WEIGHTED BRANCHING PROCESS

Uwe Roesler

- Weighted Branching Process
- Stochastic fixed point equations of sum type
- Forward and backward view
- Stochastic divide-and-conquer algorithms
- Quicksort process

WEIGHTED BRANCHING PROCESS

weighted branching process $(V, L, G, *)$
Ulam-Harris notation $V=\mathbb{N}{ }^{*}=\cup_{n=0}^{\infty} \mathbb{N}^{n}$
(genealogical) graph V with directed edges $(v, v i)$
$(G, *)$ measurable semi group with neutral element and grave, $*: G \times G \rightarrow G$ random weight $L_{v, v i}$ on edge ($v, v i$) with values in G
The object is called Weighted Branching Process (WBP) if

$$
\left(L_{v, v i}\right)_{i}, v \in V \quad \text { iid rvs }
$$

L : paths $\rightarrow G$ recursively $L_{v, v}$ neutral element and

$$
L_{v, v w i}=L_{v, v w} * L_{v w, v w i}
$$

- general dynamical system

$$
L_{v, v w x}=L_{v, v w} * L_{v w, v w x}
$$

- If only $\left(L_{i}\right)_{i}$ is given, take iid copies. Markov chain with transitions

$$
k(g, A)=P\left(\left(g * L_{v, v i}\right)_{i} \in A\right)
$$

- Given k under weak assumptions exists a random map $\left(L_{i}\right)_{i}$ with above.
- Our objects random dynamical system.
$-G \subset H^{H}$ since for $G=H$ identify $T_{g}=g$

$$
T_{g}: G \rightarrow G, T_{g}(h)=g * h \text { or } T_{g}(h)=h * g
$$

Not: $L_{v}=L_{\emptyset, v}$
Interpretation: v not observable iff L_{v} is the grave
Ex: Free semi group: $L_{i} \in G$ generator of G

FORWARD and BACKWARD

Forward Dynamics (Genealogy:) Start with h at root and vertex v gives i-th child its weight via $L_{v, v i}$.

Formal: G acts right on $H_{l}, *_{l}: H_{l} \times G \mapsto H_{l}$
Ex: Biennaymé-Galton-Watson: $G=\{0,1\}$ with multiplication. BGW root has weight 1 and $1 *_{l} L_{v}=L_{v}$ values 0 or 1 with interpretation dead or alive.

Backward dynamic: Weight of children determine weight of mother

$$
G^{N} \ni\left(g_{v i}\right)_{i} \mapsto \Psi_{v}\left(\left(g_{v i} i_{i}\right)\right)=g_{v}
$$

Given $g_{v} \in G,|v|=n$ determine $g_{v},|v|<n$.
Then $n \rightarrow \infty$. Weight on δV

STOCHASTIC FIXED POINT EQUATIONS

Stochastic fixed point equation (SFE)

$$
X \underline{\underline{\mathcal{D}}} \sum_{i \in \mathbb{N}} L_{i} X_{i}+C
$$

$\left(\left(L_{i}\right)_{i}, C\right), X_{j}, j \in \mathbb{N}$ independent, $X_{j} \stackrel{\mathcal{D}}{=} X$.
Ex: Gauss

$$
X \xlongequal{\mathcal{D}} \frac{X_{1}}{\sqrt{2}}+\frac{X_{2}}{\sqrt{2}}
$$

solved by Gauss distribution $N\left(0, \sigma^{2}\right), \sigma^{2}>0$. Unique up to variance
Ex: Cauchy

$$
X \stackrel{\mathcal{D}}{\underline{X}} \frac{X_{1}}{2}+\frac{X_{2}}{2}
$$

solved by symmetric Cauchy(b) distribution, density $x \mapsto \frac{b}{\pi\left(b^{2}+x^{2}\right)}$ and by constants
Ex: α-stable-distributions $\alpha \in(0,2]$ ($=$ Limit of sums of iid)
$X \alpha$-stable distribution iff $X \stackrel{\mathcal{D}}{=} a X_{1}+b X_{2}+c$
for all $a, b \in \mathbb{R}$ satisfying $|a|^{\alpha}+|b|^{\alpha}=1$ and exists c.
Replace for all by some specific a, b, c. Unique solution?
Ex: Bienaymé-Galton-Watson

