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Abstract

The problem 2-Xor-Sat asks for the probability that a random expression, built as a conjunction of
clauses x⊕y, is satisfiable. We revisit this classical problem by giving an alternative, explicit expression
of this probability. We then consider a refinement of it, namely the probability that a random expression
computes a specific Boolean function. The answers to both problems involve a description of 2-Xor ex-
pressions as multigraphs and use classical methods of analytic combinatorics by expressing probabilities
through coefficients of generating functions.

Keywords: multigraph enumeration, probability of Boolean functions, satisfiability, 2-Xor ex-
pressions, asymptotics.

1 Introduction
In constraint satisfaction problems we ask for the probability that a random expression, built on a finite
set of Boolean variables according to some rules (k-Sat, k-Xor-Sat, NAE, . . . ), is (un)satisfiable. The
behaviour of this probability, when the number n of Boolean variables and the length m of the expression
(usually defined as the number of clauses) tend to infinity, has given rise to numerous studies, most of them
concentrating on the existence and location of a threshold from satisfiability to unsatisfiability as the ratio
m/n grows. The literature in this direction is vast; for Xor-functions see e.g. [9, 10, 12, 11, 13].

Defining a probability distribution on Boolean functions through a distribution on Boolean expressions
is a priori a different question. Quantitative logic aims at answering such a question, and many results have
been obtained when the Boolean expression, or equivalently the random tree that models it, is a variation
of well-known combinatorial or probabilistic tree models such as Galton-Watson and Pólya trees, binary
search trees, etc ([30, 6, 5, 34, 37, 24, 27, 29, 7, 25, 23, 26]).

So we have two frameworks: On the one hand we try to determine the probability that an expression
is satisfiable; on the other hand we try to identify probability distributions on the set of Boolean functions.
It is only natural that we should wish to merge these two approaches: We set satisfiability problems into
the framework of quantitative logic (this only requires choosing a suitable model of expressions) and ask
for the probability of FALSE – this is the classical satisfiability problem – and for the probabilities of the
other Boolean functions as well. This amounts to refining the satisfiable case and taking all the functions
different from FALSE also into account. The set of Boolean expressions is then partitioned into subsets
according to the (class of) Boolean function(s) that is computed.

Within this unified framework one could, e.g., ask for the probability that a random expression com-
putes a function that is satisfied by a specific number of assigments. Although this may turn out to be out
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of our reach for most classical satisfiability problems, there are some problems for which we may still hope
to obtain a (partial) description of the probability distribution on the set of Boolean functions. The case of
2-Xor expressions is such a problem, and this paper is devoted to presenting our results in this domain.

Consider random 2-Xor-Sat instances with a large number n of variables, and m of clauses. Creignou
and Daudé established that their limit probability of satisfiability goes from positive values to zero when
the ratio m/n crosses 1/2 (see [9]). They then proved that this threshold is coarse (cf. [11]). Further
work by Daudé and Ravelomanana [14] and by Pittel and Yeum [32] led to a precise understanding of the
transition in a window of size n−1/3 around 1/2.

The paper is organized as follows. We present in the next section 2-Xor expressions and the set of
Boolean functions that they can represent. Then we give a modelization of these expressions in terms of
multigraphs, before considering in Section 3 how enumeration results on classes of multigraphs allow us
to compute probabilities of Boolean functions. We then give explicit results for several classes of functions
in Section 4, and conclude with a discussion on the relevance and of possible extensions of our work in
Section 5.

A preliminary version of our work was presented at the conference Latin’14 [16].

2 Boolean Expressions and Functions and their Relations to Multi-
graphs

2.1 2-Xor Expressions and Boolean Functions
In this section we will lay out the framework of Boolean expressions which we will investigate. If x is a
Boolean variable, we will denote by x̄ its negation.

Definition 1. Let {x1, x2, . . . , xn} be a set of Boolean variables. A 2-Xor expression is a finite conjunction
of clauses l ⊕ l′, where l and l′ are literals, i.e. they are elements of {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}.

The clauses as well as the literals within each clause are ordered (i.e. for instance that the clauses
x ⊕ y and y ⊕ x are distinct). From a combinatorial point of view, an expression can be regarded as a
sequence of clauses where each clause is a pair of two literals. Neither the literals of a clause nor the
clauses themselves need to be distinct.

The set of all such expressions is denoted by En.

We say that a 2-Xor expression defines, or computes, the corresonding Boolean function. We shall
denote the number of clauses of an expression by m. Now each 2-Xor expression defines a Boolean
function on a finite number of variables, but not all Boolean functions on a finite number of variables can
be represented by a 2-Xor expression. We define X as the set of functions from {0, 1}N to {0, 1} which
have at least one representation by a 2-Xor expression in

⋃
n≥1 En. We also define, for each n ≥ 1, the set

Xn of functions in X such that there exists an expression in En representing the function. This implies that
Xn1 ⊂ Xn2 for n1 ≤ n2, and that X = ∪n≥1Xn.1

Consider now the expressions in En. There there are 4n2 distinct clauses. We assume that them clauses
are drawn with a uniform probability (and hence with replacement). This framework allows us to define,
for each m, a probability distribution on the set Xn:

Definition 2. Let Em,n = (4n2)m be the total number of expressions with m clauses on the variables x1,
. . . , xn, andEm,n(f) denote the number of these expressions that compute f . Then, for a Boolean function
f ∈ Xn we set Pr[m,n](f) =

Em,n(f)
Em,n

.

2.2 The Sets Xn
Rewriting a clause l1 ⊕ l2 as l1 ∼ l̄2 or l̄1 ∼ l2 (i.e., the literals l1 and l2 must take opposite values for the
clause to evaluate to TRUE), and merging the clauses sharing a common variable, we see that the functions

1For the sake of brevity, in the sequel “(the set of) Boolean functions” is to be understood as either the set Xn or the set X ,
according to the context.
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we obtain can be written as a conjunction of equivalence relations on literals: 2

(l1 ∼ · · · ∼ lp1) ∧ (lp1+1 ∼ · · · ∼ lp2) ∧ · · · ∧ (lpr−1+1 ∼ · · · ∼ lpr ).

E.g., for n = 7 the expression (x1 ⊕ x3) ∧ (x̄6 ⊕ x5) ∧ (x7 ⊕ x̄7) ∧ (x2 ⊕ x̄3) computes a Boolean
function f that we can write as (x1 ∼ x̄3) ∧ (x6 ∼ x5) ∧ (x7 ∼ x7) ∧ (x̄2 ∼ x̄3) , or equivalently as
(x1 ∼ x̄2 ∼ x̄3)∧(x5 ∼ x6); furthermore this function partitions the set of Boolean variables {x1, . . . , x7}
into the subsets {x1, x2, x3}, {x4}, {x5, x6} and {x7}.

If a clause inducing l ∼ l̄ appears, then the expression simply computes FALSE. In other words:

Proposition 1. For any n ≥ 1, the set Xn of Boolean functions on n variables, such that there exists
at least one 2-Xor expression in En that computes the function, comprises exactly the function FALSE and
those functions f that are specified as follows: Fix a set Y = {y1, y2, . . . , yn} such that yi = xi or yi = x̄i,
for all i = 1, . . . , n, and partition the set Y into subsets. Then f attains the value TRUE if and only if for
each block of the partition all the literals have the same value. A variable which appears in no clause of
an expression computing the function, or only as l ∼ l, is put into a singleton.

Proof. Given a set of literals p = {l1, . . . , ls}, let p̄ denote the set where each literal is switched

p̄ = {l̄1, . . . , l̄s}.

Let us first observe that if a satisfiable expression is specified, in the sens of the proposition, by the partition

Y = p1 ] p2 ] · · · ] pt,

where each variable appears in exactly one literal of Y , then it is also specified by the partition where any
number of pi is replaced by p̄i.

We prove the proposition by recurrence on the number of clauses m. For m = 0, the Boolean function
computed is TRUE, and is specified by the partition

{{x1}, {x2}, . . . , {xn}}.

of Y = {x1, . . . , xn}. Let us assume that the proposition is proven for a given m, and consider a 2-Xor
expression with m+ 1 clauses

E = Ẽ ∧ (l1 ⊕ l2),

where Ẽ is a 2-Xor expression with m clauses. If Ẽ computes the Boolean function FALSE, then E also
computes FALSE and the proposition holds. Otherwise, let

Y = p1 ] p2 ] · · · ] pt

denote the partition obtained by application of the proposition to the expression Ẽ. The last clause of E
is (l1 ⊕ l2), which is equivalent with l1 ∼ l̄2 and is satisfied if and only if l1 and l̄2 are assigned the same
Boolean value. Without loss of generality, we can assume that l1 belongs to Y . Otherwise, we just replace
the set pi from the partition that contains l̄1 with p̄i.

• If l2 also belongs to pi then, according to the proposition, Ẽ is satisfied only if l1 and l2 take the
same Boolean value, so the clause (l1 ⊕ l2) cannot be satisfied. Therefore, E is not satisfiable, so it
computes the Boolean function FALSE.

• If l̄2 belongs to pi, then the clause l1 ⊕ l2 is satisfied by any assignment satisfying Ẽ, so E is
satisfiable, and the partition built by the proposition for E is Y = p1 ] p2 ] · · · ] pt.

• Otherwise, there is a set pj from P , distinct from pi, that contains either l2 or l̄2. Without loss of
generality, we can assume that pj contains l̄2. Otherwise, we simply replace pj with p̄j . Then E is
satisfiable. The corresponding partition is obtained from (p1, . . . , pt) by replacing the sets pi and pj
with pi ∪ pj . �

2Note that the relation∼ corresponds to an equivalence relation on the set of variables and therefore induces a partition on the set
of variables. But as to the presence of negations, the formal structure is in fact a little bit richer than only a set with an equivalence
relation.
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We now define an equivalence relation on Xn.

Definition 3. Two Boolean functions f and g on n variables are equivalent, denoted as f ≡ g, if g can
be obtained from f by permuting the variables and flipping some of the literals. We denote by C(f) the
equivalence class of a function f .

For example, for n = 7 the function f we have defined before is equivalent to the function g =
(x3 ∼ x5 ∼ x2) ∧ (x1 ∼ x̄6). It is easy to check that all the Boolean functions in C(f) have the same
probability Pr[m,n](f).

