Möbius Orthogonality for the Zeckendorf Sum-of-Digits Function

Clemens Müllner

20. December 2018

Joint work with Michael Drmota and Lukas Spiegelhofer

Möbius function

The Möbius function is defined by

$$\mu(n) = \left\{ egin{array}{ll} (-1)^k & ext{if n is squarefree and} \\ k & ext{is the number of prime factors} \\ 0 & ext{otherwise} \end{array}
ight.$$

A sequence **u** is **orthogonal to the Möbius function** μ (n) if

$$\sum_{n\leq N}\mu(n)u_n=o(\sum_{n\leq N}|u_n|)\qquad (N\to\infty).$$

Old Heuristic - Mobius Randomness Law

Any "reasonably defined (easy)"bounded sequence independent of μ is orthogonal to μ .

Möbius function

The Möbius function is defined by

$$\mu(n) = \left\{ egin{array}{ll} (-1)^k & ext{if n is squarefree and} \\ k & ext{is the number of prime factors} \\ 0 & ext{otherwise} \end{array}
ight.$$

A sequence \mathbf{u} is orthogonal to the Möbius function $\mu(n)$ if

$$\sum_{n\leq N}\mu(n)u_n=o(\sum_{n\leq N}|u_n|)\qquad (N\to\infty).$$

Old Heuristic - Mobius Randomness Law

Any "reasonably defined (easy)"bounded sequence independent of μ is orthogonal to μ .

Möbius function

The Möbius function is defined by

$$\mu(n) = \left\{ egin{array}{ll} (-1)^k & ext{if n is squarefree and} \\ k & ext{is the number of prime factors} \\ 0 & ext{otherwise} \end{array}
ight.$$

A sequence **u** is **orthogonal to the Möbius function** μ (n) if

$$\sum_{n\leq N}\mu(n)u_n=o(\sum_{n\leq N}|u_n|)\qquad (N\to\infty).$$

Old Heuristic - Mobius Randomness Law

Any "reasonably defined (easy)"bounded sequence independent of μ is orthogonal to $\mu.$

- Constant sequences ⇔ PNT
- Periodic sequences ⇔ PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n) = F(\alpha n \mod 1)$ Davenport
- Nilsequences Green and Tao
- Horocycle Flows Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

- Constant sequences ⇔ PNT
- Periodic sequences ⇔ PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n) = F(\alpha n \mod 1)$ Davenport
- Nilsequences Green and Tao
- Horocycle Flows Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

- Constant sequences ⇔ PNT
- Periodic sequences ⇔ PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n) = F(\alpha n \mod 1)$ Davenport
- Nilsequences Green and Tao
- Horocycle Flows Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

- Constant sequences ⇔ PNT
- Periodic sequences ⇔ PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n) = F(\alpha n \mod 1)$ Davenport
- Nilsequences Green and Tao
- Horocycle Flows Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

- Constant sequences ⇔ PNT
- Periodic sequences ⇔ PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n) = F(\alpha n \mod 1)$ Davenport
- Nilsequences Green and Tao
- Horocycle Flows Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

- Constant sequences ⇔ PNT
- Periodic sequences ⇔ PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n) = F(\alpha n \mod 1)$ Davenport
- Nilsequences Green and Tao
- Horocycle Flows Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

- Constant sequences ⇔ PNT
- Periodic sequences ⇔ PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n) = F(\alpha n \mod 1)$ Davenport
- Nilsequences Green and Tao
- Horocycle Flows Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

- Constant sequences ⇔ PNT
- Periodic sequences ⇔ PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n) = F(\alpha n \mod 1)$ Davenport
- Nilsequences Green and Tao
- Horocycle Flows Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Sarnak Conjecture

Definition

A dynamical system is said to be deterministic, if its topological entropy is 0.

Conjecture (Sarnak conjecture, 2010)

Every bounded complex sequence $\mathbf{u} = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system is orthogonal to the Möbius function $\mu(n)$.

Sarnak Conjecture

Definition

A dynamical system is said to be deterministic, if its topological entropy is 0.