$$
W \stackrel{\underline{\mathcal{D}}}{\sum_{i \leq N}} \frac{1}{m} W_{i}
$$

STOCHASTIC DIVIDE-and-CONQUER ALGORITHMS

Divide problem into smaller ones.
Ex: Quicksort.
Running time analysis of algorithms

$$
X \stackrel{\underline{\mathcal{D}}}{=} U X_{1}+(1-U) X_{2}+C(U)
$$

U uniformly distributed and

$$
C(x)=2 x \ln x+2(1-x) \ln (1-x)+1
$$

Solution not unique, Fill-Janson
Many more algorithms now, Neininger,

Quicksort (Roesler '91, contraction method) motivated study of SFE as objects of own interest, Roesler, Alsmeyer,....

MEASURE and PROBABILITY THEORY

- Why in distribution?

$$
X \stackrel{\mathcal{D}}{=} \sum_{i} L_{i} X_{i}+C
$$

Always exists rvs and common probability space

$$
X=\sum_{i} L_{i} X_{i}+C
$$

Quick answer: Easier since lower level. More to come.

- Why called fixed point?

Map K from distribution to distributions

$$
K(\mu) \stackrel{\mathcal{D}}{\underline{\mathcal{D}}} \sum_{i} L_{i} Y_{i}+C
$$

$\left.\left(\left(L_{i}\right)_{i}, C\right), Y_{j}\right)$ independent, $Y_{j} \stackrel{\mathcal{D}}{=} \mu$.
Fixed point $K(\mu)=\mu$ solves SFE
Contraction method, overview Rüschendorf-Roesler '01, Neininger

- Where is the dynamics and connection to branching processes?

Iterate the homogeneous SFE

$$
X=\sum_{i} L_{i} X_{i}+C=\sum_{i} \sum_{j} L_{i} L_{i, i j} X_{i, j}+\sum_{i} L_{i} C_{i}+C=\ldots
$$

Imagine a genealogical tree (possible infinite branches), the mother passes her value randomly transformed to her children. Dependence within a family, but independence for families.

BACKWARD and FORWARD VIEW

For simplicity G the reals with multiplication and grave 0 .
Object of interest

$$
Z_{n}:=\sum_{|v|=n} L_{v}
$$

Forward and backward view, analogous to Markov processes, Letac, Roesler
Forward equation

$$
Z_{n}=\sum_{|v|=n-1} L_{v} \sum_{i} L_{v, v i}
$$

Forward view is on random variables.
Forward structure is (often) a martingale

$$
\frac{Z_{n}}{m^{n}} \longrightarrow_{n} W \quad m:=E \sum_{i} L_{i}
$$

Forward result is a.e. convergence
Backward equation

$$
Z_{n}=\sum_{i} L_{i} Z_{n-1}^{i}
$$

Z^{i} for tree $i V$.
Backward view is on measures.
Backward structure is an iteration on $K, K(\mu) \stackrel{\mathcal{D}}{=} \sum_{i} L_{i} X_{i}$
Backward result is weak convergence $K^{n}(\nu) \rightarrow_{n} \mu=K(\mu)$

BACKWARD and FORWARD VIEW 2

Connection:

$$
K^{n}\left(\delta_{1}\right) \stackrel{\mathcal{D}}{=} Z_{n}
$$

For $m=1 Z_{n}$ is a martingale and converges a.e. to W satisfying

$$
W=\sum_{i} L_{i} W^{i}
$$

Analogous with

$$
R_{n}=\sum_{|v|<n} L_{v} *_{r} C_{v}
$$

$\left.\left(L_{v, v i}\right)_{i}, C_{v}\right)$ iid, $C_{v}: \Omega \rightarrow H_{r}$
backward view and convergence $R_{n} \rightarrow R$

$$
\begin{gathered}
R_{n}=\sum_{i} L_{i} *_{r} R_{n-1}^{i}+C \\
R=\sum_{i} L_{i} *_{r} R^{i}+C
\end{gathered}
$$