Definition 4. Let f ∈ X ; we say that a Boolean variable x is an essential variable of f if and only if
f |x=1 6= f |x=0. We set e(f) as the number of the essential variables of f .

Remark 1. Although writing the constant functions TRUE and FALSE as 2-Xor expressions requires the
use of (at least) one variable, these two functions have no essential variable: e(TRUE) = e(FALSE) = 0.

Note that g 6∈ Xe(f)−1 for all g with f ≡ g. But there exists a function g with f ≡ g such that
g ∈ Xe(f). In our running example, e(f) = 5 and the essential variables are x1, x2, x3, x5 and x6, so we
can take, e.g., g = (x3 ∼ x5 ∼ x2) ∧ (x1 ∼ x̄6).

Again, with the exception of FALSE that forms a class by itself, the classes we have thus defined on Xn
are in bijection with the partitions of the integer n; in our example the class of the function f partitions the
integer 7 as 1 + 1 + 2 + 3.

Notation 1. Let P(n) denote the set of partitions of the integer n. For any i = (i`)`≥1 in P(n), i` is
the number of parts of size `. Hence the size of i is s(i) :=

∑
` ` i` = n, and the total number of parts

(or blocks) is ξ(i) :=
∑
` i`. A partition of the type (0, . . . , 0, 1, 0, . . .) with the single 1 in position n is

denoted by imax(n).

We can now express a bijection between classes of Boolean functions and integer partitions.

Proposition 2. Given an integer partition i of n, let Ci denote the set of Boolean functions from Xn \
{FALSE} with i` blocks of size ` for all ` ≥ 1. Then {Ci}i∈P(n) is in bijection with the quotient of the
set Xn \ {FALSE} by the equivalence relation “≡”.

We write i(f) for the integer partition associated to a Boolean function f , and we extend the notation
for the equivalence class into Ci = C(f) when i = i(f).

Proof. Given a Boolean function f in Xn \ {FALSE}, C(f) denotes the class of f for the equivalence
relation “≡”. Therefore, the set of distinct classes C(f) is in bijection with (Xn \ {FALSE})/ ≡. Let i
denote the integer partition matching the block composition of f . The demonstration of the proposition is
over once we have proven Ci = C(f).

Let us write the block representation of f , defined in Proposition 1, as

{{l1,1}, {l1,2}, . . . , {l1,i1},
{l2,1, l2,2}, {l2,3, l2,4}, . . . , {l2,2i2−1, l2,2i2},

...
{lt,1, . . . , lt,t}, . . . , {lt,tit−(t−1), . . . , lt,tit}, . . .},

where all li,j are literals corresponding to distinct variables. Let g be a Boolean function in Ci, with block
representation

{{l̃1,1}, {l̃1,2}, . . . , {l̃1,i1},
{l̃2,1, l̃2,2}, {l̃2,3, l̃2,4}, . . . , {l̃2,2i2−1, l̃2,2i2},

...

{l̃t,1, . . . , l̃t,t}, . . . , {l̃t,tit−(t−1), . . . , l̃t,tit}, . . .}.
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By flipping some of the literals and permuting the variables, the block representation of f can be sent to
the block representation of g, so f ≡ g and Ci is a subset of C(f).

Reciprocally, let h denote a Boolean function in C(f). By definition, a block representation of h
can be obtained from the block representation of f by flipping some literals and permuting the variables.
Therefore, the block representation of h corresponds to the same integer partition i as f , so h belongs to Ci
and C(f) is a subset of Ci.

Since we have both Ci ⊂ C(f) and C(f) ⊂ Ci, we conclude that those two sets are equal. �

Our running example corresponds to the integer partition (n−5, 1, 1, 0, 0, 0) on n ≥ 5 variables, which
has n − 3 parts. The set partition it induces on the set of Boolean variables may be taken, for example,
equal to {x1, x2}, {x3, x4, x5}. The function TRUE corresponds to the integer partition (n, 0, . . . , 0) and
is computed by the expressions that have only clauses of the form l ⊕ l̄.

Proposition 3. i) Set p(n) as the number of integer partitions of n. Then the number of equivalence
classes of computable Boolean functions is p(n) + 1.

ii) The class Ci associated to an integer partition i = (i`) has cardinality

|Ci| =
2n−ξ(i) n!∏
`≥1 i`!(`!)

i`
. (1)

Remark 2. As an aside, we mention that, as n→ +∞ (see [22, p. 578]),

p(n) ∼ 1

4n
√

3
exp

(
π
√

2n/3
)
.

Proof. The number of classes comes from the bijection between classes, with the exception of the one with
FALSE, and integer partitions, hence we get i).

To prove ii), note that the number of partitions of the set of the n Boolean variables that lead to i is

n!∏n
l=1(l!)ilil!

,

cf. [8, p. 205, Theorem B] or [1, Theorem 13.2].
Now observe that there are two possible polarities for each variable and hence 2n choices. But in

this way, each block of variables is counted twice, e.g. x1 ∼ x̄2 ∼ x3 defines the same function as
x̄1 ∼ x2 ∼ x̄3. Hence we have to divide by 2 for each block and therefore the cardinality of the equivalence
class Ci is given by (1). �

Remark 3. The factor 2n−ξ(i) can also be arrived at as follows. Choose a variable in each block and then
fix the polarities of the other variables in this block as equal or opposite to the chosen variable of the block.
This gives l − 1 decisions for a block of size l and thus in total a contribution of the multiplicative factor
2
∑n
l=2 il(l−1).

2.3 2-Xor Expressions as Colored Multigraphs
In their seminal articles on the first cycle in an evolving graph and the birth of the giant component, Flajolet,
Knuth and Pittel [20] and Janson, Knuth, Łuczak and Pittel [28] introduced the following notions.

The multigraph process, also known as the uniform graph model, produces a labelled multigraph G
with n vertices and m edges by drawing independently and uniformly 2m vertices in [1, n]:

u1, v1, u2, v2, . . . , um, vm.

The set of vertices of G is V (G) = [1, n] and its set of edges is

E(G) = {{u1, v1}, {u2, v2}, . . . , {um, vm}}.
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Different drawings can lead to the same multigraph: The number of ordered sequences of vertices that
correspond to a given multigraph G is denoted by seqv(G) and satisfies

seqv(G) = |{u1, v1, . . . , um, vm ∈ [1, n]2m | E(G) = {{u1, v1}, . . . , {um, vm}}}|.

A multigraph is simple if no edge contains twice the same vertex and all its edges are distinct. Therefore,
it contains neither loops nor multiple edges. It follows that the number of sequences of vertices that
correspond to a given simple multigraph G with m edges is

seqv(G) = 2mm!.

The compensation factor κ(G) of a multigraph G is classically defined as

κ(G) =
seqv(G)

2mm!
,

so a multigraph is simple if and only if its compensation factor is equal to 1.

Figure 1: The multigraph underlying our running example.

For example, for m = 4 and n = 7 the drawings x2, x3, x7, x7, x1, x3, x6, x5 and x7, x7, x1, x3, x3,
x2, x5, x6 both lead to the multigraph of Figure 1; indeed the number of ordered sequences leading to this
multigraph is 4! 23 = 192 and its compensation factor is 1

2 .

Fact 1. Let Mm,n denote the set of multigraphs with n vertices and m edges. The probability for the
multigraph process to produce a multigraph G among all multigraphs in Mm,n is proportional to its
compensation factor κ(G)

P(G | G ∈Mm,n) =
κ(G)∑

H∈Mm,n
κ(H)

.

The number of multigraphs in a family F is defined as the sum of their compensation factors∑
G∈F

κ(G),

although this quantity might not be an integer. For example, the total number of multigraphs with n vertices
and m edges is

Mm,n =
n2m

2mm!
,

and the number of cubic multigraphs (i.e. multigraphs where all the vertices have degree 3) with 2r vertices
is

(6r)!

(3!)2r23r(3r)!
,

because such multigraphs have 3r edges. If F contains only simple multigraphs, its number of multigraphs
is equal to its cardinality.

Let n(G) andm(G) denote the number of vertices and number of edges of a multigraphG, respectively.
The generating function corresponding to a family F of multigraphs is

∑
G∈F

κ(G)zm(G) v
n(G)

n(G)!
.
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For example, the generating function of all multigraphs is

M(z, v) =
∑
n≥0

e
n2

2 z
vn

n!
.

As already observed by Janson, Knuth, Łuczak and Pittel[28], and Flajolet, Salvy and Schaeffer [21], a
multigraph is a set of connected multigraphs, so the generating function for connected multigraphs is

C(z, v) = logM(z, v) =
∑
r≥−1

zr Cr(zv)

where we have set r = m − n, the excess of the multigraph, and where Cr(z) is the generating function
associated with connected multigraphs of fixed excess r.

We are now ready to define a bijection between Boolean expressions and colored multigraphs, i.e.
multigraphs with different types (colors) of edges between any two vertices.

Figure 2: The colored multigraph for our running example.

Proposition 4. The 2-Xor expressions are in bijection with multigraphs where loops are 4-colored and
other edges are 8-colored. This bijection is such that, for all f ∈ X the number of connected components of
the associated multigraph is ξ(i(f)). Thus the function M(8z, v) is the bi-exponential generating function
for 2-Xor expressions, i.e.

M(8z, v) =
∑
n≥0

∑
m≥0

Em,n
znvm

n!m!
.

Proof. We first present the bijection between a 2-Xor expression ofm clauses on n variables, and a colored
multigraph on n vertices and with m edges.

• Each Boolean variable x` corresponds to a vertex, and each 2-Xor clause to an edge between two
distinct vertices, or to a loop on one vertex; each loop or edge can be repeated.

• A loop on vertex x has one of four colors: x⊕ x, x⊕ x̄, x̄⊕ x or x̄⊕ x̄.

• An edge between two distinct vertices xi and xj has one of eight colors: li ⊕ lj or lj ⊕ li, where li
and lj are respectively equal to xi or its negation, and xj or its negation.

It is then an easy matter to check that the number of connected components of the multigraph is simply the
number of parts in the integer partition associated with the function f computed by the expression.

