-1
> , it follows

Sirs) € (- ged2s ) A Y Y min@ )
0<uf uff ulf<gf' |h2|<Hs
_1>

Se(ha, s, uf, u§)"2Ss(ha, 5, uf, uf) /2
Z min(U3_17 hgl) min (q”,

Here we recall that in (4.15) we have Ry < r < R and thus introduce the integers H} and x such

that

sin 7

2h27’+2q>‘_uh3
q)\

|h3|<H3

Hé — qA—V-l-ng/Rl — qA—M+Pl+p:s—p1+2 — qu' (4.23)
Assuming that
o+ p3+2<py, (4.24)

we have Hj) < ¢*# by ([£.16) and the condition |hy| > H} ensures that ¢*~” |hg| < & |hor|. This
leads to

Sy(r,s) <K Sa1(r,s) + Saa(r,s) + Saz(r, s),

where Sy (r,s), Saz(r,s) and Sy3(r,s) denote the contribution of the terms |ha| < HY, H) <
|ha| < ¢** and ¢** < |ho| < Hj respectively.

This separation allows us to deal with very low values of |hs| in S41, and thus we can use ({3.14)
efficiently. We have already seen that, ¢*# |hs| < 3 |hor| holds for |ho| > H) and, therefore,

s -1 7
min | g, <

2h2’r’+2q/\7“h3
A Hlr’
For S;3 we split the sum into parts of length ¢*~* to be able to find an appropriate estimate.

q

sinm
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4.2 The case K # 0 mod 1

Estimate of Syi(r,s) By (3.14) we have

. . . v—A -1
E min (q”, sin ﬂ%‘ <L g,
|hs|<Hs

and, therefore,

541(7', S) < V()\ - H) ng(stqA_u) q’/+2/\_2NU—2U—1
S5 DD Selhas,uf,uf) 2 Selha, s, g, uf)' V.

0<u/1/,u’2’,ug<qp |ho|<H

By Proposition (replacing A by A — g and L by A — u — k), we find some 0 < i’ <1 such
that

G0~ )| < 7O x| GLOH L))

By Parseval’s equality and recalling that #(Z;) = 2#~1, it follows that

> max |G — ha,uy /"))

|ho|<H
<Y D |GIW = ha Lu/a" D < 2
JETLy |ha|<H)
We obtain
// // 2 7 H/ 77/
g ol <= ()
|ha| <H) 1

uniformly in A\, p, H), uf, v and uf. It follows from (4.21)) and Parseval’s equality that

Z Se(ha, s,u” ul) < Us H \™
6\782, 9, s U3 3 q>\_“ .

|ha|<H)

By the Cauchy-Schwarz inequality, we obtain

Z Se(ha, s, U17U3)1/256(h275 ug,ug’)l/z
|ha|<H)
1/2 1/2

H! N\
< Z 56(h2757u,1/7ug) Z 56(}1,2’8,1//2/,11,%/) < Ué < /\2“> .
(ha | < s | < 1

This, finally, yields

H,
Su(r,s) < v (A p) ged(2s, ) ¢ A2 g2y 1U3( : ) ,

A—p
q
and, by ([E23), (E16) and BI7), we find

1 / /
RS YD Sulrs) <y (A —p) Ot g e, (4.25)
Ri<r<R1<s<S

which concludes this part.
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4 Proof of the Main Theorem

Estimate of Sy(r,s) The condition |ho| > H) ensures that ¢*~" |hg| < 1 |hor| and
-1 A
min <q”, > <« 1

sin 7 .
Hlr
We obtain, similar as in the estimation of Sy (r, s), by Parseval’s equality