Conjecture (Sarnak conjecture, 2010)

Every bounded complex sequence $\mathbf{u} = (u_n)_{n>0}$ that is obtained by a deterministic dynamical system is orthogonal to the Möbius function $\mu(n)$.

Chowla Conjecture

Conjecture (Chowla)

Let $0 \le a_1 < a_2 < \ldots < a_t$ and k_1, k_2, \ldots, k_t in $\{1,2\}$ not all even, then as $N \to \infty$

$$\sum_{n\leq N} \mu^{k_1}(n+a_1)\mu^{k_2}(n+a_2)\cdots \mu^{k_t}(n+a_t) = o(N).$$

Theorem (Sarnak)

The Chowla Conjecture implies the Sarnak Conjecture.

Theorem (Tao)

The logarithmic version of the Sarnak Conjecture implies the logarithmic version of the Chowla Conjecture.

Chowla Conjecture

Conjecture (Chowla)

Let $0 \le a_1 < a_2 < \ldots < a_t$ and k_1, k_2, \ldots, k_t in $\{1,2\}$ not all even, then as $N \to \infty$

$$\sum_{n\leq N} \mu^{k_1}(n+a_1)\mu^{k_2}(n+a_2)\cdots \mu^{k_t}(n+a_t) = o(N).$$

Theorem (Sarnak)

The Chowla Conjecture implies the Sarnak Conjecture.

Theorem (Tao

The logarithmic version of the Sarnak Conjecture implies the logarithmic version of the Chowla Conjecture.

Chowla Conjecture

Conjecture (Chowla)

Let $0 \le a_1 < a_2 < \ldots < a_t$ and k_1, k_2, \ldots, k_t in $\{1,2\}$ not all even, then as $N \to \infty$

$$\sum_{n\leq N} \mu^{k_1}(n+a_1)\mu^{k_2}(n+a_2)\cdots \mu^{k_t}(n+a_t) = o(N).$$

Theorem (Sarnak)

The Chowla Conjecture implies the Sarnak Conjecture.

Theorem (Tao)

The logarithmic version of the Sarnak Conjecture implies the logarithmic version of the Chowla Conjecture.

Logarithmic versions

Theorem (Tao, Tao - Teräväinen)

The logarithmic version of the Chowla conjecture is true for t=2 and for t odd.

Theorem (Frantzikinakis, Host)

The logarithmic version of the Sarnak conjecture is true if the dynamical system has countable many ergodic components.

Literature: "Sarnak conjecture: What's new?" (Ferenczi - Kulaga Przymus - Lemanczyk)

Logarithmic versions

Theorem (Tao, Tao - Teräväinen)

The logarithmic version of the Chowla conjecture is true for t=2 and for t odd.

Theorem (Frantzikinakis, Host)

The logarithmic version of the Sarnak conjecture is true if the dynamical system has countable many ergodic components.

Literature: "Sarnak conjecture: What's new?" (Ferenczi - Kulaga Przymus - Lemanczyk)

Logarithmic versions

Theorem (Tao, Tao - Teräväinen)

The logarithmic version of the Chowla conjecture is true for t=2 and for t odd.

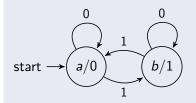
Theorem (Frantzikinakis, Host)

The logarithmic version of the Sarnak conjecture is true if the dynamical system has countable many ergodic components.

Literature: "Sarnak conjecture: What's new?" (Ferenczi - Kulaga Przymus - Lemanczyk)

Motivation

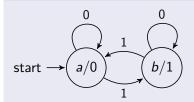
Automatic sequence



$$n = 22 = (10110)_2,$$
 $u_{22} = 1$
 $u = (u_2)_{22} = 01101001100101101001011001$

Motivation

Automatic sequence

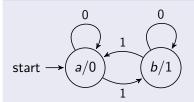


$$n = 22 = (10110)_2, u_{22} = 1$$

 $\mathbf{u} = (u_n)_{n \ge 0} = 01101001100101101001011001101001\dots$

Motivation

Automatic sequence



$$n = 22 = (10110)_2, u_{22} = 1$$

$$\mathbf{u} = (u_n)_{n \ge 0} = 01101001100101101001011001101001\dots$$

Every automatic sequence $(a_n)_{n\geq 0}$ fulfills the Sarnak Conjecture

Theorem 2 (M., 2016)