We next turn to the generating function for 2-Xor expressions and start from the generating function
for multigraphs

M(z, v) =
∑
m,n

Mm,n
vn

n!
zm =

∑
n≥0

e
n2

2 z v
n

n!
,

with v marking the vertices and z marking the edges and loops, and Mm,n the number of multigraphs on
n vertices and with m edges. Consider expressions built on n variables, and set Em,n as the number of
such expressions with m clauses. Each vertex contributes a term e4z for the loops: There are 4 possible
colors; each vertex x also contributes a term

∏
y:x<y≤n e

8z = e8z(n−x) for the edges to a different vertex:
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There are 8 possible colors. We order the vertices so as not to count them twice. Taking into account all n
vertices gives ∑

m

Em,n
zm

m!
=

n∏
s=1

e4z e8z(n−s) = e4n2z,

which in turn leads to an expression for the global generating function as∑
m,n

Em,n
zm

m!

vn

n!
=
∑
n

e4n2 z v
n

n!
= M(8z, v). �

2.4 The Different Ranges
We shall not consider the whole range of values for the parameters n andmwhen studying the probabilities
on Xn, but restrict our investigations to the case where m and n are (roughly) proportional – which is the
most interesting part as it includes the domain around the threshold – and set m ∼ αn (α is usually
assumed to be a constant). It is well known (see, e.g., [14]) that the probability that a random expression
is satisfiable decreases from 1 to 0 when α increases, with a (coarse) threshold at 1

2 . However a Boolean
function corresponding to a partition of the n Boolean variables into p blocks cannot appear before at least
n− p clauses have been drawn, i.e. before m ≥ n− p. E.g., the function x1 ∼ · · · ∼ xn cannot appear for
m < n− 1, which means that it has a non-zero probability only for α ≥ 1, much later than the threshold –
and at this point the probability of FALSE is 1− o(1). This leads us to define several regions according to
the value of the ratio α = m/n when m,n→ +∞:

• α < 1/2. Here the probability of satisfiability is non-zero, but the attainable functions cannot have
more than n(1− α) blocks.

• α = 1/2. This is precisely the threshold range.

• 1/2 < α < 1. Some Boolean functions still have probability zero, but now the probability of
satisfiability is o(1) and the probability of FALSE is 1 − o(1). Thus any other attainable Boolean
function has a vanishing probability o(1).

• 1 ≤ α. At this point all the attainable Boolean functions have non-zero probability, but again the
probability of FALSE is tending to 1.

3 Probabilities on the Set of Boolean Functions
We consider here how we can obtain the probability of satisfiability (or equivalently of FALSE), or of any
function in Xn. The reader should recall that the probabilities given in the sequel are actually distributions
on Xn, i.e. they depend on n and m. Letting n and m = m(n) grow to infinity amounts to specializing
the probability distribution Pr[m,n](f) (defined in Section 2.1 for f ∈ Xn) to Pr[m(n),n](f). We shall
be interested in its limit when n → +∞ and f is a function of X . First we will consider the case f =
FALSE (which is the usual satisfiability problem) and derive anew the probability of satisfiability in the
critical window, before turning to general Boolean functions. We begin with some enumeration results on
multigraphs that will be useful in the proofs of our results.

Remark 4. Note that the classical satisfiability problems as well as the above described extension are
looking for the limit of the probability Pr[m(n),n](f), as n → ∞. This raises the question whether the
squence of distributions Pr[m(n),n] defines a limiting distribution on the set X . We do not know whether
this is true or not, but our asymptotic results either concern the limit of the probabilities Pr[m(n),n](f) for
some a priori given function f which is independent of n (lying in some Xn0

; then the limit for n→∞ is
taken) or a particular sequence of function which depends on n.

When looking into the literature of quantitative logic, the question for certain limiting probabilities of-
ten arises and is settled by means of the Drmota-Lalley-Woods theorem (see [22, p. 489] for the polynomial
version and [18, Sec. 2.2.5] for the analytic version). In order to apply this theorem, one has to specify
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the problem in terms of a system of functional equations which has certain technical properties, in partic-
ular it must not be linear. Usually, for each Boolean function one defines a generating associated with the
expressions representing the Boolean function and sets up a sort of a recursive description of the Boolean
function in terms of the other Boolean functions. If we do that for 2-Xor formulas, we get a linear system
of functional equations, which is therefore not covered by the Drmota-Lalley-Woods framework. Despite
linearity, the system is complicated to analyze, and so we decided to approach the problem through a bi-
jection to certain classes of multigraphs and exploit the rich existing knowledge on multigraph generating
functions.

3.1 Asymptotics for Multigraphs
3.1.1 Connected Multigraphs

Connected graphs with a large number of vertices have been counted for various ranges of number of
edges. The first result is attributed to Cayley, who obtained in 1889 an exact formula for the number of
unrooted trees by resolution of a recurrence (see [4, p. 51] for a historical discussion by Biggs, Lloyd and
Wilson). Rényi [19] derived an asymptotic formula for the number of unicyclic graphs. Erdős and Rényi
obtained in [19] the probability for a random graph with high density of edges to be connected. From
their result follows an expression for the asymptotic number of connected graphs with n vertices and m
edges when m − n = 1

2n(log(n) + c) for any value c fixed or growing to infinity. Using generating
functions, Wright [35] gave the asymptotic number of connected graphs for m− n arbitrary but fixed, and
also studied the case m − n = o(n1/3) in [36]. Finally, Bender, Canfield, and McKay [3] obtained the
asymptotic number of connected graphs for all n,m−n→∞. Their proof is based on a recursive formula
derived by Wright. New proofs were proposed in [31] and [33].

For historical reasons, most of those results were only stated for simple graphs. In the following
theorems, we summarize those results and adapt them to multigraphs.

Notation 2. The number of connected multigraphs with n vertices and m edges is denoted by Cm,n.
The exponential generating function of connected multigraphs with excess r = m− n is denoted by

Cr(v) =
∑
n≥0

Cn+r,n
vn

n!
.

Theorem 1. When the excess r = m− n is fixed, then

Cm,n ∼ Krn
n+ 3r−1

2 , (2)

where the value of Kr is

Kr =


1 if r = −1,
√

2π
4 if r = 0,
√

2π
23r/2Γ(3r/2)

[v2r] log
(∑

`≥0
(6`)!

288`(3`)!
v2`

(2`)!

)
if r > 0.

Remark 5. Note that the excess of a connected multigraph is always greater or equal to −1.

Proof. • For r = −1, the connected component is an unrooted tree, C−1(v) = T (v)−T (v)2/2 where
T (v) =

∑
n n

n−1 vn

n! is the so-called tree function, and [22, p. 132]:

n![vn]C−1(v) = nn−2.

• For r = 0, the connected component is unicyclic, C0(v) = 1
2 log 1

1−T (v) and (again from [22,
p. 133]):

n![vn]C0(v) ∼ 1

4
nn−1

√
2nπ.
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• For r ≥ 1, we follow the approach of Wright [35]. A kernel is a multigraph with minimum degree
at least 3. Let us define the deficiency of a kernel of excess r with n vertices as d = 2r − n. it
follows that the number of edges of a kernel is m = 3r − d. Let also C(≥3)

r,d denote the number of
connected kernels of excess r and deficiency d. All connected multigraphs of excess r ≥ 1 can be
build from the connected kernels of excess r by replacing the edges with paths and the vertices with
rooted trees, so

Cr(v) =

2r−1∑
d=0

C
(≥3)
r,d

(2r − d)!
.

T (v)2r−d

(1− T (v))3r−d ,

which gives

Cn+r,n = n![vn]Cr(v) =

2r−1∑
d=0

C
(≥3)
r,d

(2r − d)!
.[vn]

T (v)2r−d

(1− T (v))3r−d . (3)

We must compute the coefficients [vn] T (v)2r−d

(1−T (v))3r−d
. We have, for any fixed positive integers a and b,

n![vn]
T (v)a

(1− T (v))b
∼ 2−b/2

Γ(b/2)
en nb/2−1 n!,

which is independent of a. When r is fixed, we see that, of the 2r terms in Equation (3), the one for
d = 0 gives the dominant term and we get, also from [22, p. 134]:

n![vn]Cr(v) ∼
C

(≥3)
r,0

(2r)!

√
2π

23r/2 Γ(3r/2)
nn+ 3r−1

2 .

Finally, the constant C(≥3)
r,0 is the number of connected cubic multigraphs (i.e. 3-regular multi-

graphs). Since there are (6`)!
(3!)2`23`(3`)!

cubic multigraphs with 2` vertices (see Section 2.3), the gener-
ating function of connected cubic multigraphs is

∑
`≥1

C
(≥3)
`,0

v2`

(2`)!
= log

∑
`≥0

(6`)!

288`(3`)!

v2`

(2`)!

 ,

and a coefficient extraction leads to

C
(≥3)
r,0

(2r)!
= [v2r] log

∑
`≥0

(6`)!

288`(3`)!

v2`

(2`)!

 . �

When the excess r goes to infinity, non-cubic kernels cease to be negligible, and a different approach
is needed to enumerate the connected multigraphs.

Theorem 2. Whenm−n goes to infinity and 2m
n −log(n) tends towards a constant or−∞, the asymptotic

number of connected multigraphs is

Cm,n =

√
2(eλ − 1− λ)2

λ(e2λ − 1− 2λeλ)

nm√
2πn

(2 sinh(λ/2))
n

λm

(
1 +O

(
(m− n)e−2m/n

)−1/2+ε
)

for any ε > 0, where the value λ is characterized by the relation

λ

2
coth

λ

2
=
m

n
.

Proof. This asymptotic expression has already been derived for simple graphs. Unfortunately, the corre-
sponding proofs are too long to be reproduced and adapted here for multigraphs. Instead, we follow the
proof from Pittel and Wormald [31]. and indicate the necessary changes in order to obtain the same result
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for multigraphs. A proof based on analytic combinatorics is also available in [15, Theorem 5.1.3]. It is
however restricted to the case where 2m/n tends toward a constant.

The proof starts with the enumeration of cores, which are multigraphs with minimum degree at least 2.
Cores correspond to sequences of vertices

u1, v1, . . . , um, vm

where each vertex appears at least 2 times. The number of such sequences of length 2m with n vertices is∑
d1,...,dn≥2

d1+···+dn=2m

(
2m

d1, . . . , dn

)
= (2m)!Q(n,m),

where the quantity Q(n,m) is defined in [31, Equation (2.1)] by

Q(n,m) =
∑

d1,...,dn≥2
d1+···+dn=2m

n∏
j=1

1

dj !
.

Therefore, the number of cores with n vertices and m edges, defined as the sum of their compensation
factors, is

Corem,n =
(2m)!

