Substitution dynamical systems in the context of Sarnak's conjecture

Clemens Müllner

10. November 2022

Möbius function

The Möbius function is defined by

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k} & \begin{array}{l}
\text { if } n \text { is squarefree and } \\
0
\end{array} \\
\text { otherwise }
\end{array}\right.
$$

A sequence \mathbf{u} is orthogonal to the Möbius function $\mu(n)$ if

Old Heuristic - Mobius Randomness Law
Any "reasonably defined (easy)"bounded sequence independent of μ is orthogonal to μ.

Möbius function

The Möbius function is defined by

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k} & \begin{array}{l}
\text { if } n \text { is squarefree and } \\
0
\end{array} \\
\text { otherwise }
\end{array}\right.
$$

A sequence \mathbf{u} is orthogonal to the Möbius function $\mu(n)$ if

$$
\lim N \rightarrow \infty \frac{1}{N} \sum_{n \leq N} \mu(n) u_{n}=0
$$

Old Heuristic - Mobius Randomness Law

Any "reasonably defined (easy)"bounded sequence independent of μ
is orthogonal to μ

Möbius function

The Möbius function is defined by

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k} & \begin{array}{l}
\text { if } n \text { is squarefree and } \\
0
\end{array} \\
\text { otherwise }
\end{array}\right.
$$

A sequence \mathbf{u} is orthogonal to the Möbius function $\mu(n)$ if

$$
\lim N \rightarrow \infty \frac{1}{N} \sum_{n \leq N} \mu(n) u_{n}=0
$$

Old Heuristic - Mobius Randomness Law

Any "reasonably defined (easy)"bounded sequence independent of μ is orthogonal to μ.

Orthogonality to μ

Results

- Constant sequences
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(a n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport - Nilsequences - Green and Tao - Horocycle Flows - Bourgain, Sarnak and Ziegler - Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n$ mod 1$)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Sarnak Conjecture

Definition

A dynamical system is said to be deterministic, if its topological entropy is 0 .

Conjecture (Sarnak conjecture, 2010)

Every bounded complex sequence $\mathbf{u}=\left(u_{n}\right)_{n>0}$ that is obtained by a deterministic dynamical system is orthogonal to the Möbius function $\mu(n)$.

Sarnak Conjecture

Definition

A dynamical system is said to be deterministic, if its topological entropy is 0 .

Conjecture (Sarnak conjecture, 2010)

Every bounded complex sequence $\mathbf{u}=\left(u_{n}\right)_{n>0}$ that is obtained by a deterministic dynamical system is orthogonal to the Möbius function $\mu(n)$.

Chowla Conjecture

Conjecture (Chowla)

Let $0 \leq a_{1}<a_{2}<\ldots<a_{t}$ and $k_{1}, k_{2}, \ldots, k_{t}$ in $\{1,2\}$ not all even, then as $N \rightarrow \infty$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} \mu^{k_{1}}\left(n+a_{1}\right) \mu^{k_{2}}\left(n+a_{2}\right) \cdots \mu^{k_{t}}\left(n+a_{t}\right)=0
$$

Theorem (Sarnak)

The Chowla Conjecture implies the Sarnak Conjecture

Theorem (Tao)

The logarithmic version of the Sarnak Conjecture implies the logarithmic version of the Chowla Conjecture.

Chowla Conjecture

Conjecture (Chowla)

Let $0 \leq a_{1}<a_{2}<\ldots<a_{t}$ and $k_{1}, k_{2}, \ldots, k_{t}$ in $\{1,2\}$ not all even, then as $N \rightarrow \infty$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} \mu^{k_{1}}\left(n+a_{1}\right) \mu^{k_{2}}\left(n+a_{2}\right) \cdots \mu^{k_{t}}\left(n+a_{t}\right)=0 .
$$

Theorem (Sarnak)

The Chowla Conjecture implies the Sarnak Conjecture.

Theorem (Tao)

The logarithmic version of the Sarnak Conjecture implies the logarithmic version of the Chowla Conjecture.

Chowla Conjecture

Conjecture (Chowla)

Let $0 \leq a_{1}<a_{2}<\ldots<a_{t}$ and $k_{1}, k_{2}, \ldots, k_{t}$ in $\{1,2\}$ not all even, then as $N \rightarrow \infty$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} \mu^{k_{1}}\left(n+a_{1}\right) \mu^{k_{2}}\left(n+a_{2}\right) \cdots \mu^{k_{t}}\left(n+a_{t}\right)=0 .
$$

Theorem (Sarnak)

The Chowla Conjecture implies the Sarnak Conjecture.

Theorem (Tao)

The logarithmic version of the Sarnak Conjecture implies the logarithmic version of the Chowla Conjecture.

Logarithmic versions

Theorem (Tao, Tao - Teräväinen)

The logarithmic version of the Chowla conjecture is true for $t=2$ and for t odd.

Theorem (Frantzikinakis, Host)
 The logarithmic version of the Sarnak conjecture is true if the dynamical system has countable many ergodic components.

Literature: „Sarnak conjecture: What's new?" (Ferenczi - Kulaga Przymus - Lemanczyk)

Logarithmic versions

Theorem (Tao, Tao - Teräväinen)

The logarithmic version of the Chowla conjecture is true for $t=2$ and for t odd.

Theorem (Frantzikinakis, Host)

The logarithmic version of the Sarnak conjecture is true if the dynamical system has countable many ergodic components.

Literature: „Sarnak conjecture: What's new?" (Ferenczi - Kulaga Przymus - Lemanczyk)

Logarithmic versions

Theorem (Tao, Tao - Teräväinen)

The logarithmic version of the Chowla conjecture is true for $t=2$ and for t odd.

Theorem (Frantzikinakis, Host)

The logarithmic version of the Sarnak conjecture is true if the dynamical system has countable many ergodic components.

Literature: „Sarnak conjecture: What's new?" (Ferenczi - Kulaga Przymus - Lemanczyk)

Substitutive Sequences

Substitutive (Morphic) sequences

Let \mathcal{A} be a finite set and θ a substitution (morphism) such that $\theta: \mathcal{A} \rightarrow \mathcal{A}^{*}$. Then if w is a fixed point of θ, i.e. $\theta(w)=w$, then (\mathbf{w}) is a substitutive sequence, where π is a code.

Automatic sequnces

If the substitution θ is of constant length k, i.e. $\theta: \mathcal{A} \rightarrow \mathcal{A}^{k}$, then we call a fixed point w k-automatic.

Substitutive Sequences

Substitutive (Morphic) sequences

Let \mathcal{A} be a finite set and θ a substitution (morphism) such that $\theta: \mathcal{A} \rightarrow \mathcal{A}^{*}$. Then if \mathbf{w} is a fixed point of θ, i.e. $\theta(\mathbf{w})=\mathbf{w}$, then $\pi(\mathbf{w})$ is a substitutive sequence, where π is a code.

Automatic sequnces
If the substitution θ is of constant length k, i.e. $\theta: \mathcal{A} \rightarrow \mathcal{A}^{k}$, then we call a fixed point w k-automatic.

Substitutive Sequences

Substitutive (Morphic) sequences

Let \mathcal{A} be a finite set and θ a substitution (morphism) such that $\theta: \mathcal{A} \rightarrow \mathcal{A}^{*}$. Then if \mathbf{w} is a fixed point of θ, i.e. $\theta(\mathbf{w})=\mathbf{w}$, then $\pi(\mathbf{w})$ is a substitutive sequence, where π is a code.

Automatic sequnces
If the substitution θ is of constant length k, i.e. $\theta: \mathcal{A} \rightarrow \mathcal{A}^{k}$, then we call a fixed point $\mathbf{w} k$-automatic.