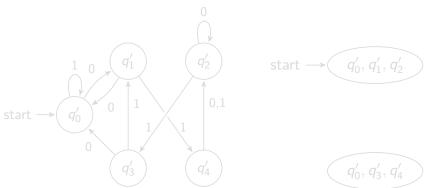
Under suitable (weak) conditions one also gets a Prime Number Theorem for automatic sequence.

Every automatic sequence $(a_n)_{n\geq 0}$ fulfills the Sarnak Conjecture

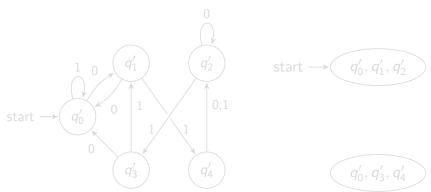
Theorem 2 (M., 2016)

Under suitable (weak) conditions one also gets a Prime Number Theorem for automatic sequence.

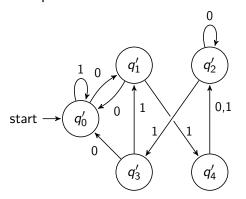
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

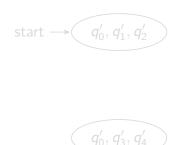


For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

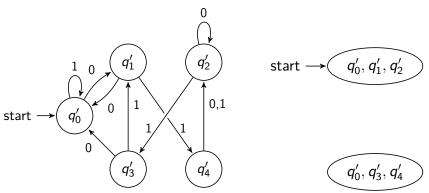


For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

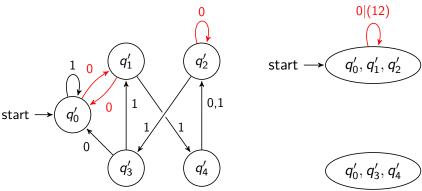




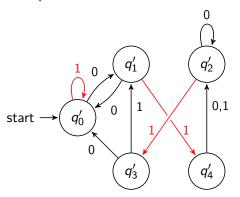
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

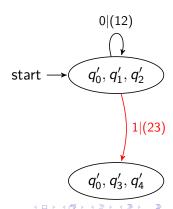


For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

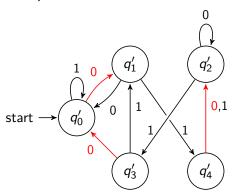


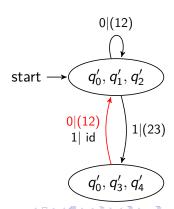
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.



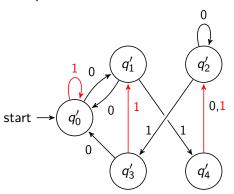


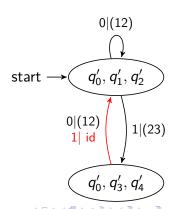
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.





For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.





Techniques

Use and adopt a framework of Mauduit and Rivat developed for the Rudin-Shapiro sequence.

- Carry Property: The contribution of high and low digits is "independent".
- Fourier Property: We say that U has the **Fourier property** if there exists $\eta>0$ and c such that for all λ,α and t

$$\left\|\frac{1}{k^{\lambda}}\sum_{m< k^{\lambda}}U(mk^{\alpha})e(mt)\right\|\leq ck^{-\eta\lambda}.$$

Techniques

Use and adopt a framework of Mauduit and Rivat developed for the Rudin-Shapiro sequence.

- Carry Property: The contribution of high and low digits is "independent".
- Fourier Property: We say that U has the **Fourier property** if there exists $\eta>0$ and c such that for all λ,α and t

$$\left\|\frac{1}{k^{\lambda}}\sum_{m< k^{\lambda}}U(mk^{\alpha})e(mt)\right\|\leq ck^{-\eta\lambda}.$$

Techniques

Use and adopt a framework of Mauduit and Rivat developed for the Rudin-Shapiro sequence.