2h2’r’+2q/\7“h3
q/\

Z ‘G{\(_u;,ug)(h/ - h27u§,)‘2 < Z ’Gi—uml - hQ’ug)}Q <1

ho|<H}, JET;

and therefore — again by Parseval’s equality —

Z Se(h2, s,u” uy) < Us.
|ho|<HY

By the Cauchy-Schwarz inequality, we have

Z 56(h275>u/1/7ug)l/QSG(h%Saug?ug)l/Q

H)<|ha|<g*—#

1/2 1/2
g Z Sﬁ(h%svu/l/’ug) Z Sﬁ(hQ,S,Ug,U%’) < Ué
|h2|<g?—H |ho|<gr—H
It follows that
A
Sia(r,s) < (A= p) ged(2s,¢*7) q”—Q'”?””U‘QI%,Ué > min(Uz ' byt
271
|h3|<Hs
and we get, by (I23) and (T0),
d(2s, g} H
Saa(r,s) < (A —p) ged(2s,¢7F) )ql’+p—p3p3-

r

By (3.17), we yield

1
oo DY Sulns) < pps(A— )T ¢ (4:26)

Ri<r<R1<s<S

Estimate of Sy3(r,s) We split the summation over hy into J := Ho/¢g*™* — 1 parts of the form
JOTF<hy <G+ Hwith j=1,...,J.
The condition |ha| > jg*~* ensures that ¢*~" |hg| < 1 |hor| and thus

-1 A m
min <q”, sin 7r > < - g_ = qf
Jq g

2h2r+2q>‘7uh3
qk
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4.2 The case K # 0 mod 1

By the Cauchy-Schwarz inequality, we have — by the same argument as above —

> Se(ha, s, uff, uf)' /2 Sg(ha, s, u, uf) /2
JarmHE<|ha|<(j+1)grH
1/2 1/2
< Z Se(ha, s, uf, uf) Z Se(ha, s, ub, uf) < Uj.
h2 mod gr—H h2 mod gr—H

It follows that

A— / q“ . _ _
Sia(r,s) < (A=) ged(2s,*") ¢*'U3 37 < 3 min(U ! hgY),
1<5<J |h3|<H3

and by (4.16)) and (3.17) we finally yield

1 /
ae 3N Suslns) < p (- ) e (4.27)
Ri<r<R1<s<S

Combining the estimates for S; It follows from (4.25)), (4.26) and (4.27) that

1 / / /
= S Y Surns) < Ae0g <q—2n (pr=p'=p3) | g=ps | q—p+3p) '
Ri<r<R1<s<S

Choosing
/ /
PL=P =P, P2=pP3 =07,

we obtain

1 ) ) ) /
RS Y Sulrs) < A (q*Q" (p=30") - g=" 4 g~ (p=3r >) .
Ri<r<R1<s<S

Since 0 < 1’ < 1, we obtain using (4.20) and (4.19), that

% Do D Salns) <y (q_"'(P—?w’) +qf + q%(SA—9u+8p’)) :

Ri<r<R1<s<S

We recall by ([.14) that S = ¢*" and by ([@.13) that p = v — 2p, A = v + 2p and insert the
estimation from above in (4.15)):

‘50‘4 < q41/—2p’ + q4u—2p + V3+w(q)q41/ (q_n/(p_gp/) 4 q_p/ + q—%+17p+4p/')
For p' = |v/146] and p = 4p/, we obtain
1S0| < pBHA@/ A= o Brel@)/A N1

Therefore we have seen that Proposition implies the case K # 0 mod 1 of Theorem [1.2.2]
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Conclusion

At last, we comment on possible generalizations of the covered problem.

A natural generalization would be to consider quadratic polynomials instead of n?. The author
suspects that the developed methods can also be applied in this case without major changes. For
higher-degree polynomials, it would be necessary to generalize the results on carry propagation
in Chapter [3| and find estimates for cubic and higher-degree exponential sums which are not
covered by this thesis. However, it is not yet known whether the asymptotic distribution along
cubic polynomials is uniform.

Another possible generalization is to consider g-additive functions instead of s, (still along n?).
Chapter [3| can be adapted to g-additive functions by only minor changes. However, the results
from Sections 2.3]and can not be generalized in a trivial way. Provided these generalizations,
the proof of the main theorem follows easily.

A generalization of ¢g-additive functions are (invertible) automatic sequences. It is known by [18§]
that the asymptotic frequencies along squares exist, but no quantitative statement has yet been
found.

One sees that there are still many open problems as well as uncovered aspects of Gelfond’s third
problem. Some sub-problems might possibly be solved soon, but there still remains enough room
for improvements and further research.
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