The Thue-Morse sequence

The Thue-Morse substitution

$\theta(a)=a b$	$\pi(a)=0$
$\theta(b)=b a$	$\pi(b)=1$

$$
\theta^{1}(a)=a b
$$

$$
\theta^{2}(a)=a b b a
$$

$$
\theta^{3}(a)=a b b a b a a b
$$

$$
\theta^{4}(a)=a b b a b a a b b a a b a b b a
$$

$$
\theta^{5}(a)=a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b
$$

$$
\pi\left(\theta^{5}(a)\right)=01101001100101101001011001101001
$$

The Thue-Morse sequence

The Thue-Morse substitution

$$
\begin{array}{ll}
\theta(a)=a b & \pi(a)=0 \\
\theta(b)=b a & \pi(b)=1
\end{array}
$$

$$
\theta^{0}(a)=a
$$

$$
\theta^{1}(a)=a b
$$

$$
\theta^{2}(a)=a b b a
$$

$$
\theta^{3}(a)=a b b a b a a b
$$

$$
\theta^{4}(a)=a b b a b a a b b a a b a b b a
$$

$$
\theta^{5}(a)=a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b
$$

$$
\pi\left(\theta^{5}(a)\right)=01101001100101101001011001101001
$$

The Thue-Morse sequence

The Thue-Morse substitution

$$
\begin{array}{ll}
\theta(a)=a b & \pi(a)=0 \\
\theta(b)=b a & \pi(b)=1
\end{array}
$$

$$
\begin{aligned}
\theta^{0}(a) & =a \\
\theta^{1}(a) & =a b \\
\theta^{2}(a) & =a b b a \\
\theta^{3}(a) & =a b b a b a a b \\
\theta^{4}(a) & =\text { abbabaabbaababba } \\
\theta^{5}(a) & =\text { abbabaabbaababbabaababbaabbabaab } \\
\pi\left(\theta^{5}(a)\right) & =01101001100101101001011001101001
\end{aligned}
$$

The Thue-Morse sequence

The Thue-Morse substitution

$$
\begin{array}{ll}
\theta(a)=a b & \pi(a)=0 \\
\theta(b)=b a & \pi(b)=1
\end{array}
$$

$$
\begin{aligned}
\theta^{0}(a) & =a \\
\theta^{1}(a) & =a b \\
\theta^{2}(a) & =a b b a \\
\theta^{3}(a) & =a b b a b a a b \\
\theta^{4}(a) & =\text { abbabaabbaababba } \\
\theta^{5}(a) & =a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b \\
\pi\left(\theta^{5}(a)\right) & =01101001100101101001011001101001
\end{aligned}
$$

The Thue-Morse sequence

The Thue-Morse substitution

$$
\begin{array}{ll}
\theta(a)=a b & \pi(a)=0 \\
\theta(b)=b a & \pi(b)=1
\end{array}
$$

$$
\begin{aligned}
\theta^{0}(a) & =a \\
\theta^{1}(a) & =a b \\
\theta^{2}(a) & =a b b a \\
\theta^{3}(a) & =a b b a b a a b \\
\theta^{4}(a) & =\text { abbabaabbaababba } \\
\theta^{5}(a) & =\text { abbabaabbaababbabaababbaabbabaab } \\
\pi\left(\theta^{5}(a)\right) & =01101001100101101001011001101001
\end{aligned}
$$

The Thue-Morse sequence

The Thue-Morse substitution

$$
\begin{array}{ll}
\theta(a)=a b & \pi(a)=0 \\
\theta(b)=b a & \pi(b)=1
\end{array}
$$

$$
\begin{aligned}
\theta^{0}(a) & =a \\
\theta^{1}(a) & =a b \\
\theta^{2}(a) & =a b b a \\
\theta^{3}(a) & =a b b a b a a b \\
\theta^{4}(a) & =a b b a b a a b b a a b a b b a \\
\theta^{5}(a) & =a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b \\
\pi\left(\theta^{5}(a)\right) & =01101001100101101001011001101001
\end{aligned}
$$

The Thue-Morse sequence

The Thue-Morse substitution

$$
\begin{array}{ll}
\theta(a)=a b & \pi(a)=0 \\
\theta(b)=b a & \pi(b)=1
\end{array}
$$

$\theta^{0}(a)=a$
$\theta^{1}(a)=a b$
$\theta^{2}(a)=a b b a$
$\theta^{3}(a)=a b b a b a a b$
$\theta^{4}(a)=a b b a b a a b b a a b a b b a$
$\theta^{5}(a)=$ abbabaabbaababbabaababbaabbabaab
$\pi\left(\theta^{5}(a)\right)=01101001100101101001011001101001$

The Thue-Morse sequence

The Thue-Morse substitution

$$
\begin{array}{ll}
\theta(a)=a b & \pi(a)=0 \\
\theta(b)=b a & \pi(b)=1
\end{array}
$$

$$
\begin{aligned}
\theta^{0}(a) & =a \\
\theta^{1}(a) & =a b \\
\theta^{2}(a) & =a b b a \\
\theta^{3}(a) & =a b b a b a a b \\
\theta^{4}(a) & =a b b a b a a b b a a b a b b a \\
\theta^{5}(a) & =a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b \\
\pi\left(\theta^{5}(a)\right) & =01101001100101101001011001101001
\end{aligned}
$$

Deterministic Finite Automata

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

Deterministic Finite Automata

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$n=22=(10110)_{2}, \quad u_{22}=1$
$u=\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001$

Deterministic Finite Automata

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$$
n=22=(10110)_{2}, \quad u_{22}=1
$$

$$
\mathbf{u}=\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001
$$

Deterministic Finite Automata

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$$
\begin{aligned}
& n=22=(10110)_{2}, \quad u_{22}=1 \\
& \mathbf{u}=\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001 \ldots
\end{aligned}
$$

Different Points of View

$\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001 \ldots$

Substitution
 Fixpoint of the following substitution (+ code)

Formal Power Series

Algebraicity over $\mathbf{F}_{q}(X)$

$X+(1+X)^{2} t(X)+(1+X)^{3} t(X)^{2}=0$

Different Points of View

$\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001 \ldots$

Automaton

Formal Power Series

Algebraicity over $\mathbf{F}_{q}(X)$.

Substitution

Fixpoint of the following substitution (+ code):

$$
X+(1+X)^{2} t(X)+(1+X)^{3} t(X)^{2}=0
$$

Different Points of View

$\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001 \ldots$

Automaton

Substitution

Fixpoint of the following substitution (+ code):

$$
\begin{array}{ll}
a \rightarrow a b & a \mapsto 0 \\
b \rightarrow b a & b \mapsto 1
\end{array}
$$

Formal Power Series
Algebraicity over $\mathbf{F}_{q}(X)$
$X+(1+X)^{2} t(X)+(1+X)^{3} t(X)^{2}=0$

Different Points of View

$\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001 \ldots$

Automaton

Substitution

Fixpoint of the following substitution (+ code):

$$
\begin{array}{ll}
a \rightarrow a b & a \mapsto 0 \\
b \rightarrow b a & b \mapsto 1
\end{array}
$$

Formal Power Series

Algebraicity over $\mathbf{F}_{q}(X)$.

$$
t(X):=\sum_{n \geq 0} a_{n} X^{n}
$$

$$
X+(1+X)^{2} t(X)+(1+X)^{3} t(X)^{2}=0
$$

Properties

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]}
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear. The dynamical system (X, T) related to an automatic sequence has zero topological entropy.
- Every subsequence $\left(u_{a n+b}\right)_{n \geq 0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic.
- Let $u^{(1)}(n) \ldots ., u^{(j)}(n)$ be automatic sequences. Then $u(n)=f\left(u^{(1)}(n), \ldots, u^{(j)}(n)\right)$ is again automatic.

Properties

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]}
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear.
automatic sequence has zero topological entropy.
- Every subsequence $\left(u_{a n+b}\right)_{n \geq 0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic. - Let $u^{(1)}(n)$ $u^{(j)}(n)$ be automatic sequences. Then $u(n)=f\left(u^{(1)}(n), \ldots, u^{(j)}(n)\right)$ is again automatic.

Properties

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]} .
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear. The dynamical system (X, T) related to an automatic sequence has zero topological entropy.

Properties

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]} .
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear. The dynamical system (X, T) related to an automatic sequence has zero topological entropy.
- Every subsequence $\left(u_{a n+b}\right)_{n \geq 0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic.

\square

Properties

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]} .
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear. The dynamical system (X, T) related to an automatic sequence has zero topological entropy.
- Every subsequence $\left(u_{a n+b}\right)_{n \geq 0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n)=f\left(u^{(1)}(n), \ldots, u^{(j)}(n)\right)$ is again automatic.

Results 1

Theorem 1 (M., 2017)

Every automatic sequence $\left(a_{n}\right)_{n \geq 0}$ fulfills the Sarnak Conjecture

```
Theorem 2 (M., 201/)
Let A}=(\mp@subsup{Q}{}{\prime},\Sigma,\mp@subsup{\delta}{}{\prime},\mp@subsup{q}{0}{\prime},\tau)\mathrm{ be a strongly connected DFAO such that
\Sigma={0,\ldots,k-1} and \delta
letters for the prime-subsequence }(\mp@subsup{a}{p}{}\mp@subsup{)}{p\in\mathcal{P}}{}\mathrm{ exist, i.e
```

$\operatorname{densp}_{\mathcal{p}}(\mathbf{u}, \alpha)=\lim _{N \rightarrow \infty} \frac{1}{\pi(N)} \sum_{1 \leq p \leq N} 1_{\left[u_{p}=\alpha\right]}$.