- Carry Property: The contribution of high and low digits is "independent".
- Fourier Property: We say that U has the **Fourier property** if there exists $\eta > 0$ and c such that for all λ, α and t

$$\left\|\frac{1}{k^{\lambda}}\sum_{m< k^{\lambda}}U(mk^{\alpha})e(mt)\right\|\leq ck^{-\eta\lambda}.$$

Zeckendorf Representation

Fibonacci numbers

$$F_0 = 0, F_1 = 1 \text{ and } F_{k+2} = F_{k+1} + F_k \text{ for } k \ge 0.$$

$$F_n = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}},$$

where, φ is the golden ratio.

Zeckendorf Representation

Every positive integer n admits a unique representation

$$n = \sum_{i>2} \varepsilon_i(n) F_i$$

where, $\varepsilon_i(n) \in \{0,1\}$ and $\varepsilon_i = 1 \Rightarrow \varepsilon_{i+1} = 0$.

Zeckendorf Representation

Fibonacci numbers

$$F_0 = 0, F_1 = 1$$
 and $F_{k+2} = F_{k+1} + F_k$ for $k \ge 0$.

$$F_n = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}},$$

where, φ is the golden ratio.

Zeckendorf Representation

Every positive integer n admits a unique representation

$$n = \sum_{i \geq 2} \varepsilon_i(n) F_i$$

where, $\varepsilon_i(n) \in \{0,1\}$ and $\varepsilon_i = 1 \Rightarrow \varepsilon_{i+1} = 0$.

Zeckendorf Representation

Fibonacci numbers

$$F_0 = 0, F_1 = 1$$
 and $F_{k+2} = F_{k+1} + F_k$ for $k \ge 0$.

$$F_n = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}},$$

where, φ is the golden ratio.

Zeckendorf Representation

Every positive integer n admits a unique representation

$$n=\sum_{i\geq 2}\varepsilon_i(n)F_i,$$

where, $\varepsilon_i(n) \in \{0,1\}$ and $\varepsilon_i = 1 \Rightarrow \varepsilon_{i+1} = 0$.

Zeckendorf sum-of-digits Function

Definition

We denote by

$$s_{\varphi}(n) = \sum_{i>2} \varepsilon_i(n)$$

the Zeckendorf sum-of-digits function.

We note that $s_{\varphi}(n)$ is the least k such that n is the sum of k Fibonacci numbers.

Zeckendorf sum-of-digits Function

Definition

We denote by

$$s_{\varphi}(n) = \sum_{i>2} \varepsilon_i(n)$$

the Zeckendorf sum-of-digits function.

We note that $s_{\varphi}(n)$ is the least k such that n is the sum of k Fibonacci numbers.

Main Result

Theorem (Drmota, M., Spiegelhofer, 2017)

Let $s_{\varphi}(n)$ be the Zeckendorf sum-of-digits function and m(n) a bounded multiplicative function. Then we have

$$\sum_{n\leq N} (-1)^{s_{\varphi}(n)} m(n) = o(N) \qquad (N\to\infty).$$

This implies that the Zeckendorf sum-of-digits function is orthogonal to the Möbius function.

Main Result

Theorem (Drmota, M., Spiegelhofer, 2017)

Let $s_{\varphi}(n)$ be the Zeckendorf sum-of-digits function and m(n) a bounded multiplicative function. Then we have

$$\sum_{n\leq N} (-1)^{s_{\varphi}(n)} m(n) = o(N) \qquad (N\to\infty).$$

This implies that the Zeckendorf sum-of-digits function is orthogonal to the Möbius function.

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^k$. Then if w is a fixed point of σ , i.e. $\sigma(w) = w$, then w is a k-automatic sequence.