2mm!
Q(n,m),

which replaces Equation (3.9) of [31, Theorem 8, p. 13]. Its asymptotic estimate, given in [31, Equa-
tion (3.11), p. 13] is now

Corem,n = (1 +O((m− n)−1 + (m− n)1/2n−1+ε))
(2m− 1)!!f(λ)n

λ2m

1√
2πnc(1 + η̄ − c)

where λ, f , c and η̄ have the same definition as in [31].
The second step of the proof is the enumeration of cores that contain no isolated cycles. Let Core(\cycle)

m,n

denote the number of such multigraphs with n vertices and m edges. The result is stated in [31, p. 4,
Theorem 2] and its proof can be found in [31, Section 6]. It relies on the exponential generating function
of simple undirected cycles ∑

`≥3

x`

2`
= −1

2
log(1− x)− x

2
− x2

4
.

In multigraphs, a cycle might also have size 1 (a loop), or size 2 (a double edge), so we replace the previous
generating function with ∑

`≥1

x`

2`
= −1

2
log(1− x)

and replace the function h(x), defined in [31, p. 4, Equation (2.3)], by

h(x) = e−
∑
`≥1

x`

2` = (1− x)1/2.

Theorem 2 of [31, p. 4] becomes for multigraphs: “when m − n goes to infinity and m = O(n log(n)),
then for any fixed ε > 0, the number of cores with n vertices and m edges that contain no isolated cycles is

Core(\cycle)
m,n = (1 +O(n−1/2+ε + (m− n)−1))h

(
λ

eλ − 1

)
Corem,n

where λ is the unique positive root of λ(eλ−1)
eλ−1−λ = m

n . ”
The last ingredient of the proof is an observation from Erdős and Rényi, that when m − n tends to

infinity, almost all graphs or multigraphs that contain neither trees nor unicyclic components are connected.
Therefore, Cm,n is asymptotically equal to the number of such multigraphs. They correspond to the cores
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without isolated cycle, where each vertex is replaced with a rooted tree. Their exact number is derived in
[31, Equation (7.1)] and becomes for multigraphs

n∑
µ=1

(
n

µ

)
µnn−µ−1 Core

(\cycle)
m−n+µ,µ .

Borrowing the notation of [31], the summand is estimated in [31, Equation (7.2)] by combining [31, The-
orem 2] and [31, Equation (3.11)], which we both have modified(

n

µ

)
µnn−µ−1 Core

(\cycle)
m−n+µ,µ = (1 +O(β1))nmFn(y) exp(nH(y, λ)).

The adaptation for multigraphs only recquires to change the definition of Fn(y) and replace it with

Fn(y) =
1

2πn

√
(1− σ)y

u(1 + η̄ − 2u/y)(1− y + ρ)
,

using again the notations u, c, λ, η̄, ρ and σ of [31]. The rest of the proof is a Laplace method. The
modification we made in the definition of Fn also impacts [31, p. 31, Equation (7.16)] which becomes

Fn(ȳ) =

√
2(eλ̄ − 1− λ̄)3/2

2πnλ̄
√

(eλ̄ − 1)2 − λ̄2eλ̄
.

As a consequence, the definition of the value α of [31, p. 5, Theorem 3] is, for multigraphs,

α =

√
2(eλ̄ − 1− λ̄)2

λ̄(e2λ̄ − 1− 2λ̄eλ̄)

while the other quantities of the theorem stay unchanged. �

Remark that the value λ of the previous theorem is a constant only when m
n is fixed.

As observed by Pittel and Wormald in [31], the asymptotic formula of the previous theorem also holds
when 2m

n − log(n) tends slowly towards infinity. However, we do not need this extension, because this
range of m is already covered by the following theorem.

Theorem 3. When both m − n and 2m
n − log(n) go to infinity, the asymptotic number of connected

multigraphs becomes

Cm,n ∼
n2m

2mm!
.

Proof. Erdős and Rényi proved in [19] that when 2m/n−log(n) goes to infinity, a random multigraph with
n vertices andm edges is connected with high probability. Therefore, the number of connected multigraphs
is then asymptotically equal to the total number of multigraphs, n2m

2mm! . �

3.1.2 Weighted Multigraphs

As recalled in the definition of the multigraph process, multigraphs are counted according to their com-
pensation factor, meaning that the number of multigraphs in a family F is defined as the sum of their
compensation factors

∑
G∈F κ(G). The proof of Theorems 4 and 5 require a refinement of this definition,

involving the number of connected components of the multigraphs. Specifically, we now count the number
of multigraphs with n vertices and m edges according to their compensation factor and a factor σ for each
connected component ∑

G∈Mm,n

κ(G)σc(G)

12



where σ is a positive real value and c(G) denotes the number of components of G. Since the generating
function of connected multigraphs is logM(z, v) and a multigraph is a set of connected multigraphs, the
previous quantity can be expressed by a coefficient extraction∑

G∈Mm,n

κ(G)σc(G) = n![zmvn]eσ logM(z,v) = n![zmvn]Mσ(z, v).

We list asymptotic formulas for those values in the following lemma, which combines Theorems 8, 9
and 10 of [17]. The first part focuses on multigraphs with less edges than half the number of vertices.
As proved by Erdős and Rényi, with high probability, they contain only trees and unicyclic components.
The second part investigates the critical window where the number of edges is around half the number of
vertices. In this range, connected components with fixed excess appear. Higher number of edges seem
more technical to analyze. However, the probability of satisfiability of the corresponding 2-Xor formulas
has already reached 0 almost surely, and its study is therefore less interesting.

Lemma 1. Let σ denote a fixed positive value. When m
n is in a fixed closed interval of ]0, 1/2[, then

n![zmvn]Mσ(z, v) ∼ n2m

2mm!
σn−m

(
1− 2m

n

) 1−σ
2

.

When m = n
2 (1 + µn−1/3) and µ is bounded, then

n![zmvn]Mσ(z, v) ∼ n2m

2mm!
σn−mn

σ−1
6

∑
r≥0

σre(σ)
r

√
2πA(3r + σ/2, µ),

where the value of e(σ)
r is

e(σ)
r = [z2r]

∑
k≥0

(6k!)

25k32k(3k)!

z2k

(2k)!

σ

and the function A is defined in [28, Lemma 3] by

A(y, µ) =
e−µ

3/6

3(y+1)/3

∑
k≥0

(32/3µ/2)k

k!Γ
(
y+1−2k

3

) .
Remark 6. In the rest of the paper, we will only need the cases σ = 1 and σ = 1/2.

The function A(y, µ) is a variation of the classical Airy function which has been thoroughly analyzed
in [28, Lemma 3]. For example, as mentioned in [28, Equation (10.28)], for y = 1 it satisfies the relation

A(1, µ) = e−µ/12 Ai(µ2/4),

and for y = 0, it holds that

A(0, µ) = −1

2
µe−µ

3/12 Ai(µ2/4)− e−µ
3/12 Ai′(µ2/4).

It is also close to the function defined in [2, Theorem 11] and [22, Theorem IX.16], denoted by G in the
first one, and by S in the second one.

3.2 Probability of Satisfiability
The probability of satisfiability of a random 2-Xor expression has been studied by Creignou and Daudé [9,
11], Daudé and Ravelomanana [14] and Pittel and Yeum [32]. We derive anew their results to give a first
application of the link between 2-Xor expressions and colored multigraphs.
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Theorem 4. The probability that a random expression is satisfiable is

Pr[m,n](Sat) =
[zmvn]

√
M(4z, 2v)

[zmvn]M(8z, v)
.

Its limit for n→ +∞ when m
n is in a fixed closed interval of ]0, 1

2 [ is(
1− 2m

n

)1/4

.

When m = n
2 (1 + µn−1/3) and µ is bounded, this becomes

n−1/12
√

2π
∑
r≥0

e
(1/2)
r

2r
A(3r + 1/4, µ),

with the notations of Lemma 1.

Proof. To obtain the generating function for satisfiable expressions, we shall count the number of pairs
{satisfiable expression, satisfying assignment}, then get rid of the number of satisfying assignments. We
can assign TRUE or FALSE to each variable, and one of eight colors to an edge, hence M(8z, 2v) is the
generating function associated with the pairs {expression, assignment}.

Once we have chosen an assignment of variables, for an expression to be satisfiable we have to restrict
the edges we allow. Say that x and y are assigned the same value; then the edges colored by x⊕ y, y ⊕ x,
x̄ ⊕ ȳ or ȳ ⊕ x̄ cannot appear in a satisfiable expression. For a similar reason, the only loops allowed are
x ⊕ x̄ or x̄ ⊕ x. We thus count multigraphs with 2 colors of loops and 4 colors of edges, which gives a
generating function equal to M(4z, 2v).

Now consider the generating function S(z, v) for satisfiable expressions: We claim that it is equal
to
√
M(4z, 2v). To see this, choose an expression computing a Boolean function f , and consider how

many assignments satisfy it: We have seen (cf. Proposition 3) that their number is equal to 2ξ(f), with
ξ(f) the number of connected components (once we have chosen the value of a single variable in a
block, all other variables in that block have received their values if the expression is to be satisfiable).
This means that, writing S(z, v) = exp (logS(z, v)) with logS(z, v) the function for connected com-
ponents, the generating function enumerating the pairs {expression, satisfiable assignment} is equal to
exp(2 logS(z, v)) = S(z, v)2. As we have just shown that it is also equal to M(4z, 2v), the value of
Pr[m,n](Sat) follows.

To obtain the asymptotics before and in the critical windowm = n/2+O(n2/3), we use Lemma 1. �

The link between the enumeration of 2-Xor expressions and of multigraphs and the knowledge of the
asymptotic number of multigraphs can also be combined to investigate the probability for a satisfiable
expression to be satisfied by an input.

Theorem 5. The probability that an input (fixed or random) satisfies a random satisfiable expression with
n variables, m clauses and excess r = m− n is

[zmvn]M(4z, 2v)

2n[zmvn]
√
M(4z, 2v)

.