Results 1

Theorem 1 (M., 2017)

Every automatic sequence $\left(a_{n}\right)_{n \geq 0}$ fulfills the Sarnak Conjecture

Theorem 2 (M., 2017)

Let $A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, \tau\right)$ be a strongly connected DFAO such that $\Sigma=\{0, \ldots, k-1\}$ and $\delta^{\prime}\left(q_{0}^{\prime}, 0\right)=q_{0}^{\prime}$. Then the frequencies of the letters for the prime-subsequence $\left(a_{p}\right)_{p \in \mathcal{P}}$ exist, i.e.

$$
\operatorname{dens}_{\mathcal{P}}(\mathbf{u}, \alpha)=\lim _{N \rightarrow \infty} \frac{1}{\pi(N)} \sum_{1 \leq p \leq N} \mathbf{1}_{\left[u_{p}=\alpha\right]}
$$

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

$\exists \mathbf{w}_{0}: \delta\left(q, \mathbf{w}_{0}\right)=a \quad \forall q$.

Example

$\mathbf{w}_{0}=010$.

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

$\exists \mathbf{w}_{0}: \delta\left(q, \mathbf{w}_{0}\right)=a \quad \forall q$.

Example

$w_{0}=010$.

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

$\exists \mathbf{w}_{0}: \delta\left(q, \mathbf{w}_{0}\right)=a \quad \forall q$.

Example

$\mathbf{w}_{0}=010$.

Synchronizing Automata

Theorem (Deshouillers + Drmota + M.)
Let $\mathbf{u}=\left(u_{n}\right) n>0$ be generated by a synchronizing automaton.
Then for every α the density

$$
\operatorname{dens}(\mathbf{u}, \alpha)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leq n \leq N} \mathbf{1}_{\left[u_{n}=\alpha\right]}
$$

exists. Furthermore, the densities for the following subsequences exist

- $\left(u_{p}\right)_{p \in \mathcal{P}}$

Theorem (Deshouillers + Drmota + M.)
Let $\mathbf{u}=\left(u_{n}\right) n>0$ be generated by a synchronizing automaton. Then $\mathbf{u}=\left(u_{n}\right)_{n>0}$ is orthogonal to the Möbius function $\mu(n)$

Synchronizing Automata

Theorem (Deshouillers + Drmota + M.)
Let $\mathbf{u}=\left(u_{n}\right) n>0$ be generated by a synchronizing automaton.
Then for every α the density

$$
\operatorname{dens}(\mathbf{u}, \alpha)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leq n \leq N} \mathbf{1}_{\left[u_{n}=\alpha\right]}
$$

exists. Furthermore, the densities for the following subsequences exist

- $\left(u_{p}\right)_{p \in \mathcal{P}}$
- $\left(u_{P(n)}\right)_{n \in \mathbb{N}}$

Let $\mathbf{u}=\left(u_{n}\right) n>0$ be generated by a synchronizing automaton. Then $\mathbf{u}=\left(u_{n}\right)_{n>0}$ is orthogonal to the Möbius function $\mu(n)$

Synchronizing Automata

Theorem (Deshouillers + Drmota + M.)

Let $\mathbf{u}=\left(u_{n}\right) n>0$ be generated by a synchronizing automaton. Then for every α the density

$$
\operatorname{dens}(\mathbf{u}, \alpha)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leq n \leq N} \mathbf{1}_{\left[u_{n}=\alpha\right]}
$$

exists. Furthermore, the densities for the following subsequences exist

- $\left(u_{p}\right)_{p \in \mathcal{P}}$
- $\left(u_{P(n)}\right)_{n \in \mathbb{N}}$

Theorem (Deshouillers + Drmota + M.)

Let $\mathbf{u}=\left(u_{n}\right) n>0$ be generated by a synchronizing automaton. Then $\mathbf{u}=\left(u_{n}\right)_{n>0}$ is orthogonal to the Möbius function $\mu(n)$.

Transition Matrices

$$
\begin{aligned}
& T(n):=M_{\varepsilon_{0}(n)} M_{\varepsilon_{1}(n)} \cdots M_{\varepsilon_{\ell-1}(n)} \\
& u(n)=f\left(T(n) \mathbf{e}_{1}\right) \quad \mathbf{e}_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}
\end{aligned}
$$

Transition Matrices

$T(n):=M_{\varepsilon_{0}(n)} M_{\varepsilon_{1}(n)} \cdots M_{\varepsilon_{\ell-1}(n)}$
$u(n)=f\left(T(n) \mathbf{e}_{1}\right) \quad \mathbf{e}_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$

Transition Matrices

$M_{0}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$M_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
$M_{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$T(n):=M_{\varepsilon_{0}(n)} M_{\varepsilon_{1}(n)} \cdots M_{\varepsilon_{\ell-1}(n)}$
$u(n)=f\left(T(n) \mathbf{e}_{1}\right) \quad \mathbf{e}_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$

Transition Matrices

$$
\begin{aligned}
M_{0} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{1} & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{2} & =\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

$$
T(n):=M_{\varepsilon_{0}(n)} M_{\varepsilon_{1}(n)} \cdots M_{\varepsilon_{\ell-1}(n)}
$$

$$
u(n)=f\left(T(n) \mathbf{e}_{1}\right) \quad \mathbf{e}_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}
$$

Transition Matrices

$$
\begin{aligned}
M_{0} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{1} & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{2} & =\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

$$
T(n):=M_{\varepsilon_{0}(n)} M_{\varepsilon_{1}(n)} \cdots M_{\varepsilon_{\ell-1}(n)}
$$

Transition Matrices

$$
\begin{aligned}
M_{0} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{1} & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{2} & =\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

$$
T(n):=M_{\varepsilon_{0}(n)} M_{\varepsilon_{1}(n)} \cdots M_{\varepsilon_{\ell-1}(n)}
$$

$$
u(n)=f\left(T(n) \mathbf{e}_{1}\right) \quad \mathbf{e}_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}
$$

Definition

An automaton is called invertible if all transition matrices M_{0}, \ldots, M_{k-1} are invertible and if $M=M_{0}+\ldots+M_{k-1}$ is primitive.
M is primitive iff there exists $m \geq 0$ such that for every $a, b \in Q$ there exists $\mathbf{w} \in \Sigma^{m}$ such that $\delta(a, \mathbf{w})=b$.

Remark:

If the matrix $M=M_{0}+\ldots+M_{k-1}$ is primitive then the frequencies

exist.

Definition

An automaton is called invertible if all transition matrices M_{0}, \ldots, M_{k-1} are invertible and if $M=M_{0}+\ldots+M_{k-1}$ is primitive.
M is primitive iff there exists $m \geq 0$ such that for every $a, b \in Q$ there exists $\mathbf{w} \in \Sigma^{m}$ such that $\delta(a, \mathbf{w})=b$.

Remark:

If the matrix $M=M_{0}+\ldots+M_{k-1}$ is primitive then the frequencies

exist.

Definition

An automaton is called invertible if all transition matrices M_{0}, \ldots, M_{k-1} are invertible and if $M=M_{0}+\ldots+M_{k-1}$ is primitive.
M is primitive iff there exists $m \geq 0$ such that for every $a, b \in Q$ there exists $\mathbf{w} \in \Sigma^{m}$ such that $\delta(a, \mathbf{w})=b$.
Remark:
If the matrix $M=M_{0}+\ldots+M_{k-1}$ is primitive then the frequencies

$$
\operatorname{freq}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leq n \leq N} \mathbf{1}_{\left[u_{n}=a\right]}
$$

exist.

Results for Invertible Automata

Suppose that an automatic sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ is generated by an invertible automaton.

\mathbf{u} is orthogonal to $\mu(n)$

Theorem[Drmota]
The frequency of each letter of the subsequence $\left(u_{p}\right)_{p \in \mathcal{P}}$ exists.

Results for Invertible Automata

Suppose that an automatic sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ is generated by an invertible automaton.

```
Theorem [Drmota, Ferenczi +
Kulaga-Przymus+Lemanczyk+Mauduit]
```

\mathbf{u} is orthogonal to $\mu(n)$.

Theorem[Drmota]
The frequency of each letter of the subsequence $\left(u_{p}\right)_{p \in \mathcal{P}}$ exists.

Results for Invertible Automata

Suppose that an automatic sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ is generated by an invertible automaton.

```
Theorem [Drmota, Ferenczi +
Kulaga-Przymus+Lemanczyk+Mauduit]
```

\mathbf{u} is orthogonal to $\mu(n)$.