Example (Thue-Morse)

$$E = \{0, 1\}$$

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^k$. Then if \mathbf{w} is a fixed point of σ , i.e. $\sigma(\mathbf{w}) = \mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$$E = \{0, 1\}$$

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^k$. Then if \mathbf{w} is a fixed point of σ , i.e. $\sigma(\mathbf{w}) = \mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$$\textit{E} = \{0,1\}$$

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^k$. Then if \mathbf{w} is a fixed point of σ , i.e. $\sigma(\mathbf{w}) = \mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$$E=\{0,1\}$$

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^k$. Then if \mathbf{w} is a fixed point of σ , i.e. $\sigma(\mathbf{w}) = \mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$$E=\{0,1\}$$

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^k$. Then if \mathbf{w} is a fixed point of σ , i.e. $\sigma(\mathbf{w}) = \mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$$E = \{0, 1\}$$

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^k$. Then if \mathbf{w} is a fixed point of σ , i.e. $\sigma(\mathbf{w}) = \mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$$E = \{0, 1\}$$

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^k$. Then if \mathbf{w} is a fixed point of σ , i.e. $\sigma(\mathbf{w}) = \mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$$E = \{0, 1\}$$

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^k$. Then if \mathbf{w} is a fixed point of σ , i.e. $\sigma(\mathbf{w}) = \mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$$E = \{0, 1\}$$

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

01101001100101101001011001101001

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^k$. Then if \mathbf{w} is a fixed point of σ , i.e. $\sigma(\mathbf{w}) = \mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$$E = \{0, 1\}$$

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

A Morphism

$$a \mapsto ab$$

$$b \mapsto c$$

$$c \mapsto cd$$

$$d \mapsto a$$
.

This gives the sequence $(-1)^{s_{\varphi}(n)}$ under the coding $\tau(a) = \tau(d) = 1, \tau(b) = \tau(c) = -1.$

This is one of the first examples of a substitution with non-constant length to be orthogonal to the Möbius function.

A Morphism

$$a \mapsto ab$$

$$b \mapsto c$$

$$c \mapsto cd$$

$$d \mapsto a$$
.

This gives the sequence $(-1)^{s_{\varphi}(n)}$ under the coding $\tau(a) = \tau(d) = 1, \tau(b) = \tau(c) = -1.$

This is one of the first examples of a substitution with non-constant length to be orthogonal to the Möbius function.

A Morphism

$$a \mapsto ab$$

$$b \mapsto c$$

$$c \mapsto cd$$

$$d \mapsto a$$
.

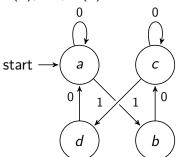
This gives the sequence $(-1)^{s_{\varphi}(n)}$ under the coding $\tau(a) = \tau(d) = 1, \tau(b) = \tau(c) = -1.$

This is one of the first examples of a substitution with non-constant length to be orthogonal to the Möbius function.

A FAO

We use as input the Zeckendorf representation of n, i.e.

$$\varepsilon_k(n), \ldots, \varepsilon_0(n)$$
:



Plan of the Proof

Use the Daboussi-Kátai Criterion to reduce the problem to

$$\sum_{n\leq N} (-1)^{s_{\varphi}(pn)+s_{\varphi}(qn)} = o(N),$$

for all different primes p, q.

• Use a generating function approach and "quasi-additivity" of $(-1)^{s_{\varphi}(pn)+s_{\varphi}(qn)}$ to reduce this to:

$$s_{\varphi}(pn_0) \not\equiv s_{\varphi}(qn_0) \bmod 2 \tag{1}$$

for some n_0

• Show (1).

Plan of the Proof

Use the Daboussi-Kátai Criterion to reduce the problem to

$$\sum_{n\leq N} (-1)^{s_{\varphi}(pn)+s_{\varphi}(qn)} = o(N),$$

for all different primes p, q.

• Use a generating function approach and "quasi-additivity" of $(-1)^{s_{\varphi}(pn)+s_{\varphi}(qn)}$ to reduce this to:

$$s_{\varphi}(pn_0) \not\equiv s_{\varphi}(qn_0) \bmod 2 \tag{1}$$

for some n_0 .

• Show (1).