When m
n is in a closed interval of ]0, 1

2 [, then this is asymptotically equivalent to

1

2m

(
1− 2m

n

)−1/4

,

and it is
n1/12

2m
1∑

r 2−re
(2)
r A(3r + 1/4, µ)

.

for m = n
2 (1 + µn−1/3) with µ bounded, using the notation of Lemma 1.
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Proof. The probability that a random expression is satisfied by a random assignment is equal to the number
of pairs {satisfiable expression, satisfying assignment}, divided by the number of satisfiable expressions
and by the number 2n of assignments. The exact value follows from the fact that the generating functions
for the number of satisfiable expressions and for the number of pairs {satisfiable expression, satisfying
assignment} are respectively

√
M(4z, 2v) and M(4z, 2v); the asymptotic approximations come again

from Lemma 1. �

3.3 Probability of a Given 2-Xor Function
We now refine the probability of satisfiability, by computing the probability of a specific Boolean function
6= FALSE. We first give in Proposition 5 the generating functions for all Boolean functions (except again
FALSE), then use it to provide a general expression for the probability of a Boolean function in Theorem 6,
or rather of all the functions of an equivalence classCi. This theorem is at a level of generality that does not
give readily precise probabilities, and we delay until Section 4 such examples of asymptotic probabilities.

Proposition 5. Let f denote a Boolean function in X and i(f) the corresponding integer partition. Define
φi(f)(z) as the generating function for Boolean expressions that compute f :

φi(f)(z) =
∑
m

Em,n(f)
zm

m!
.

When i = imax(n), we set φn(z) := φimax(n)(z). Then

φn(z) = n![vn]C(4z, v); φi(f)(z) =
∏
`≥1

(
`![v`]C(4z, v)

)i(f)`
.

Proof. A canonical representant of the class imax(n) is the function x1 ∼ · · · ∼ xn. Any expression that
computes it corresponds to a connected multigraph, where we only allow the 2 types of loops that compute
TRUE and the 4 types of edges between xi and xj (i 6= j) that compute xi ∼ xj ; this gives readily the
expression of φn(z).

As for functions whose associated multigraphs have several components, such multigraphs are a prod-
uct of connected components; hence the global generating function is itself the product of the generating
functions for each component. �

Theorem 6. 1. The probability that a random expression of m clauses on n variables computes the
function x1 ∼ · · · ∼ xn is

Pr[m,n](x1 ∼ · · · ∼ xn) =
m!n![zmvn]C(4z, v)

m!n![zmvn]M(8z, v)
=

m!

n2m
n![vn]Cm−n(v).

2. Let f be a function of X , with q =
∑
` i(f)`, and B1, . . . , Bq be the blocks of i(f), with rj (1 ≤ j ≤

q) the excess of the block Bj . The probability that a random expression of m clauses on n variables
computes f is

Pr[m,n](f) =
m!

n2m

∑
r1,...,rq≥−1

r1+···+rq=m−n

q∏
j=1

|Bj |![v|Bj |]Crj (v),

where Cr(v) denote the generating function of connected multigraphs of excess r, defined in Nota-
tion 2.

Proof. The probability Pr[m,n](f) that an expression of m clauses on n variables computes a function f is
the quotient of the number of corresponding expressions divided by the total number of expressions

Pr[m,n](f) =
m![zm]φi(f)(z)

m!n![zmvn]M(8z, v)
.
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For f = x1 ∼ · · · ∼ xn, we obtain the first part of the theorem by substitution of the expression of φi(f),
derived in Proposition 5. More generally, we have

φi(f)(z) =
∏
`≥1

(
`![v`]C(4z, v)

)i(f)`
.

By definition, i(f)` is the number of blocks of f of size `, so the previous equation can be rewritten

φi(f)(z) =

q∏
j=1

|Bj |![v|Bj |]C(4z, v),

and

m![zm]φi(f)(z) = m!
∑

m1+···+mq=m

q∏
j=1

|Bj |![zmjv|Bj |]C(4z, v). (4)

The generating function C(z, v) can be expanded with respect to the excesses

C(z, v) =
∑
r≥−1

zrCr(vz),

so
|Bj |![zmjv|Bj |]C(4z, v) = 4mj |Bj |![v|Bj |]Crj (v), (5)

where rj = mj − |Bj |. We obtain the second part of the theorem by combination of Equations (4)
and (5). �

4 Explicit Probabilities
We now show on examples how Theorem 6 allows us to compute the asymptotic probability of a specific
function. Attempting to give explicit results for each and every case that may appear is not realistic; rather
we aim at giving the reader a feeling of the kind of results our method allows to obtain and the kind of
technical tools we need for obtaining precise asymptotics.

We consider first a fixed Boolean function f and how its probability varies when n → +∞ (i.e. when
we add non-essential variables), then turn to a family of functions that vary with n, either with a fixed
number of blocks (this includes functions that are “close to” FALSE in the sense that they have few blocks,
hence few satisfying assigments), or with a number of blocks that grows with n (e.g., nj blocks of size j
for some j ≥ 2).

4.1 Probability of a fixed function
We compute here the probability of any specific function, once it can be obtained, and see how it varies
when n,m→ +∞ with fixed ratio α.

Proposition 6. Let f ∈ Xn, with e(f) being the number of its essential variables, and i = i(f) =
(i1, i2, . . . ) = (n− e(f), i2, . . . ) its associated integer partition. Assume m = αn ≥ n− ξ(i(f)); then

P[αn,n](f) ∼ eα e(f)

(2n)αn

∏
`≥2

(
`!φ`

(α
2

))i`
(n→ +∞).

Proof. Let i = i(f) be an integer partition with s(i) = n and for all ` ≥ 2, let i` be fixed, independent
of n. The number of expressions with n variables andm clauses that correspond to Boolean functions in Ci
is then (cf: Proposition 5)

n!m![zm]
ei12z

i1!

∏
`≥2

φi`` (z)

i`!
.

16



We derive an asymptotic equivalent by the saddle point method for a large power scheme, assuming
that α = m

n is bounded ([22, Th. VIII.8 p. 587]). We get

m!
n!

i1!

(
2en

m

)m
1√

2πm
e−(s(i)−i1)m/n

∏
`≥2

φi``
(
m
2n

)
i`!

(1 + o(1)).

Using Stirling’s formula, this can be rewritten as

n!

i1!
(2n)me−(s(i)−i1)m/n

∏
`≥2

φi``
(
m
2n

)
i`!

(1 + o(1)).

By division by |Ci| = 2n−ξ(i) n!∏
`≥2 i`!(`!)

i`
, we obtain the number of expressions that correspond to any

given function in Ci:
2ξ(i)−n(2n)me−(s(i)−i1)m/n

∏
`≥2

(
`!φ`

(m
2n

))i`
.

We finally divide by the number of (n,m)-expressions, 4mn2m, to obtain the asymptotic probability that a
random expression with n variables and m clauses corresponds to the given Boolean function f described
by the integer partition i:

e−(s(i)−i1)m/n

(2n)m

∏
`≥2

(
`!φ`

(m
2n

))i`
.

The final form comes from the fact that s(i)− i1 is precisely the number of essential variables of f . �

4.2 Asymptotics for a single-block function
All Boolean variables are in a single block: We consider the class of x1 ∼ ... ∼ xn and the rangem ≥ n−1.
From Theorem 6 , we have

Pr[m,n](x1 ∼ ... ∼ xn) =
m!

n2m
.n![vn]Cm−n(v).

We now specialize this according to the possible values for the excess r = m− n and obtain the

Proposition 7. 1. For r = −1, we have Pr[m,n](x1 ∼ ... ∼ xn) = (n−1)!
nn ∼

√
2π
n e−n .

2. For r = 0, we get Pr[m,n](x1 ∼ ... ∼ xn) ∼ π
2 e
−n.

3. For r ≥ 1 but still fixed, Pr[m,n](x1 ∼ ... ∼ xn) ∼ Cr e
−nnr/2 where cr =

√
2π e−rKr with Kr

as in Theorem 1.

4. For r →∞ and r = o(
√
n), Pr[m,n](x1 ∼ ... ∼ xn) ∼

√
3
2

er/2

(2
√

3)r
e−n

(
n
r

)r/2
.

5. For r = (α − 1)n with α > 1, Pr[m,n](x1 ∼ ... ∼ xn) ∼ K
(
αα−1 cosh ζ
(2ζ)α−1eα

)n
where ζ coth ζ = α

and K =
√
α e2ζ−1−2ζ√

ζ(e4ζ−1−4ζe2ζ)
.

6. When r → +∞ and 2m/n− log(n) is bounded, then

Pr[m,n](x1 ∼ ... ∼ xn) ∼ K

(2ζ)r

(
sinh ζ

ζ

)n
(1 + r/n)

n+r+1/2

en+r

with ζ the positive solution of ζ coth ζ = 1 + r
n and K = e2ζ−1−2ζ√

ζ(e4ζ−1−4ζe2ζ)
.

7. Finally, when 2m/n− log(n)→ +∞ as n→ +∞, Pr[m,n](x1 ∼ ... ∼ xn) ∼ 1
2m because almost

all multigraphs are connected.

Proof. We simply use the expressions for the coefficients of Cr(v) given in Section 3.1. The first three
cases come from Theorem 1, the next two cases are subcases of the sixth case which comes from Theo-
rem 2, and the last case comes from Theorem 3. �
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4.3 Asymptotics for a two-blocks function
We consider a function in the class of x1 ∼ ... ∼ xp, xp+1 ∼ ... ∼ xn (the block sizes are p and n − p),
which has cardinality 2n−2 n!

p!(n−p)! . We are again in range C: m ≥ n − 2, i.e. r ≥ −2. Theorem 6 gives
the generating function as

φj(z) = p![vp]C(4z, v) · (n− p)![wn−p]C(4z, w),

from which we readily obtain that

Pr[m,n](f) =
m!

n2m

r+1∑
d=−1

p![vp]Cd(v) · (n− p)![wn−p]Cr−d(w).

Its asymptotics varies with the excess r = m − n, and the sizes of the two blocks. In the following
propositions, we consider several cases, depending of the respective sizes of the blocks and the excess
corresponding to the underlying multigraph. The proofs are then presented in Sections 4.3.2 and 4.3.1.

Proposition 8 (Fixed excess and a single large part). If p and d belong to some fixed, finite set which does
not depend on n, then

Pr[m,n](f) ∼ Kf . n
r+3
2 −p e−n,

for some explicitly computable constant Kf .