Theorem[Drmota]

The frequency of each letter of the subsequence $\left(u_{p}\right)_{p \in \mathcal{P}}$ exists.

Group extension of automaton (GEA)

Let $A=\left(Q, \Sigma, \delta, q_{0}\right)$ be an automaton. We call
$\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, G, \lambda\right)$ a group extension of A if we "attach to each transition $\delta(q, a)$ a permutation $\lambda(q, a) \in G^{\prime \prime}$.

Efficient GEA

We call a GEA efficient if

- A is a synchronizing automaton.
- For $s, s^{\prime} \in Q$ and n large enough we have

$$
\left\{\lambda(s, \mathbf{w}) \mid \mathbf{w} \in \Sigma^{n}, \delta(s, \mathbf{w})=s^{\prime}\right\}=G .
$$

- $\lambda(q, 0)=i d$.

Group extension of automaton (GEA)

Let $A=\left(Q, \Sigma, \delta, q_{0}\right)$ be an automaton. We call
$\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, G, \lambda\right)$ a group extension of A if we "attach to each transition $\delta(q, a)$ a permutation $\lambda(q, a) \in G^{\prime \prime}$.

Efficient GEA

We call a GEA efficient if

- A is a synchronizing automaton.
- For $s, s^{\prime} \in Q$ and n large enough we have

Group extension of automaton (GEA)

Let $A=\left(Q, \Sigma, \delta, q_{0}\right)$ be an automaton. We call
$\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, G, \lambda\right)$ a group extension of A if we "attach to each transition $\delta(q, a)$ a permutation $\lambda(q, a) \in G^{\prime \prime}$.

Efficient GEA

We call a GEA efficient if

- A is a synchronizing automaton.

Group extension of automaton (GEA)

Let $A=\left(Q, \Sigma, \delta, q_{0}\right)$ be an automaton. We call
$\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, G, \lambda\right)$ a group extension of A if we "attach to each transition $\delta(q, a)$ a permutation $\lambda(q, a) \in G^{\prime \prime}$.

Efficient GEA

We call a GEA efficient if

- A is a synchronizing automaton.
- For $s, s^{\prime} \in Q$ and n large enough we have

$$
\left\{\lambda(s, \mathbf{w}) \mid \mathbf{w} \in \Sigma^{n}, \delta(s, \mathbf{w})=s^{\prime}\right\}=G
$$

Group extension of automaton (GEA)

Let $A=\left(Q, \Sigma, \delta, q_{0}\right)$ be an automaton. We call
$\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, G, \lambda\right)$ a group extension of A if we "attach to each transition $\delta(q, a)$ a permutation $\lambda(q, a) \in G^{\prime \prime}$.

Efficient GEA

We call a GEA efficient if

- A is a synchronizing automaton.
- For $s, s^{\prime} \in Q$ and n large enough we have

$$
\left\{\lambda(s, \mathbf{w}) \mid \mathbf{w} \in \Sigma^{n}, \delta(s, \mathbf{w})=s^{\prime}\right\}=G
$$

- $\lambda(q, 0)=i d$.

Examples

Example (Synchronizing Automaton)

Examples

Example (Synchronizing Automaton)

Examples

Example (Invertible Automaton)

Examples

Example (Invertible Automaton)

Theorem (M., 2017)

For every strongly connected automaton A, there exists an efficient group extension automaton G_{A} which mimics the behaviour of A.

Example:

Theorem (M., 2017)

For every strongly connected automaton A, there exists an efficient group extension automaton G_{A} which mimics the behaviour of A.

Example:

Theorem (M., 2017)

For every strongly connected automaton A, there exists an efficient group extension automaton G_{A} which mimics the behaviour of A.

Example:

Theorem (M., 2017)

For every strongly connected automaton A, there exists an efficient group extension automaton G_{A} which mimics the behaviour of A.

Example:

Theorem (M., 2017)

For every strongly connected automaton A, there exists an efficient group extension automaton G_{A} which mimics the behaviour of A.

Example:

Theorem (M., 2017)

For every strongly connected automaton A, there exists an efficient group extension automaton G_{A} which mimics the behaviour of A.

Example:

Theorem (M., 2017)

For every strongly connected automaton A, there exists an efficient group extension automaton G_{A} which mimics the behaviour of A.

Example:

Definition

Denote by

$$
\begin{aligned}
T\left(q^{\prime}, w_{1} \ldots w_{r}\right):=\lambda\left(q^{\prime}, w_{1}\right) \circ & \lambda\left(\delta^{\prime}\left(q^{\prime}, w_{1}\right), w_{2}\right) \circ \ldots \\
& \circ \lambda\left(\delta^{\prime}\left(q^{\prime}, w_{1} \ldots w_{r-1}\right), w_{r}\right) .
\end{aligned}
$$

Lemma
 Let A be a strongly connected automaton and G_{A} its realization as a EGEA. Then,

holds for all $w \in \Sigma$

Definition

Denote by

$$
\begin{aligned}
& T\left(q^{\prime}, w_{1} \ldots w_{r}\right):=\lambda\left(q^{\prime}, w_{1}\right) \circ \lambda\left(\delta^{\prime}\left(q^{\prime}, w_{1}\right), w_{2}\right) \circ \ldots \\
& \circ \lambda\left(\delta^{\prime}\left(q^{\prime}, w_{1} \ldots w_{r-1}\right), w_{r}\right) .
\end{aligned}
$$

Lemma

Let A be a strongly connected automaton and G_{A} its realization as a EGEA. Then,

$$
\delta\left(q_{0}, \mathbf{w}\right)=\pi_{1}\left(T\left(q_{0}^{\prime}, \mathbf{w}\right) \cdot \delta\left(q_{0}^{\prime}, \mathbf{w}\right)\right)
$$

holds for all $\mathbf{w} \in \Sigma^{*}$.

Continuous functions from a compact group to \mathbb{C}

Definition (Representation)

Let G be a finite group and $k \in \mathbb{N}$. A Representation of rank k is a continuous homomorphism $D: G \rightarrow \mathbb{C}^{k \times k}$.

Lemma

Let f be a continuous function from G to \mathbb{C}. There exists $r \in \mathbb{N}$ and unitary, irreducible representations $D^{(\ell)}=\left(d_{i, j}^{(\ell)}\right)_{i, j<k_{\ell}}$ along with $c_{\ell} \in \mathbb{C}$ such that

holds for all $g \in G$

Continuous functions from a compact group to \mathbb{C}

Definition (Representation)

Let G be a finite group and $k \in \mathbb{N}$. A Representation of rank k is a continuous homomorphism $D: G \rightarrow \mathbb{C}^{k \times k}$.

Lemma

Let f be a continuous function from G to \mathbb{C}. There exists $r \in \mathbb{N}$ and unitary, irreducible representations $D^{(\ell)}=\left(d_{i, j}^{(\ell)}\right)_{i, j<k_{\ell}}$ along with $c_{\ell} \in \mathbb{C}$ such that

$$
f(g)=\sum_{\ell<r} c_{\ell} d_{i_{\ell}, j_{\ell}}^{(\ell)}(g)
$$

holds for all $g \in G$.

Lemma

Suppose that

$$
\sum_{n<N} D(T(n)) \mu(n)=o(N)
$$

holds for all irreducible unitary representations of G. Then $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ is orthogonal to $\mu(n)$.

We follow the method of Mauduit and Rivat that they use for studying the Rudin-Shapiro sequence.

(Adopted) Definition

Let $U(n)$ be a sequence of unitary matrices. We say that U has the Fourier property if there exists $\eta>0$ and c such that for all λ, α and t

Carry Property: the contribution of high digits and the contribution of low digits are ",independent"

We follow the method of Mauduit and Rivat that they use for studying the Rudin-Shapiro sequence.

(Adopted) Definition

Let $U(n)$ be a sequence of unitary matrices. We say that U has the Fourier property if there exists $\eta>0$ and c such that for all λ, α and t

$$
\left\|\frac{1}{k^{\lambda}} \sum_{m<k^{\lambda}} U\left(m k^{\alpha}\right) e(m t)\right\| \leq c k^{-\eta \lambda}
$$

Carry Property: the contribution of high digits and the contribution of low digits are ,,independent"

We follow the method of Mauduit and Rivat that they use for studying the Rudin-Shapiro sequence.

(Adopted) Definition

Let $U(n)$ be a sequence of unitary matrices. We say that U has the Fourier property if there exists $\eta>0$ and c such that for all λ, α and t

$$
\left\|\frac{1}{k^{\lambda}} \sum_{m<k^{\lambda}} U\left(m k^{\alpha}\right) e(m t)\right\| \leq c k^{-\eta \lambda}
$$

Carry Property: the contribution of high digits and the contribution of low digits are "independent".