Plan of the Proof

Use the Daboussi-Kátai Criterion to reduce the problem to

$$\sum_{n\leq N} (-1)^{s_{\varphi}(pn)+s_{\varphi}(qn)} = o(N),$$

for all different primes p, q.

• Use a generating function approach and "quasi-additivity" of $(-1)^{s_{\varphi}(pn)+s_{\varphi}(qn)}$ to reduce this to:

$$s_{\varphi}(pn_0) \not\equiv s_{\varphi}(qn_0) \bmod 2 \tag{1}$$

for some n_0 .

• Show (1).

Suppose that (x_n) is a bounded complex valued sequence with values in a finite set and that for every pair (p, q) of different prime numbers we have

$$\sum_{n\leq N} x_{pn} \overline{x_{qn}} = o(N).$$

Then for all bounded multiplicative functions $\mathit{m}(\mathit{n})$ it follows that

$$\sum_{n \le N} x_n m(n) = o(N).$$

- Sum of digits in integer base: Dartyge Tennenbaum
- Rudin-Shapiro sequence: Tao, Mauduit-Rivat

Suppose that (x_n) is a bounded complex valued sequence with values in a finite set and that for every pair (p, q) of different prime numbers we have

$$\sum_{n\leq N} x_{pn} \overline{x_{qn}} = o(N).$$

Then for all bounded multiplicative functions m(n) it follows that

$$\sum_{n \le N} x_n m(n) = o(N).$$

- Sum of digits in integer base: Dartyge Tennenbaum
- Rudin-Shapiro sequence: Tao, Mauduit-Rivat

Suppose that (x_n) is a bounded complex valued sequence with values in a finite set and that for every pair (p, q) of different prime numbers we have

$$\sum_{n\leq N} x_{pn} \overline{x_{qn}} = o(N).$$

Then for all bounded multiplicative functions m(n) it follows that

$$\sum_{n\leq N}x_nm(n)=o(N).$$

- Sum of digits in integer base: Dartyge Tennenbaum
- Rudin-Shapiro seguence: Tao, Mauduit-Rivat

Suppose that (x_n) is a bounded complex valued sequence with values in a finite set and that for every pair (p, q) of different prime numbers we have

$$\sum_{n\leq N} x_{pn} \overline{x_{qn}} = o(N).$$

Then for all bounded multiplicative functions m(n) it follows that

$$\sum_{n\leq N}x_nm(n)=o(N).$$

- Sum of digits in integer base: Dartyge Tennenbaum
- Rudin-Shapiro sequence: Tao, Mauduit-Rivat

Definition

We say that n_1 and n_2 are r-separated at position k if $\varepsilon_i(n_1) = 0$ for $i \ge k - r$ and $\varepsilon_i(n_2) = 0$ for $i \le k + r$.

Example:

$$n_1 = 4 \Rightarrow 0000101$$

 $n_2 = 29 \Rightarrow 1010000$

Definition

We say that n_1 and n_2 are r-separated at position k if $\varepsilon_i(n_1) = 0$ for $i \ge k - r$ and $\varepsilon_i(n_2) = 0$ for $i \le k + r$.

Example:

$$n_1=4\Rightarrow 0000101$$

$$n_2 = 29 \Rightarrow 1010000$$

Definition (for integer base by Kropf, Wagner)

We call a function f(n) quasi-additive (with respect to the Zeckendorf expansion) if there exists $r \ge 0$ such that

•

$$f(n_1 + n_2) = f(n_1) + f(n_2)$$

for all integers n_1 , n_2 that are r separated.

• $f(n_1) = f(n_2)$ if the Zeckendorf expansion of n_1 and n_2 coincide up to "shifts".

Definition (for integer base by Kropf, Wagner)

We call a function f(n) quasi-additive (with respect to the Zeckendorf expansion) if there exists $r \ge 0$ such that

•

$$f(n_1 + n_2) = f(n_1) + f(n_2)$$

for all integers n_1 , n_2 that are r separated.

• $f(n_1) = f(n_2)$ if the Zeckendorf expansion of n_1 and n_2 coincide up to "shifts".