Proposition 9 (Fixed excess r and two large parts). Assume that p and n − p both tend to infinity, as
n→∞. W.l.o.g. let p ≤ n− p. Then we have

Pr[m,n](f) ∼ 2π

enn2n+2r
(n− p)2n+ 3r

2

(
p

n− p

)2p r+1∑
d=−1

KdKr−d

(
p

n− p

) 3d
2

for suitable constants Kj . Depending on the actual growth rate of p we can distinguish two cases:

1. If p = γn for some constant γ > 0, then p/(n− p) = Θ(1) and

Pr[m,n](f) ∼ K n−
r+1
2 β2n e−n with β = (1− γ)1−γ γγ .

2. If p = εn n with εn = o(1), then p/(n− p) = o(1) and

Pr[m,n](f) ∼ K e−n n
r−1
2 εnεn−1 (1− εn)(1−εn)n.

A more precise evaluation of probabilities gives for instance

(a) If p =
√
n, then εn = n−1/2 and the probability of the function has order n−

r
2
+ 3

4 e−n−2
√
n

n
√
n .

(b) If p = log n, then εn = logn
n and the probability is of order

(
logn
n

)logn−1

n
r+1
2 e−n.

Proposition 10 (Large excess r). Assume that r = cn for a fixed positive value c. Again, we distinguish
two cases:

1. Single large part. If p is constant, then

Pr[m,n](f) ∼ Kf

np−1

(
(1 + c)c cosh(ζ)

e1+c(2ζ)c

)n
,

for some explicitly computable constant Kf , where ζ coth ζ = 1 + cn+1
n−p .
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2. Two proportional large parts. If p = γn and r = cn, then

Pr[m,n](f) ∼ Kf

n

(
γγ(1− γ)1−γ(1 + c)1+c

2ce1+c
g(a0)

)n
where Kf is a computable constant, and g(a0) is the unique maximum of the function in [0, 1].

g(a) =

(
cosh(ζ ac

γ
(a))

1 + ac
γ

)γ (cosh(ζ (1−a)c
1−γ

(a))

1 + (1−a)c
1−γ

)1−γ (
γ

ζ ac
γ

(a)

)ac(
1− γ

ζ (1−a)c
1−γ

(a)

)(1−a)c

where ζ ac
γ

(a) coth ζ ac
γ

(a) = 1 + ac
γ and ζ (1−a)c

1−γ
(a) coth ζ (1−a)c

1−γ
(a) = 1 + (1−a)c

1−γ .

Decomposing the two connected multigraphs according to excess gives the generating function for
multigraphs with 2 connected components of respective number of vertices p and n− p:

φj(z) = p![vp]
∑
r≥−1

(4z)rCr(4zv) · (n− p)![wn−p]
∑
s≥−1

(4z)sCs(4zw)

= p!(n− p)![vpwn−p]
∑

r,s≥−1

(4z)r+s Cr(4zv)Cs(4zw)

and

[zm]φj(z) = p!(n− p)![zmvpwn−p]
∑

r,s≥−1

(4z)r+s Cr(4zv)Cs(4zw)

= 4m p!(n− p)![vpwn−p]
∑

r,s≥−1,r+s+n=m

Cr(v)Cs(w)

= 4m p!(n− p)![vpwn−p]
m−n+1∑
r=−1

Cr(v)Cm−n−r(w)

= 4m
m−n+1∑
r=−1

p![vp]Cr(v) · (n− p)![wn−p]Cm−n−r(w).

Then

Pr[m,n](f) =
m!

4mn2m
[zm]φj(z)

=
m!

n2m

r+1∑
d=−1

p![vp]Cd(v) · (n− p)![wn−p]Cr−d(w).

4.3.1 Function with two blocks and fixed excess

Single large part We now present the proof of Proposition 8. In the range we are working in, p and d
belong to a fixed, finite set; let us define

γd,p = p![vp]Cd(v).

Then

Pr[m,n](f) =
m!

n2m

r+1∑
d=−1

γd,p(n− p)![wn−p]Cr−d(w)

and the asymptotic value of the coefficient (n−p)![wn−p]Cr−d(w) is given by Equation (2), with a suitable
constant:

(n− p)![wn−p]Cr−d(w) ∼ Kr−d. n
n−p+ 3(r−d)−1

2 .

We see that the dominant term of the sum
∑r+1
d=−1 γd,p [wn−p]Cr−d(w) will be obtained for d = −1,

which gives, for some suitable constant Kf that can be explicitly computed

Pr[m,n](f) ∼ Kf . n
r+3
2 −p e−n.
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Two large parts This paragraph contains the proof of Proposition 9. By symmetry, we can assume that
p ≤ n− p. Recall that

Pr[m,n](f) =
m!

n2m

r+1∑
d=−1

p![vp]Cd(v) · (n− p)![wn−p]Cr−d(w),

but now the coefficients [vp]Cd(v) and [wn−p]Cr−d can both be obtained from the expansion (2) (p and
n− p are large); moreover we are dealing with a fixed number of terms:

Pr[m,n](f) ∼ m!

n2m

r+1∑
d=−1

Kd p
p+ 3d−1

2 Kr−d (n− p)n−p+
3(r−d)−1

2

∼ m!

n2m
pp−

1
2 (n− p)n−p+

3r−1
2

r+1∑
d=−1

KdKr−d

(
p

n− p

) 3d
2

∼

√
2π n

p(n− p)
e−n

nn+r
(n− p)n+ 3r

2

(
p

n− p

)p r+1∑
d=−1

KdKr−d

(
p

n− p

) 3d
2

.

Now we have to find the behaviour of the sum in the above expression, and we see that there are two
different cases:

1. If p and n are proportional, then p/(n− p) = Θ(1) (for simplification we set p = γn and assume γ

is constant, but the sequel only requires that γ = Θ(1)); all terms
(

p
n−p

) 3d
2

contribute to a constant

factor, and the sum itself is constant, hence for a suitable constant 3 K we have

Pr[m,n](f) ∼ K n
r−1
2 βn e−n with β = (1− γ)1−γ γγ .

2. If p/(n − p) = o(1) i.e. p = o(n), then the first term of the sum dominates: Up to a constant

multiplicative factor, the whole sum is asymptotically equivalent to
(
n−p
p

) 3
2

. Setting ε = p/n we
get

Pr[m,n](f) ∼ K e−n n
r−1
2 εnε−1 (1− ε)(1−ε)n.

4.3.2 Large excess

This section contains the proof of Proposition 10. Let Cn+r,n denote the number of connected multigraphs
with n vertices and excess r. For this proof, we rewrite the asymptotics of Cn+r,n when r →∞ and (r +
n)e−2r/n →∞, already derived in Theorem 2, as

Cn+r,n =
α(ζ r

n
)

√
2π(2ζ r

n
)r

(
cosh ζ r

n

1 + r
n

)n
nn+r− 1

2

(
1 +O

(
re−2r/n

)− 1
2 +ε
)

(6)

for any small ε > 0, where ζ r
n

coth ζ r
n

= 1 + r
n and α(ζ) = e2ζ−1−2ζ√

ζ(e4ζ−1−4ζe2ζ)
.

We are interested here in the probability that a random 2-Xor expression with n variables andm clauses
compute the Boolean function with two blocks of sizes γn and (1− γ)n

x1 ∼ . . . ∼ xγn, xγn+1 ∼ . . . ∼ xn.
3Here and in what follows, the constant denoted byK may vary and may depend on r – but it is always possible to get an explicit,

though cumbersome, expression for it.
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This probability can be expressed as

Pr[m,n](2 blocks) =
m!

n2m

r+1∑
d=−1

Cγn+d,γnC(1−γ)n+r−d,(1−γ)n

=
m!

n2m

r+1∑
d=−1

Ad

where r = m − n is the global excess of the multigraphs representing the random expression and d
(resp. r − d) the excess of its first (resp. second) connected component.

The main ingredient for the proof of Proposition 10 is the Laplace methode. It involves first a reduction
to a problem of real analysis, then the analysis of a real function. Those steps are detailed in the next two
paragraphs.

Reduction to a real analysis problem We make the assumption that the excess r increases proportion-
ately to n, so r = (α− 1)n where α = m

n > 0 is a constant. In that case,

m!

n2m
=

(n+ r)!

n2(n+r)

∼
(n+ r)n+r

√
2π(n+ r)

n2(n+r)en+r

∼
(
1 + r

n

)n+r+1/2√
2πn

nn+ren+r

∼
√

2π
ααn+1/2

eαn
n−αn+1/2

Let us summarize some notations

total number of vertices n
size of the first and smallest block p = γn
size of the second block n− p = (1− γ)n
total excess r = cn
excess of the first block d = ar
excess of the second block r − d = (1− a)r

The expression of Ad is quite complicated, so, in order to avoid forgetting some terms in the product,
we write them down in the following array

Cγn+ar,γn C(1−γ)n+(1−a)r,(1−γ)n

γn (1− γ)n
ar (1− a)r

α(ζ ac
γ

) α(ζ (1−a)c
1−γ

)

cosh(ζ ac
γ

)γn cosh(ζ (1−a)c
1−γ

)(1−γ)n

γ(γ+ac)n−1/2n(γ+ac)n−1/2 (1−γ)(1−γ+(1−a)c)n−1/2n(1−γ+(1−a)c)n−1/2

2acnζacnac
γ

2(1−a)cnζ
(1−a)cn
(1−a)c
1−γ(

1 + ac
γ

)γn (
1 + (1−a)c

1−γ

)(1−γ)n

.
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Now write Ad = Cγn+ar,γnC(1−γ)n+(1−a)r,(1−γ)n as

Ad ∼
(
γγ(1− γ)1−γ)n n(c+1)n−1

2π
√
γ(1− γ)2cn

α(ζ ac
γ

)α(ζ (1−a)c
1−γ

)

×

cosh(ζ ac
γ

)γ cosh(ζ (1−a)c
1−γ

)1−γ(
1 + ac

γ

)γ (
1 + (1−a)c

1−γ

)1−γ

(
γ

ζ ac
γ

)ac(
1− γ
ζ (1−a)c

1−γ

)(1−a)c

n

which gives

m!

n2m
Ad ∼

(
γγ(1− γ)1−γ)n (c+ 1)(c+1)n+ 1

2

√
2πn

√
γ(1− γ)2cne(c+1)n

α(ζ ac
γ

)α(ζ (1−a)c
1−γ

)g(a)n

∼

√
c+ 1

γ(1− γ)

(
γγ(1− γ)1−γ(c+ 1)(c+1)

2cec+1

)n α(ζ ac
γ

)α(ζ (1−a)c
1−γ

)
√

2πn
g(a)n

where

g(a) =

(
cosh(ζ ac

γ
)

1 + ac
γ

)γ (cosh(ζ (1−a)c
1−γ

)

1 + (1−a)c
1−γ

)1−γ (
γ

ζ ac
γ

)ac(
1− γ
ζ (1−a)c

1−γ

)(1−a)c

,

ζ ac
γ

coth ζ ac
γ

= 1 +
a(α− 1)

γ
, α(ζ ac

γ
) =

e
2ζ ac

γ − 1− 2ζ ac
γ√

ζ ac
γ

(e
4ζ ac

γ − 1− 4ζ ac
γ
e

2ζ ac
γ )
,

ζ (1−a)c
1−γ

coth ζ (1−a)c
1−γ

= 1 +
(1− a)c

1− γ
, α(ζ (1−a)c

1−γ
) =

e
2ζ (1−a)c

1−γ − 1− 2ζ (1−a)c
1−γ√

ζ (1−a)c
1−γ

(e
4ζ (1−a)c

1−γ − 1− 4ζ (1−a)c
1−γ

e
2ζ (1−a)c

1−γ )

.