Let D be a unitary and irreducible representation of G.

(Adopted) Theorem

Suppose that $D \circ T$ has the Fourier property. Then we have for any real θ

$$
\left\|\sum_{n<N} \mu(n) D(T(n)) e(\theta n)\right\| \ll c_{1}(k)(\log N)^{c_{2}(k)} N^{1-\eta^{\prime}}
$$

(Adopted) Theorem

Suppose that $D \circ T$ has the Fourier property. Then we have for any real θ

Let D be a unitary and irreducible representation of G.

(Adopted) Theorem

Suppose that $D \circ T$ has the Fourier property. Then we have for any real θ

$$
\left\|\sum_{n<N} \mu(n) D(T(n)) e(\theta n)\right\| \ll c_{1}(k)(\log N)^{c_{2}(k)} N^{1-\eta^{\prime}}
$$

(Adopted) Theorem

Suppose that $D \circ T$ has the Fourier property. Then we have for any real θ

$$
\left\|\sum_{n<N} \Lambda(n) D(T(n)) e(\theta n)\right\| \ll c_{1}(k)(\log N)^{c_{3}(k)} N^{1-\eta^{\prime}}
$$

Ideas for the proof

Vaughan method: Estimating

$$
\begin{aligned}
& S_{I}(\theta)=\sum_{m}\left|\sum_{\substack{n \\
m n \in I}} f(m n) \mathrm{e}(\theta m n)\right| \\
& S_{I I}(\theta)=\sum_{m} \sum_{n} a_{m} b_{n} f(m n) \mathrm{e}(\theta m n)
\end{aligned}
$$

provides estimates for

$$
\sum_{n<N} \mu(n) f(n), \quad \sum_{n<N} \Lambda(n) f(n)
$$

Ideas for the proof

- Van-der-Corput inequality + Carry property

$$
\left|\sum_{n \leq N} x_{n}\right|^{2} \leq \frac{N+H-1}{N} \sum_{|h| \leq H}\left|\sum_{n \leq N} x_{n} \overline{x_{n+h}}\right|
$$

- Use analytic methods to detect digits.

- Use the Fourier property.

Ideas for the proof

- Van-der-Corput inequality + Carry property

$$
\left|\sum_{n \leq N} x_{n}\right|^{2} \leq \frac{N+H-1}{N} \sum_{|h| \leq H}\left|\sum_{n \leq N} x_{n} \overline{x_{n+h}}\right|
$$

- Use analytic methods to detect digits.

$$
n=(v 0 w)_{2} \Leftrightarrow\left\{\frac{n}{2^{|0 w|}}\right\} \in\left[0, \frac{1}{2}\right) .
$$

- Use the Fourier property.

Ideas for the proof

- Van-der-Corput inequality + Carry property

$$
\left|\sum_{n \leq N} x_{n}\right|^{2} \leq \frac{N+H-1}{N} \sum_{|h| \leq H}\left|\sum_{n \leq N} x_{n} \overline{x_{n+h}}\right|
$$

- Use analytic methods to detect digits.

$$
n=(v 0 w)_{2} \Leftrightarrow\left\{\frac{n}{2^{|0 w|}}\right\} \in\left[0, \frac{1}{2}\right)
$$

- Use the Fourier property.

Dynamical systems associated to a substitution

Subshift $\left(X_{\mathbf{u}}, S\right)$ related to \mathbf{u}

```
\(\mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots\) sequence on a finite alphabet \(\mathcal{A}\)
```

$\mathrm{Su}=\left(u_{n+1}\right)_{n \geq 0} \ldots$ shift operator

Subshift $\left(X_{\theta}, S\right)$

 associated to θLet θ be a primitive substitution
For any fixed point \mathbf{w}, we define $\left(X_{\theta}, S\right)=\left(X_{w}, S\right)$.

- $\left(X_{\theta}, S\right)$ is uniquely ergodic.
- $\left(X_{\theta}, S\right)$ is minimal.

Dynamical systems associated to a substitution

Subshift $\left(X_{\mathbf{u}}, S\right)$ related to \mathbf{u}

$\mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots$ sequence on a finite alphabet \mathcal{A}
$S \mathbf{u}=\left(u_{n+1}\right)_{n \geq 0} \ldots$ shift operator

Subshift $\left(X_{\theta}, S\right)$

 associated to θLet θ be a primitive substitution
For any fixed point \mathbf{w}, we define $\left(X_{\theta}, S\right)=\left(X_{w}, S\right)$.

- $\left(X_{\theta}, S\right)$ is uniquely ergodic.
- $\left(X_{\theta}, S\right)$ is minimal.

Dynamical systems associated to a substitution

Subshift $\left(X_{\mathbf{u}}, S\right)$ related to \mathbf{u}

$$
\begin{aligned}
& \mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots \text { sequence on a finite alphabet } \mathcal{A} \\
& S \mathbf{u}=\left(u_{n+1}\right)_{n \geq 0} \ldots \text { shift operator } \\
& X_{\mathbf{u}}=\overline{\left\{S^{k}(\mathbf{u}): k \geq 0\right\}} \subset \mathcal{A}^{\mathbb{N}}
\end{aligned}
$$

```
\(\square\) associated to \(\theta\)
Let \(\theta\) be a primitive substitution
For any fixed point \(\mathbf{w}\), we define \(\left(X_{\theta}, S\right)=\left(X_{w}, S\right)\).
- \(\left(X_{\theta}, S\right)\) is uniquely ergodic.
- \(\left(X_{\theta}, S\right)\) is minimal.
```


Dynamical systems associated to a substitution

Subshift $\left(X_{u}, S\right)$ related to \mathbf{u}

$$
\begin{aligned}
& \mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots \text { sequence on a finite alphabet } \mathcal{A} \\
& S \mathbf{u}=\left(u_{n+1}\right)_{n \geq 0} \ldots \text { shift operator } \\
& X_{\mathbf{u}}=\left\{S^{k}(\mathbf{u}): k \geq 0\right\} \subset \mathcal{A}^{\mathbb{N}}
\end{aligned}
$$

Subshift $\left(X_{\theta}, S\right)$ associated to θ

Let θ be a primitive substitution.
For any fixed point w, we define $\left(X_{\theta}, S\right)=\left(X_{w}, S\right)$

- $\left(X_{\theta}, S\right)$ is uniquely ergodic.
- $\left(X_{0}, S\right)$ is minimal

Dynamical systems associated to a substitution

Subshift $\left(X_{u}, S\right)$ related to \mathbf{u}

$$
\mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots \text { sequence on a finite alphabet } \mathcal{A}
$$

$S \mathbf{u}=\left(u_{n+1}\right)_{n \geq 0} \ldots$ shift operator
$X_{\mathbf{u}}=\overline{\left\{S^{k}(\mathbf{u}): k \geq 0\right\}} \subset \mathcal{A}^{\mathbb{N}}$

Subshift (X_{θ}, S) associated to θ

Let θ be a primitive substitution.
For any fixed point \mathbf{w}, we define $\left(X_{\theta}, S\right)=\left(X_{w}, S\right)$.

- $\left(X_{\theta}, S\right)$ is uniquely ergodic.
- $\left(X_{\theta}, S\right)$ is minimal

Dynamical systems associated to a substitution

Subshift $\left(X_{\mathbf{u}}, S\right)$ related to \mathbf{u}

$$
\mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots \text { sequence on a finite alphabet } \mathcal{A}
$$

$S \mathbf{u}=\left(u_{n+1}\right)_{n \geq 0} \ldots$ shift operator
$X_{\mathbf{u}}=\overline{\left\{S^{k}(\mathbf{u}): k \geq 0\right\}} \subset \mathcal{A}^{\mathbb{N}}$

Subshift $\left(X_{\theta}, S\right)$ associated to θ

Let θ be a primitive substitution.
For any fixed point \mathbf{w}, we define $\left(X_{\theta}, S\right)=\left(X_{\mathbf{w}}, S\right)$.

- $\left(X_{\theta}, S\right)$ is uniquely ergodic.
- $\left(X_{\theta}, S\right)$ is minimal

Dynamical systems associated to a substitution

Subshift $\left(X_{\mathbf{u}}, S\right)$ related to \mathbf{u}

$$
\mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots \text { sequence on a finite alphabet } \mathcal{A}
$$

$S \mathbf{u}=\left(u_{n+1}\right)_{n \geq 0} \ldots$ shift operator
$X_{\mathbf{u}}=\overline{\left\{S^{k}(\mathbf{u}): k \geq 0\right\}} \subset \mathcal{A}^{\mathbb{N}}$

Subshift $\left(X_{\theta}, S\right)$ associated to θ

Let θ be a primitive substitution.
For any fixed point \mathbf{w}, we define $\left(X_{\theta}, S\right)=\left(X_{\mathbf{w}}, S\right)$.