Let $q > p \ge 2$ and $f(n) = s_{\varphi}(pn) + s_{\varphi}(qn)$. Then f(n) is quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch):

It suffices to work with $s_{\varphi}(mn)$ as the sum of quasi-additive functions is again quasi-additive.

$$n_1 < F_{k-r} \Rightarrow mn_1 < F_k.$$

$$\varepsilon_i(n_2) = 0 \forall i < k + r \Rightarrow \varepsilon_i(mn_2) = 0 \forall i < k.$$

Let $q > p \ge 2$ and $f(n) = s_{\varphi}(pn) + s_{\varphi}(qn)$. Then f(n) is quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch):

It suffices to work with $s_{\varphi}(mn)$ as the sum of quasi-additive functions is again quasi-additive.

Choose r such that $\varphi^{r-1} < m$. $n_1 < F_{k-r} \Rightarrow mn_1 < F_k$. $\varepsilon_i(n_2) = 0 \forall i < k + r \Rightarrow \varepsilon_i(mn_2) = 0 \forall i < k$.

Let $q > p \ge 2$ and $f(n) = s_{\varphi}(pn) + s_{\varphi}(qn)$. Then f(n) is quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch):

It suffices to work with $s_{\varphi}(mn)$ as the sum of quasi-additive functions is again quasi-additive.

$$n_1 < F_{k-r} \Rightarrow mn_1 < F_k.$$

$$\varepsilon_i(n_2) = 0 \forall i < k+r \Rightarrow \varepsilon_i(mn_2) = 0 \forall i < k.$$

Let $q > p \ge 2$ and $f(n) = s_{\varphi}(pn) + s_{\varphi}(qn)$. Then f(n) is quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch):

It suffices to work with $s_{\varphi}(mn)$ as the sum of quasi-additive functions is again quasi-additive.

$$n_1 < F_{k-r} \Rightarrow mn_1 < F_k.$$

$$\varepsilon_i(n_2) = 0 \forall i < k + r \Rightarrow \varepsilon_i(mn_2) = 0 \forall i < k.$$

Let $q > p \ge 2$ and $f(n) = s_{\varphi}(pn) + s_{\varphi}(qn)$. Then f(n) is quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch):

It suffices to work with $s_{\varphi}(mn)$ as the sum of quasi-additive functions is again quasi-additive.

$$\textit{n}_1 < \textit{F}_{k-r} \Rightarrow \textit{mn}_1 < \textit{F}_k.$$

$$\varepsilon_i(n_2) = 0 \forall i < k + r \Rightarrow \varepsilon_i(mn_2) = 0 \forall i < k.$$

Generating Functions Approach

Let f be a quasi-additive function and

$$H(x,z) := \sum_{k \geq 3} x^k \sum_{F_{k-1} \leq n < F_k} z^{f(n)}.$$

Note that

$$[x^k]H(x,-1) = \sum_{F_{k-1} \le n < F_k} (-1)^{s_{\varphi}(pn) + s_{\varphi}(qn)}$$

Let $\mathcal B$ be the set of integers n whose Zeckendorf expansion ends with exactly r zeros and that can not be decomposed into positive, r-separated summands. Let

$$B(x,z) = \sum_{n \in \mathcal{B}} x^{\ell(n)} z^{f(n)},$$

where $\ell(n) = k$ if $F_{k-1} \le n < F_k$.

Generating Functions Approach

Let f be a quasi-additive function and

$$H(x,z) := \sum_{k \geq 3} x^k \sum_{F_{k-1} \leq n < F_k} z^{f(n)}.$$

Note that

$$[x^k]H(x,-1) = \sum_{F_{k-1} \le n < F_k} (-1)^{s_{\varphi}(pn) + s_{\varphi}(qn)}.$$

Let $\mathcal B$ be the set of integers n whose Zeckendorf expansion ends with exactly r zeros and that can not be decomposed into positive, r-separated summands. Let

$$B(x,z) = \sum_{n \in \mathcal{B}} x^{\ell(n)} z^{f(n)},$$

where $\ell(n) = k$ if $F_{k-1} \le n < F_k$.