We will see in the next paragraph that the dominant part of the sum
∑r+1
d=−1Ad is reached for a compact

range of a included in ]0, 1[. This justifies the use of the asymptotic formula 6. Furthermore, the error term
of Ad (

1 +O
(
are−ac/γ

)− 1
2 +ε
)(

1 +O
(

(1− a)re−(1−a)c/(1−γ)
)− 1

2 +ε
)

becomes uniform in a, so

Pr[m,n](2 blocks) ∼

√
c+ 1

γ(1− γ)

(
γγ(1− γ)1−γ(c+ 1)c+1

2cec+1

)n
1√
2πn

r∑
d=0

α(ζ ac
γ

)α(ζ (1−a)c
1−γ

)g

(
d

r

)n
.

Analysis of g(a) We prove here that g(a) has a unique maximum a0 in [0, 1] such that 0 < a0 < 1. To do
so, we use the concavity of log(g(a)). The Laplace’s method for sums described in [22] p.761 then leads
to

r∑
d=0

α(ζ ac
γ

)α(ζ (1−a)c
1−γ

)g

(
d

r

)n
∼
√

2π

λn
α(ζ a0c

γ
)α(ζ (1−a0)c

1−γ
)g(a0)n

where λ = − g
′′(a0)
g(a0) , so

Pr[m,n](2 blocks) ∼

√
c+ 1

γ(1− γ)λ

(
γγ(1− γ)1−γ(c+ 1)c+1

2cec+1

)n α(ζ ac
γ

)(a0)α(ζ (1−a)c
1−γ

)(a0)

n
g(a0)n.
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The proof of the asymptotics is now reduced to a real analysis problem: Proving that

g(a) =

(
cosh(ζ ac

γ
)

1 + ac
γ

)γ (cosh(ζ (1−a)c
1−γ

)

1 + (1−a)c
1−γ

)1−γ (
γ

ζ ac
γ

)ac(
1− γ
ζ (1−a)c

1−γ

)(1−a)c

=

(
cosh ζ ac

γ

ζx1
ac
γ

γx1

1 + x1

)γcosh ζ (1−a)c
1−γ

ζx2
(1−a)c
1−γ

(1− γ)x2

1 + x2

1−γ

,

where x1 = ac
γ and x2 = (1−a)c

1−γ , has a unique maximum in the interior of ]0, 1[ for all c > 0 and γ ∈
]0, 1/2]. Let ζ(x) be defined implicitly as

ζ coth ζ = 1 + x,

then

ζ ′

ζ
=

1

ζ2 − x(1 + x)
,

ζ ′ tanh ζ =
ζ2

(ζ2 − x(1 + x))(1 + x)
,

so

d

dx
log

(
cosh ζ

ζx
γx

1 + x

)
= ζ ′ tanh(ζ)− xζ

′

ζ
− 1

1 + x
+ log(γ)− log(ζ)

=
ζ2

(ζ2 − x(1 + x))(1 + x)
− x

ζ2 − x(1 + x)
− 1

1 + x
+ log

(
γ

ζ

)
=

ζ2 − x(1 + x)

(ζ2 − x(1 + x))(1 + x)
− 1

1 + x
+ log

(
γ

ζ

)
= log

(
γ

ζ

)
and

d

dx
log

(
cosh ζ

ζx
(1− γ)x

1 + x

)
= log

(
1− γ
ζ

)
.

Therefore,

d

da
log(g(a)) = γ

(
d

da
x1

)
d

dx1
log

(
cosh ζ ac

γ

ζx1
ac
γ

γx1

1 + x1

)

+ (1− γ)

(
d

da
x2

)
d

dx2
log

cosh ζ (1−a)c
1−γ

ζx2
(1−a)c
1−γ

(1− γ)x2

1 + x2


= c log

(
γ

ζ ac
γ

)
− c log

(
1− γ
ζ (1−a)c

1−γ

)

= c log

(
γ

1− γ

ζ (1−a)c
1−γ

ζ ac
γ

)
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and

1

c

d2

(da)2
log(g(a)) =

d

da
log

(
ζ (1−a)c

1−γ

ζ ac
γ

)

=

(
d

da
x2

) ζ ′(1−a)c
1−γ

ζ (1−a)c
1−γ

−
(
d

da
x1

) ζ ′ac
γ

ζ ac
γ

= − c

1− γ
1

ζ2
(1−a)c
1−γ

− x2(1 + x2)
− c

γ

1

ζ2
ac
γ
− x1(1 + x1)

which is negative because for all x > 0,

ζ(x) >
√
x(1 + x).

Therefore, d
da log(g(a)) is decreasing on ]0, 1[. Let us summarize some values:

a 0 γ 1
x1 = ac

γ 0 c c
γ

x2 = (1−a)c
1−γ

c
1−γ c 0

ζ ac
γ

0 ζ(c) ζ
(
c
γ

)
ζ (1−a)c

1−γ
ζ
(

c
1−γ

)
ζ(c) 0

ζ (1−a)c
1−γ
ζ ac
γ

+∞ −∞
d
da log(g(a)) +∞ −∞

so d
da log(g(a)) has a zero on ]0, 1[, and g(a) has a unique maximum in ]0, 1[.

4.4 Number of blocks proportional to n

A general approach via Theorem 6 seems difficult, so we assume a certain regularity: Let f denote a
Boolean function such that the associated integer partition is of the form i(f) = (0, . . . , 0, n/g, 0, . . . ),
with g ≥ 2. Note that the corresponding multigraph has to have at least m = (g − 1) · ng edges. Thus, in
contrary to the previously discussed cases, the excess r = −ng is no more bounded from below as n→∞.
Such functions may now appear even close to the threshold 1/2. In Proposition 11, we derive an exact
result for those functions; an asymptotic result is stated in Proposition 12.

Proposition 11. The number of expressionsEm,n(f) with n variables andm clauses computing a function
f with associated integer partition representation of the form i(f) = (0, . . . , 0, n/g, 0, . . . ), i.e. n/g blocks
of size g, is given by

Em,n(f) = m!4m(g!)
n
g [zm]

( g∑
j=1

(−1)j−1

j
ej,g−j(z)

)n
g

(7)

with

ej,n(z) =
∑

∑j
`=1 k`=n
k`≥0

(
n

k1, . . . , kj

)exp
(∑j

`=1
(k`+1)2z

2

)
∏j
r=1(k` + 1)!

.

Remark 7. One might be tempted to use again Theorem 6. For Boolean functions f having associated
integer partition of the form i(f) = (0, . . . , 0, n/g, 0, . . . ) with g ≥ 2 this yields

Em,n(f) = m!4m
∑

∑q
k=1 rk=m−n
rk≥−1

|B1|! · · · |Bq|!
[
v|B1| . . . v|Bq|

] q∏
j=1

Crj (vj),
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whereB1, . . . Bq are the blocks of the set partition, or equivalently the components of the Boolean function,
with respective excesses r1, . . . , rq . Here the number of blocks is q = n

g and all of them have size g; hence

Em,n(f) = 4m(g!)
n
g

∑
∑q
k=1 rk=m−n
rk≥−1

n
g∏
j=1

[vg]Crj (v).

However, it seems to get enough information on Crj (v) to derive expression (7) from this formula.

Proof. Instead of analyzing the coefficients Cr(v) of C(z, v) we use directly the relation C(z, v) =
logM(z, v). Since i(f) = (0, . . . , 0, n/g, 0, . . . ), with g ≥ 2, we have

Em,n(f) = m![zm]φi(z)

= m![zm]
∏
`≥1

(
`![v`]C(4z, v)

)i`
= m!4m(g!)

n
g [zm]

(
[vg] logM(z, v)

)n
g

.

Let
M̂(z, v) = (M(z, v)− 1)/v =

∑
n≥0

e
(n+1)2z

2
vn

(n+ 1)!
,

such that

logM(z, v) =
∑
j≥1

(−1)j−1

j
vjM̂ j(z, v).

We get

Em,n(f) = m![zm]
∏
`≥1

(
[
v`

`!
]C(4z, v)

)i` = m!4m(g!)
n
g [zm]

(
[vg] logM(z, v)

)n
g

= m!4m(g!)
n
g [zm]

( g∑
j=1

(−1)j−1

j
[vg−j ]M̂ j(z, v)

)n
g

.

We can expand M̂ j(z, v) in terms of the functions ej,n(z) as defined above using the multinomial theorem:

M̂ j(z, v) =

(∑
n≥0

e
(n+1)2z

2
vn

(n+ 1)!

)j
=
∑
n≥0

ej,n(z)vn.

Extraction of coefficients then directly leads to the stated result. �

Corollary 1. Under the assumptions of Proposition 11, in the case g = 2 we get

Pr[m,n](f) =
1

n2m

n
2∑
`=0

(n
2

`

)(
`+

n

2

)m
(−1)

n
2−`,

and for g = 3

Pr[m,n](f) =
1

n2m

n
3∑
`=0

∑̀
j=0

(n
3

`

)(
`

j

)
(
n

2
+ `+ 2j)m(−3)`−j2

n
3−`.