- $\left(X_{\theta}, S\right)$ is uniquely ergodic.
- $\left(X_{\theta}, S\right)$ is minimal.

Automatic sequences

Column number

Let θ be a primitive substitution with constant length k.
Write $\theta^{n}(a)$ for $a \in \mathcal{A}$ below each other.
Then $c(\theta)$ is the minimal number of symbols in a column.
$c(\theta)=\min _{n, \ell} \#\left\{\theta^{n}(a)_{\ell}: a \in \mathcal{A}\right\}$

Lemma

$\left(X_{\theta}, S\right)$ is isomorphic to a $c(\theta)$ point extension of the k-adic odometer $\left(H_{k}, R\right)$

$$
H_{k}={\underset{\vdots}{n}}^{\lim _{n}} \mathbb{Z} / k^{n} \mathbb{Z}
$$

R is the addition by 1 (with carry).

Automatic sequences

Column number

Let θ be a primitive substitution with constant length k. Write $\theta^{n}(a)$ for $a \in \mathcal{A}$ below each other.
Then $c(\theta)$ is the minimal number of symbols in a column.

```
c(0)= min }#{\mp@subsup{0}{n,\ell}{n}(a)\mp@subsup{)}{\ell}{}:a\in\mathcal{A}
```


Lemma

$\left(X_{\theta}, S\right)$ is isomorphic to a $c(\theta)$ point extension of the k-adic odometer $\left(H_{k}, R\right)$

$$
H_{k}={\underset{\check{n}}{n}}_{\lim }^{Z} / k^{n} \mathbb{Z}
$$

R is the addition by 1 (with carry)

Automatic sequences

Column number

Let θ be a primitive substitution with constant length k. Write $\theta^{n}(a)$ for $a \in \mathcal{A}$ below each other. Then $c(\theta)$ is the minimal number of symbols in a column.

Lemma

$\left(X_{\theta}, S\right)$ is isomorphic to a $c(\theta)$ point extension of the k-adic odometer $\left(H_{k}, R\right)$

$$
H_{k}={\underset{\}{n}}^{\lim _{n}} \mathbb{Z} / k^{n} \mathbb{Z}
$$

R is the addition by 1 (with carry)

Automatic sequences

Column number

Let θ be a primitive substitution with constant length k. Write $\theta^{n}(a)$ for $a \in \mathcal{A}$ below each other. Then $c(\theta)$ is the minimal number of symbols in a column.

$$
c(\theta)=\min _{n, \ell} \#\left\{\theta^{n}(a)_{\ell}: a \in \mathcal{A}\right\} .
$$

Lemma

$\left(X_{\theta}, S\right)$ is isomorphic to a $c(\theta)$ point extension of the k-adic odometer $\left(H_{k}, R\right)$

$$
H_{k}={\underset{\}{n}}^{\lim _{n}} \mathbb{Z} / k^{n} \mathbb{Z}
$$

R is the addition by 1 (with carry)

Automatic sequences

Column number

Let θ be a primitive substitution with constant length k. Write $\theta^{n}(a)$ for $a \in \mathcal{A}$ below each other. Then $c(\theta)$ is the minimal number of symbols in a column.

$$
c(\theta)=\min _{n, \ell} \#\left\{\theta^{n}(a)_{\ell}: a \in \mathcal{A}\right\} .
$$

Lemma

$\left(X_{\theta}, S\right)$ is isomorphic to a $c(\theta)$ point extension of the k-adic odometer $\left(H_{k}, R\right)$.

R is the addition by 1 (with carry)

Automatic sequences

Column number

Let θ be a primitive substitution with constant length k. Write $\theta^{n}(a)$ for $a \in \mathcal{A}$ below each other.
Then $c(\theta)$ is the minimal number of symbols in a column.

$$
c(\theta)=\min _{n, \ell} \#\left\{\theta^{n}(a)_{\ell}: a \in \mathcal{A}\right\} .
$$

Lemma

$\left(X_{\theta}, S\right)$ is isomorphic to a $c(\theta)$ point extension of the k-adic odometer $\left(H_{k}, R\right)$.

$$
H_{k}={\underset{\}{n}}^{\lim _{n}} \mathbb{Z} / k^{n} \mathbb{Z}
$$

R is the addition by 1 (with carry).

Synchronizing automatic sequences

Lemma

An automatic sequence is synchronizing iff the corresponding substitution θ has column number 1 .

```
Eigenvalues (Host)
Let }0\mathrm{ be a length }k\mathrm{ substitution. Then the eigenvalues of ( }\mp@subsup{X}{0}{},S
are exactly }\operatorname{exp}(2\pii\frac{\ell}{kn})\mathrm{ for }\ell,n\in\mathbb{N
```


Discrete Spectrum (Host)

```
If \(c(\theta)=1\), then \(\left(X_{\theta}, S\right)\) has discrete spectrum - i.e. any continuous function (e.g. a code) can be approximated by a linear combination of eigenfunctions.
```


Synchronizing automatic sequences

Lemma

An automatic sequence is synchronizing iff the corresponding substitution θ has column number 1 .

Eigenvalues (Host)

Let θ be a length k substitution. Then the eigenvalues of $\left(X_{\theta}, S\right)$ are exactly $\exp \left(2 \pi i \frac{\ell}{k^{n}}\right)$ for $\ell, n \in \mathbb{N}$.

Discrete Spectrum (Host)
 If $c(\theta)=1$, then $\left(X_{\theta}, S\right)$ has discrete spectrum - i.e. any continuous function (e.g. a code) can be approximated by a linear combination of eigenfunctions

Synchronizing automatic sequences

Lemma

An automatic sequence is synchronizing iff the corresponding substitution θ has column number 1 .

Eigenvalues (Host)

Let θ be a length k substitution. Then the eigenvalues of $\left(X_{\theta}, S\right)$ are exactly $\exp \left(2 \pi i \frac{l}{k^{n}}\right)$ for $\ell, n \in \mathbb{N}$.

Discrete Spectrum (Host)

If $c(\theta)=1$, then $\left(X_{\theta}, S\right)$ has discrete spectrum - i.e. any continuous function (e.g. a code) can be approximated by a linear combination of eigenfunctions.

Efficient group extension automata

Proposition (Lemanczyk + M.)

Let A be an automaton and G_{A} its group extension automaton with corresponding substitutions θ and θ_{G}. Then $\left(X_{\theta}, S\right)$ is a topological factor of $\left(X_{\theta_{G}}, S\right)$ Let η be the "synchronizing part" of θ_{G}. Then $\left(X_{\theta_{G}}, S\right)$ is isomorphic to a finite group extension of $\left(X_{\eta}, S^{\prime}\right)$, i.e. there exists a measurable $X_{\eta} \rightarrow G$ such that $\left(X_{\theta_{G}}, S\right)$ is isomorphic to $\left(X_{\eta} \times G, S_{\varphi}^{\prime}\right)$ where

$$
S_{\varphi}^{\prime}(x, g)=\left(S^{\prime} x, \varphi(x) g\right)
$$

Efficient group extension automata

Proposition (Lemanczyk + M.)

Let A be an automaton and G_{A} its group extension automaton with corresponding substitutions θ and θ_{G}. Then $\left(X_{\theta}, S\right)$ is a topological factor of $\left(X_{\theta_{G}}, S\right)$.
Let η be the "synchronizing part" of θ_{G}. Then $\left(X_{\theta_{G}}, S\right)$ is isomorphic to a finite group extension of $\left(X_{\eta}, S^{\prime}\right)$, i.e. there exists a measurable $X_{\eta} \rightarrow G$ such that $\left(X_{\theta_{c}}, S\right)$ is isomorphic to $\left(X_{\eta} \times G, S_{\varphi}^{\prime}\right)$ where

$$
S_{\varphi}^{\prime}(x, g)=\left(S^{\prime} x, \varphi(x) g\right)
$$

Efficient group extension automata

Proposition (Lemanczyk + M.)