Generating Functions Approach

Let f be a quasi-additive function and

$$H(x,z) := \sum_{k \geq 3} x^k \sum_{F_{k-1} \leq n < F_k} z^{f(n)}.$$

Note that

$$[x^k]H(x,-1) = \sum_{F_{k-1} \le n < F_k} (-1)^{s_{\varphi}(pn) + s_{\varphi}(qn)}.$$

Let $\mathcal B$ be the set of integers n whose Zeckendorf expansion ends with exactly r zeros and that can not be decomposed into positive, r-separated summands. Let

$$B(x,z) = \sum_{n \in \mathcal{B}} x^{\ell(n)} z^{f(n)},$$

where $\ell(n) = k$ if $F_{k-1} \le n < F_k$.

$$H(x,z) = \frac{1}{1-x} \frac{1}{1-B(x,z) \frac{x^{2r+1}}{1-x}} B'(x,z)$$
$$= \frac{B'(x,z)}{1-x-x^{2r+1}B(x,z)}.$$

The dominant singularity of H(x,1) is at $x_0 = \frac{1}{\varphi}$. This is due to the fact that $x = x_0$ is a solution fo

$$x + x^{2r+1}B(x,1) = 1$$

$$x + x^{2r+1}B(x, -1) = 1.$$

$$H(x,z) = \frac{1}{1-x} \frac{1}{1-B(x,z) \frac{x^{2r+1}}{1-x}} B'(x,z)$$
$$= \frac{B'(x,z)}{1-x-x^{2r+1}B(x,z)}.$$

The dominant singularity of H(x,1) is at $x_0 = \frac{1}{\varphi}$.

This is due to the fact that $x = x_0$ is a solution for

$$x + x^{2r+1}B(x,1) = 1$$

$$x + x^{2r+1}B(x, -1) = 1.$$

$$H(x,z) = \frac{1}{1-x} \frac{1}{1-B(x,z) \frac{x^{2r+1}}{1-x}} B'(x,z)$$
$$= \frac{B'(x,z)}{1-x-x^{2r+1}B(x,z)}.$$

The dominant singularity of H(x,1) is at $x_0 = \frac{1}{\varphi}$. This is due to the fact that $x = x_0$ is a solution for

$$x + x^{2r+1}B(x,1) = 1.$$

$$x + x^{2r+1}B(x, -1) = 1.$$

$$H(x,z) = \frac{1}{1-x} \frac{1}{1-B(x,z) \frac{x^{2r+1}}{1-x}} B'(x,z)$$
$$= \frac{B'(x,z)}{1-x-x^{2r+1}B(x,z)}.$$

The dominant singularity of H(x,1) is at $x_0 = \frac{1}{\varphi}$. This is due to the fact that $x = x_0$ is a solution for

$$x + x^{2r+1}B(x,1) = 1.$$

$$x + x^{2r+1}B(x, -1) = 1.$$

It remains to find *n* such that

$$s_{\varphi}(pn) + s_{\varphi}(qn) \equiv 1 \mod 2.$$

The key point is to find n_1 , n_2 such that

$$egin{aligned} s_arphi(pn_1)+s_arphi(pn_2)&\equiv s_arphi(p(n_1+n_2))\ ext{mod}\ 2\ s_arphi(qn_1)+s_arphi(qn_2)&\equiv s_arphi(q(n_1+n_2))+1\ ext{mod}\ 2. \end{aligned}$$

It remains to find *n* such that

$$s_{\varphi}(pn) + s_{\varphi}(qn) \equiv 1 \mod 2.$$

The key point is to find n_1 , n_2 such that

$$\begin{split} s_{\varphi}(pn_1) + s_{\varphi}(pn_2) &\equiv s_{\varphi}(p(n_1+n_2)) \bmod 2 \\ s_{\varphi}(qn_1) + s_{\varphi}(qn_2) &\equiv s_{\varphi}(q(n_1+n_2)) + 1 \bmod 2. \end{split}$$