Proof. Using Proposition 11, Equation (7), we obtain first

Em,n(f) = m!4m(2!)
n
2 [zm]

(1

2
e2z − 1

2
ez
)n

2

= m!4m[zm]
(
e2z − ez

)n
2

= m!4m[zm]e
zn
2

(
ez − 1

)n
2

.
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The expansion of
(
ez − 1

)n
2

by the binomial theorem and the extraction of coefficients leads then to the

stated result after dividing by the total number of expressions (4n2)m. We proceed for g = 3 in a similar
way:

Em,n(f) = m!4m(3!)
n
3 [zm]

(
1

6
e

9z
2 − 1

2
e

5z
2 +

1

3
e

3z
2

)n
3

.

In order to extract coefficients we use(
1

6
e

9z
2 − 1

2
e

5z
2 +

1

3
e

3z
2

)n
3

= e
nz
2

(1

6
e3z − 1

2
ez +

1

3

)n
3

,

and expand twice using the binomial theorem. This leads to the stated result after a few elementary com-
putations. �

When considering asymptotics, we observed in the Sections 4.2 and 4.3 that the asymptotic behaviour
is different depending on the fact whether the excess is constant or large, i.e. tending to infinity. For
functions with two blocks there are also several phases in the case of large excess. But this observation is
misleading, because in fact is not the excess but rather the distance from the minimal possible excess which
determines the behaviour. In the case considered in this section, we will therefore write m = g−1

g ·n+κn,
with κn ≥ 0, because the minimal excess is −n/g. Furthermore, it turns out that there is no qualitative
difference between constant and large κn in the sense that both cases can be covered by one single formula.
This holds, however, only up to the interesting range, which has been shown to be κn = Θ(n2/3) in [11].

The expression forEm,n(f) given in Equation (7) that appears is a fixed functionG(z) = [vg] logM(z, v)
raised to a large power n/g; e.g., for g = 2 we have G(z) = 1

2e
2z − 1

2e
z and for g = 3 we have

G(z) = 1
6e

9z
2 − 1

2e
5z
2 + 1

3e
3z
2 . By definition of logM(z, v) =

∑
r≥−1 z

rCr(zv), the function G(z) is
of the form G(z) =

∑
`≥g−1 a`z

` for certain coefficients a`. Thus, in case of constant κn, Equation (7)
involves a sum with a bounded range depending only on κn:

Em,n(f) = m!4m(g!)
n
g [zm]G(z)

n
g = m!4m(g!)

n
g [z

g−1
g ·n+κn ]

 ∑
`≥g−1

a`z
`

n
g

= m!4m(g!)
n
g [zκn ]

∑
`≥0

ã`z
`

n
g

,

with ã` = ag−1+` for ` ≥ 0. Using∑
`≥0

ã`z
`

n
g

=
∑
i≥0

zi
∑
kj≥0∑n
g
j=1 kj=i

(
n/g

k1, . . . , kn/g

) n/g∏
s=1

ãks

we get

Em,n(f) = m!4m(g!)
n
g

∑
kj≥0∑n
g
j=1 kj=κn

(
n/g

k1, . . . , kn/g

) n/g∏
s=1

ãks ,

with ã` denoting the shifting coefficients of G(z) = [vg] logM(z, v).
For κn → ∞ the saddle point method applies and we can compute Em,n(f) asymptotically, though

the expressions quickly become messy as g grows. For g = 2 we obtain the following result:

Proposition 12. The number of expressionsEm,n(f) with n variables andm clauses computing a function
f with associated integer partition representation of the form i(f) = (0, n/2, 0, 0, . . . ), i.e. n/2 blocks of
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size 2, is given for m = n
2 + κn with κn = O(n2/3) by

Em,n(f) = m!
22m+n

2 +1

√
6πnsn

s
−m+n

2
n exp

(
3nsn

4
+

1

48
ns2

n +O(ns4
n)

)
.

where sn is the unique positive solution of z(2e
z−1)

ez−1 = 1 + 2κn
n , and satisfies

sn =
4

3
· κn
n

+O
(
κ2
n

n2

)
.

Proof. In the expression for Em,n(f), Eq. (7), a fixed function

G(z) =

g∑
j=1

(−1)j−1

j
ej,g−j(z)

raised to a large power appears. Hence, we can apply the saddle-point technique to obtain an asymptotic
expansion of Em,n(f) for m and n tending to infinity. In general,

Em,n(f) = m!4m(g!)
n
g [zm]

(
G(z)

)n
g

=
m!4m(g!)

n
g

2πi

∮
r

G
n
g (z)

zm+1
dz

=
m!4m(g!)

n
g

2πi

∮
r

exp
(n
g

logG(z)− (m+ 1) log z
)
dz.

The saddle point equation is given by
zG′(z)

G(z)
=
m+ 1
n
g

.

By our previous observation on functions f with associated integer partition representation of the form
i(f) = (0, . . . , 0, n/g, 0, . . . ) we must have m ≥ g−1

g · n in order to ensure that Em,n(f) > 0. Hence, we
assume that m = g−1

g · n+ κn − 1, with κn ≥ 1 and asympotically κn = o(n).4 Thus, we obtain further

zG′(z)

G(z)
= g − 1 + g

κn
n
.

For every concrete fixed g it should be possible to treat this equation (preferentially using a computer
algebra system); we outline the main steps for the simplest case g = 2 and the case of κn →∞, assuming
that κn = O(n

2
3 ). For g = 2 we get G(z) = 1

2e
z · (ez − 1). It is convenient to cancel the factor 1

2 ,
appearing in G(z) (and which is then raised to the power n2 ) with (2!)

n
2 . We define G̃(z) = ez · (ez − 1)

such that the saddle point equation for G̃(z) is identical to the previous equation for G(z). We obtain

Em,n(f) =
m!4m

2πi

∮
r

exp
(n

2
log G̃(z)− (m+ 1) log z

)
dz

=
m!4m

2πi

∮
r

exp
(n

2
z +

n

2
log(ez − 1)− (m+ 1) log z

)
dz,

and the saddle point equation simplifies to

z(2ez − 1)

ez − 1
= 1 +

2κn
n
.

Note that for n → ∞ we have κn
n → 0; zG

′(z)
G(z) can be expressed in terms of the Bernoulli numbers, such

that
z(2ez − 1)

ez − 1
=
∑
k≥0

Bk
(
2 · (−1)k − 1

)zk
k

! = 1 +
3

2
z +

1

12
z2 − 1

720
z4 +O(z6),

4It is also possible to extend the analysis to larger m, i.e. m ∼ α · n with α > g−1
g

, or m� n.
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in a neighbourhood of zero. Thus, we obtain the solution sn of the saddle point equation, with limn→∞ sn =
0, by a bootstrapping procedure. First, we obtain

sn =
4

3
· κn
n

+O
(
κ2
n

n2

)
.

A second bootstrapping step gives the refinement

sn =
4

3
· κn
n
− 8

81
· κ

2
n

n2
+O

(
κ3
n

n3

)
.

Changing the integration path to z = sn · eiϕ, −π ≤ ϕ < π gives for g = 2

Em,n(f) =
m!4m

2πi

∮
r

exp
(n

2
z +

n

2
log(ez − 1)− (m+ 1) log z

)
dz

=
m!4m

2π

∫ π

−π
sn exp

(
iϕ+

n

2
log G̃(sn · eiϕ)− (m+ 1)(log sn + iϕ)

)
dϕ

Since G̃(z) = ez · (ez − 1) we obtain further

Em,n(f) =
m!4ms−mn

2π

∫ π

−π
exp

(n
2
sne

iϕ +
n

2
log(esn·e

iϕ

− 1)−miϕ
)
dϕ.

The function |G̃(sn · eiϕ)| is maximal at ϕ = 0. Thus, we restrict ourselves to a neighbourhood of zero
ϕ ∈ (−θ, θ). The expansion of the term n

2 log G̃(sn · eiϕ)− imϕ at ϕ = 0 gives

1

2
nsn +

1

2
n log(esn − 1) + ϕi

(
1

2
nsn +

1

2
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sn
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+ ϕ2nsn

4

(
e2snsn

(esn − 1)2
− esn(sn + 1)

esn − 1
− 1

)
+O(nsnϕ

3).

By definition of sn as the solution of the saddle point equation the linear term vanishes. We obtain

Em,n(f) ∼ 4m(2!)
n
2 s−mn e

nsn
2 (esn − 1)

n
2

2π

×
∫ θ

−θ
exp

(
ϕ2nsn
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)
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The expansion of (esn − 1)
n
2 gives

(esn − 1)
n
2 = exp(

n

2
log(esn − 1)) = exp

(1

2
n log sn +

1

4
nsn +

1

48
ns2
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.

Moreover, using

nsn
4

( e2snsn
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)
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8
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we get for the integral the asymptotic expansion∫ θ

−θ
exp

(
ϕ2
(
− 3

8
snn−

1

24
s2
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)

+O(nsnϕ
2(s2

n + ϕ))
)
dϕ.

Note that the level of precision of the expansions has to be adapted on the actual growth of κn, here
κn = O(n

2
3 ). In the final step we substitute ϕ = ϑ/

√
nsn and complete the tails:

Em,n(f) ∼ m!4m · 2n2 s−m+n
2

n e
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nsn
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exp
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Finally, we use 1√
2π

∫∞
−∞ e−x

2/2dx = 1 to obtain the assertion. �
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5 Discussion
We have analysed the probability of Boolean functions generated by random 2-Xor expressions. This
is strongly related to the 2-Xor-SAT problem. For people working in SAT-solver design the structure
of solutions of satisfiable expressions, which corresponds to the component structure of the associated
multigraphs, is also important.

We derived expressions in terms of coefficients of generating functions for the probability of satisfia-
bility in the critical region (m ∼ n

2 + Θ(n2/3)) as well as a general expression for the probability of any
function (Theorem 6). Unfortunately, this expression is too complicated to be used for an asymptotic anal-
ysis of general functions. So, we discussed several particular classes of functions: Single block functions
are completely analyzed. The asymptotic probability very much depends on the range of the excess. For
two block functions, the only missing case is that of two large components which are not proportional in
size. All those functions are rather close to FALSE. Finally, functions on the other edge (close to TRUE,
with many blocks of bounded size) were studied and, under some regularity conditions on the block sizes,
we were able to get the asymptotic probability.

Apart from extensions of our results to cover, e.g., the extension of Theorem 2 to the supercritical case,
or of Proposition 12 to a larger number of edges, what is missing is an asymptotic analysis of functions
on the boundaries TRUE and FALSE having a more irregular component structure as well as the study of
functions in the intermediate range.
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