Let A be an automaton and G_{A} its group extension automaton with corresponding substitutions θ and θ_{G}. Then $\left(X_{\theta}, S\right)$ is a topological factor of $\left(X_{\theta_{G}}, S\right)$.
Let η be the "synchronizing part" of θ_{G}. Then $\left(X_{\theta_{G}}, S\right)$ is isomorphic to a finite group extension of $\left(X_{\eta}, S^{\prime}\right)$, i.e. there exists a measurable $\varphi: X_{\eta} \rightarrow G$ such that $\left(X_{\theta_{G}}, S\right)$ is isomorphic to $\left(X_{\eta} \times G, S_{\varphi}^{\prime}\right)$ where

$$
S_{\varphi}^{\prime}(x, g)=\left(S^{\prime} x, \varphi(x) g\right)
$$

Results 2

Theorem (Lemanczyk + M,)

Every primitive automatic sequence $a(n)$ is orthogonal to any bounded, aperiodic and multiplicative sequence $m: \mathbb{N} \rightarrow \mathbb{C}$, i.e.

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} a(n) m(n)=0
$$

Decomposition of functions

Let $f \in C\left(X_{\theta_{G}}, S\right)$.
We can decompose $f=f_{1}+f_{2}$, where

- f_{1} can be approximated by periodic functions.
- f_{2} is orthogonal to the L^{2}-space of $\left(H_{k}, R\right)$.

Decomposition of functions

Let $f \in C\left(X_{\theta_{G}}, S\right)$.
We can decompose $f=f_{1}+f_{2}$, where

- f_{1} can be approximated by periodic functions.
- f_{2} is orthogonal to the L^{2}-space of $\left(H_{k}, R\right)$

Decomposition of functions

Let $f \in C\left(X_{\theta_{G}}, S\right)$.
We can decompose $f=f_{1}+f_{2}$, where

- f_{1} can be approximated by periodic functions.
- f_{2} is orthogonal to the L^{2}-space of $\left(H_{k}, R\right)$.

Decomposition of functions

Let $f \in C\left(X_{\theta_{G}}, S\right)$.
We can decompose $f=f_{1}+f_{2}$, where

- f_{1} can be approximated by periodic functions.
- f_{2} is orthogonal to the L^{2}-space of $\left(H_{k}, R\right)$.

The DKBSZ Criterion

The DKBSZ criterion

Let x_{n} be a bounded sequence such that for large enough primes $p \neq q$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} x_{p n} \overline{x_{q n}}=0
$$

Then, for any multiplicative function $m(n)$ we have

The DKBSZ Criterion

The DKBSZ criterion

Let x_{n} be a bounded sequence such that for large enough primes $p \neq q$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} x_{p n} \overline{x_{q n}}=0
$$

Then, for any multiplicative function $m(n)$ we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} x_{n} m(n)=0
$$

Joinings of dynamical systems

We aim to study

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} f_{2}\left(S^{p n}(x)\right) \overline{f_{2}\left(S^{q n}(x)\right)}
$$

Consider

ρ is $\left(S^{p} \times S^{q}\right)$ invariant and projects to ergodic measures for S^{p} and \Rightarrow it is a joining of $\left(X_{\theta_{G}}, S^{p}\right)$ and $\left(X_{\theta_{G}}, S^{q}\right)$.

Joinings of dynamical systems

We aim to study

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} f_{2}\left(S^{p n}(x)\right) \overline{f_{2}\left(S^{q n}(x)\right)}
$$

Consider

$$
\rho=\lim _{\ell \rightarrow \infty} \frac{1}{N_{\ell}} \sum_{n \leq N_{\ell}} \delta_{\left(S^{p} \times S^{q}\right)^{n}(x, x)} .
$$

ρ is $\left(S^{p} \times S^{q}\right)$ invariant and projects to ergodic measures for S^{p} and
\Rightarrow it is a joining of $\left(X_{\theta_{G}}, S^{p}\right)$ and $\left(X_{\theta_{G}}, S^{q}\right)$.

Joinings of dynamical systems

We aim to study

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} f_{2}\left(S^{p n}(x)\right) \overline{f_{2}\left(S^{q n}(x)\right)}
$$

Consider

$$
\rho=\lim _{\ell \rightarrow \infty} \frac{1}{N_{\ell}} \sum_{n \leq N_{\ell}} \delta_{\left(S^{p} \times S^{q}\right)^{n}(x, x)}
$$

ρ is $\left(S^{p} \times S^{q}\right)$ invariant and projects to ergodic measures for S^{p} and S^{q}
\Rightarrow it is a joining of $\left(X_{\theta_{G}}, S^{p}\right)$ and $\left(X_{\theta_{G}}, S^{q}\right)$.

Joinings of dynamical systems

We aim to study

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} f_{2}\left(S^{p n}(x)\right) \overline{f_{2}\left(S^{q n}(x)\right)}
$$

Consider

$$
\rho=\lim _{\ell \rightarrow \infty} \frac{1}{N_{\ell}} \sum_{n \leq N_{\ell}} \delta_{\left(S^{p} \times S^{q}\right)^{n}(x, x)} .
$$

ρ is $\left(S^{p} \times S^{q}\right)$ invariant and projects to ergodic measures for S^{p} and S^{q}
\Rightarrow it is a joining of $\left(X_{\theta_{G}}, S^{p}\right)$ and $\left(X_{\theta_{G}}, S^{q}\right)$.

Joinings of dynamical systems

Recall $S=R_{\varphi}$, where $\left(H_{k}, R\right)$ is the k-adic odometer.

- $\left.\rho\right|_{H_{k} \times H_{k}}$ is a graph joining of $\left(H_{k}, R^{p}\right)$ and $\left(H_{k}, R^{q}\right)$ via W.
- ρ is a relatively independent extension of this graph joining

Joinings of dynamical systems

Recall $S=R_{\varphi}$, where $\left(H_{k}, R\right)$ is the k-adic odometer.

- $\left.\rho\right|_{H_{k} \times H_{k}}$ is a graph joining of $\left(H_{k}, R^{p}\right)$ and $\left(H_{k}, R^{q}\right)$ via W.
- ρ is a relatively independent extension of this graph joining

Joinings of dynamical systems

Recall $S=R_{\varphi}$, where $\left(H_{k}, R\right)$ is the k-adic odometer.

- $\left.\rho\right|_{H_{k} \times H_{k}}$ is a graph joining of $\left(H_{k}, R^{p}\right)$ and $\left(H_{k}, R^{q}\right)$ via W.
- ρ is a relatively independent extension of this graph joining

Joinings of dynamical systems

Recall $S=R_{\varphi}$, where $\left(H_{k}, R\right)$ is the k-adic odometer.

- $\left.\rho\right|_{H_{k} \times H_{k}}$ is a graph joining of $\left(H_{k}, R^{p}\right)$ and $\left(H_{k}, R^{q}\right)$ via W.
- ρ is a relatively independent extension of this graph joining

$$
\begin{aligned}
& \frac{1}{N_{\ell}} \sum_{n \leq N_{\ell}} f_{2}\left(S^{p n} x\right) \overline{f_{2}\left(S^{q n} x\right)} \\
& \rightarrow \int_{X_{\theta_{G}} \times X_{\theta_{G}}} f_{2} \otimes \overline{f_{2}} d \rho \\
& =\left.\int_{H_{k} \times H_{k}} \mathbb{E}\left(f_{2} \otimes \overline{f_{2}} \mid H_{k} \times H_{k}\right) d \rho\right|_{H_{k} \times H_{k}} \\
& =\int_{H_{k}} \mathbb{E}\left(f_{2} \mid H_{k}\right) \cdot \overline{\mathbb{E}\left(F \mid H_{k}\right) \circ W} d m_{H_{k}}=0
\end{aligned}
$$

Zeckendorf Representation

Fibonacci numbers

$F_{0}=0, F_{1}=1$ and $F_{k+2}=F_{k+1}+F_{k}$ for $k \geq 0$.

where, φ is the golden ratio.

Zeckendorf Representation (Lekkerkerker)
Every positive integer n admits a unique representation

where, $\varepsilon_{i}(n) \in\{0,1\}$ and $\varepsilon_{i}=1 \Rightarrow \varepsilon_{i+1}=0$.

Zeckendorf Representation

Fibonacci numbers

$F_{0}=0, F_{1}=1$ and $F_{k+2}=F_{k+1}+F_{k}$ for $k \geq 0$.

$$
F_{n}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}
$$

where, φ is the golden ratio.

Zeckendorf Representation (Lekkerkerker)

Every positive integer n admits a unique representation

where, $\varepsilon_{i}(n) \in\{0,1\}$ and $\varepsilon_{i}=1 \Rightarrow \varepsilon_{i+1}=0$.

Zeckendorf Representation

Fibonacci numbers

$$
F_{0}=0, F_{1}=1 \text { and } F_{k+2}=F_{k+1}+F_{k} \text { for } k \geq 0
$$

$$
F_{n}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}
$$

where, φ is the golden ratio.

Zeckendorf Representation (Lekkerkerker)

Every positive integer n admits a unique representation

$$
n=\sum_{i \geq 2} \varepsilon_{i}(n) F_{i}
$$

where, $\varepsilon_{i}(n) \in\{0,1\}$ and $\varepsilon_{i}=1 \Rightarrow \varepsilon_{i+1}=0$.

Fibonacci Thue-Morse

Thue-Morse

$t(n)=0 \Leftrightarrow s_{2}(n) \equiv 0 \bmod 2$.

Fibonacci Thue-Morse

Fibonacci Thue-Morse

Thue-Morse

$t(n)=0 \Leftrightarrow s_{2}(n) \equiv 0 \bmod 2$.

Fibonacci Thue-Morse

Fibonacci Thue-Morse

Thue-Morse

$t(n)=0 \Leftrightarrow s_{2}(n) \equiv 0 \bmod 2$.
Fibonacci Thue-Morse

$$
\begin{aligned}
n=\sum_{i \geq 2} \varepsilon_{i}(n) F_{i}, \quad z(n) & =\sum_{i \geq 2} \varepsilon_{i}(n) . \\
t_{f}(n)=0 \Leftrightarrow z(n) & =0 \bmod 2 .
\end{aligned}
$$

Fibonacci Thue-Morse

Thue-Morse

$t(n)=0 \Leftrightarrow s_{2}(n) \equiv 0 \bmod 2$.
Fibonacci Thue-Morse

$$
\begin{aligned}
n=\sum_{i \geq 2} \varepsilon_{i}(n) F_{i}, \quad z(n) & =\sum_{i \geq 2} \varepsilon_{i}(n) . \\
t_{f}(n)=0 \Leftrightarrow z(n) & =0 \bmod 2 .
\end{aligned}
$$

Fibonacci Thue-Morse

Thue-Morse

$t(n)=0 \Leftrightarrow s_{2}(n) \equiv 0 \bmod 2$.
Fibonacci Thue-Morse

$$
\begin{array}{r}
n=\sum_{i \geq 2} \varepsilon_{i}(n) F_{i}, \quad z(n)=\sum_{i \geq 2} \varepsilon_{i}(n) . \\
t_{f}(n)=0 \Leftrightarrow z(n) \equiv 0 \bmod 2 .
\end{array}
$$

Results 3

Theorem (Drmota, M., Spiegelhofer 2022+)

Let z denote the sum-of-digits function in the Zeckendorf representation. Then for real θ,

$$
\sum_{p \leq x} \mathrm{e}(\theta z(p)) \ll(\log x)^{c_{1}} x^{1-c_{2}\|\theta\|^{2}}
$$

where $c_{1}, c_{2}>0$.

Theorem (Drmota, M., Spiegelhofer 2022+)

We have

$$
\#\{p \leq x: z(p)=k\}=c \mathcal{N}(\mu(x), \sigma(x))+\text { ErrorTerm },
$$

Results 3

Theorem (Drmota, M., Spiegelhofer 2022+)

Let z denote the sum-of-digits function in the Zeckendorf representation. Then for real θ,

$$
\sum_{p \leq x} \mathrm{e}(\theta z(p)) \ll(\log x)^{c_{1}} x^{1-c_{2}\|\theta\|^{2}},
$$

where $c_{1}, c_{2}>0$.

Theorem (Drmota, M., Spiegelhofer 2022+)

We have

$$
\#\{p \leq x: z(p)=k\}=c \mathcal{N}(\mu(x), \sigma(x))+\text { ErrorTerm },
$$

i.e. we have a local central limit theorem.

Fibonacci Thue-Morse

A Morphism

$$
\begin{aligned}
& a \mapsto a b \\
& b \mapsto c \\
& c \mapsto c d \\
& d \mapsto a .
\end{aligned}
$$

This gives the sequence $(-1)^{s_{\varphi}(n)}$ under the coding $\tau(a)=\tau(d)=1, \tau(b)=\tau(c)=-1$.

> This is one of the first examples of a substitution with non-constant length to be orthogonal to the Möbius function

Fibonacci Thue-Morse

A Morphism

$$
\begin{aligned}
& a \mapsto a b \\
& b \mapsto c \\
& c \mapsto c d \\
& d \mapsto a .
\end{aligned}
$$

This gives the sequence $(-1)^{s_{\varphi}(n)}$ under the coding $\tau(a)=\tau(d)=1, \tau(b)=\tau(c)=-1$.

This is one of the first examples of a substitution with non-constant length to be orthogonal to the Möbius function

Fibonacci Thue-Morse

A Morphism

$$
\begin{aligned}
a & \mapsto a b \\
b & \mapsto c \\
c & \mapsto c d \\
d & \mapsto a
\end{aligned}
$$

This gives the sequence $(-1)^{s_{\varphi}(n)}$ under the coding $\tau(a)=\tau(d)=1, \tau(b)=\tau(c)=-1$.

This is one of the first examples of a substitution with non-constant length to be orthogonal to the Möbius function.

Fibonacci Thue-Morse

We use as input the Zeckendorf representation of n, i.e. $\varepsilon_{k}(n), \ldots, \varepsilon_{0}(n)$:

Fibonacci Thue-Morse

We use as input the Zeckendorf representation of n, i.e. $\varepsilon_{k}(n), \ldots, \varepsilon_{0}(n)$:

Adapted Techniques (Zeckendorf sum-of-digits)

- Carry Property:

Addition behaves relatively nicely with respect to digits.

- More complicated analytic detection of digits.
- Gower's norms (higher order Fourier analysis) instead of Fourier-Transform.

Adapted Techniques (Zeckendorf sum-of-digits)

- Carry Property:

Addition behaves relatively nicely with respect to digits.

- More complicated analytic detection of digits.
- Gower's norms (higher order Fourier analysis) instead of Fourier-Transform.

Adapted Techniques (Zeckendorf sum-of-digits)

- Carry Property:

Addition behaves relatively nicely with respect to digits.

- More complicated analytic detection of digits.
- Gower's norms (higher order Fourier analysis) instead of Fourier-Transform.

Least significant digits in Zeckendorf base

Lemma

The least significant digits of n in Zeckendorf base are $\left(w_{r}, w_{r-1}, \ldots, w_{2}\right)$ iff $n \varphi \in I_{w}+\mathbb{Z} . I_{w}$ contains $\varphi \sum_{k=2}^{r} F_{k} w_{k}$

Least significant digits in Zeckendorf base

Lemma

The least significant digits of n in Zeckendorf base are $\left(w_{r}, w_{r-1}, \ldots, w_{2}\right)$ iff $n \varphi \in I_{w}+\mathbb{Z} . I_{w}$ contains $\varphi \sum_{k=2}^{r} F_{k} w_{k}$.

Least significant digits in Zeckendorf base

Lemma

The least significant digits of n in Zeckendorf base are $\left(w_{r}, w_{r-1}, \ldots, w_{2}\right)$ iff $n \varphi \in I_{w}+\mathbb{Z} . I_{w}$ contains $\varphi \sum_{k=2}^{r} F_{k} w_{k}$.

0
1

Least significant digits in Zeckendorf base

Lemma

The least significant digits of n in Zeckendorf base are $\left(w_{r}, w_{r-1}, \ldots, w_{2}\right)$ iff $n \varphi \in I_{w}+\mathbb{Z} . I_{w}$ contains $\varphi \sum_{k=2}^{r} F_{k} w_{k}$.

01
00

10

Least significant digits in Zeckendorf base

Lemma

The least significant digits of n in Zeckendorf base are $\left(w_{r}, w_{r-1}, \ldots, w_{2}\right)$ iff $n \varphi \in I_{w}+\mathbb{Z} . I_{w}$ contains $\varphi \sum_{k=2}^{r} F_{k} w_{k}$.

Least significant digits in Zeckendorf base

Lemma

The least significant digits of n in Zeckendorf base are $\left(w_{r}, w_{r-1}, \ldots, w_{2}\right)$ iff $n \varphi \in I_{w}+\mathbb{Z} . I_{w}$ contains $\varphi \sum_{k=2}^{r} F_{k} w_{k}$.

1010	0010	1000	0000	0100	1001	0001	0101				
				\mid				\mid			
$-1 / \varphi^{2}$											

Digits in the middle of the expansion

Lemma

If $\varepsilon_{j}(n)=b$, then

$$
\left(\left\{\frac{n}{\varphi^{j+2}}\right\},\left\{\frac{n}{\varphi^{j+3}}\right\}\right) \in\left(A_{b} \bmod 1\right)+O\left(\varphi^{-} j\right) .
$$