ANALOG to KESTEN-STEGUM

Forward dynamic, G the positive reals

$$
\begin{gathered}
\mathbb{R}_{+} \ni \theta \mapsto m(\theta)=E \sum_{i}\left|L_{i}\right|^{\theta} \\
m=m(1) \\
\frac{Z_{n}}{m^{n}}
\end{gathered}
$$

is positive martingale and converges to W

$$
W=\sum_{i} \frac{L_{i}}{m} W^{i}
$$

Theo Biggins '77, Lyons '97
Suppose not a GWP and $m<\infty$ and $m^{\prime}(1)$ finite. Then are equivalent
$-P(W=0)=q$ Extinction probability

- $P(W=0)<1$
$-E(W)=1$
- $E\left(X \ln ^{+} X\right)$ finite for $X=\sum_{i} L_{i}$ and $E \sum_{i} L_{i} \ln L_{i}<m \ln m$.

Rem: Biggins Branching random walk is special WBP

Analog $R_{n} \rightarrow R$ by L^{p}-martingale

$$
R=\sum_{i} L_{i} *_{H} R^{i}+C
$$

HOMOGENEOUS SFE

$$
X \stackrel{\mathcal{D}}{=} \sum_{i} L_{i} X_{i}
$$

Find all solutions.
There are endogenous solutions (=measurable with respect to all $\left(L_{v, v i}, C_{v}\right)$) and non endogenous.

Endogenous by forward dynamics, non endogenous by backward dynamics.
Endogenous are easier.
Endogenous solutions: Biggins '77, Lyons et al. '95
via $\frac{1}{m^{n}} \sum_{|v|=n} L_{v} \rightarrow X$
Non-endogenous: Kahane-Peyriere 76, Durrett-Liggett '83, Liu 98, Alsmeyer-Roesler 05, All solutions for real weights Alsmeyer-Biggins-Meiners '12 and Alsmeyer-Meiners 13
Theo All solutions are mixtures of stable ones

$$
W^{1 / \alpha} Y \quad E \sum_{i} L_{i}^{\alpha}=1 \quad W \stackrel{\mathcal{D}}{\underline{\mathcal{D}}} \sum_{i} L_{i}^{\alpha} W_{i}
$$

INHOMOGENEOUS SFE

$$
X \stackrel{\mathcal{D}}{=} \sum_{i} L_{i} X_{i}+C
$$

Find all solutions.
Endogenous solutions: Roesler '92
Non-endogenous: Rüschendorf principle: general solution $=$ one inhomogeneous solution + general homogeneous

Final result by Alsmeyer-Meiners '11
Theo All solutions: one special for inhomog + general for homog.
Ex: Quicksort: $\alpha=1, W$ a constant, Y symmetric Cauchy, Fill-Janson

CONVERGENCE in DISTRIBUTION

Contraction method for the operator K

$$
K(\mu) \stackrel{\mathcal{D}}{\underline{D}} \sum_{i} L_{i} X_{i}+C
$$

by contraction, Banach Fixed Point Theorem.
Metric on space of distributions with nice properties, like Wasserstein or Zolotarev or....

$$
\begin{gathered}
d_{p}(\mu, \nu)=\inf \|X-Y\|_{p} \\
\xi_{p}(\mu, \nu)=\inf |E f(X)-E f(Y)|
\end{gathered}
$$

$D^{\lfloor p\rfloor} f$ is Hölder $p-\lfloor p\rfloor$ continuous
more
Real strength of contraction method shows up for 'dirty' recursions

$$
X(n) \stackrel{\mathcal{D}}{=} \sum_{i} L_{i}(I(n)) X_{i}(I(n))+C(I(n))
$$

$\left(\left(L_{i}(\cdot)\right)_{i}, C(\cdot), I(n)\right)$ independent, $I(n)<n$
Assume: $I(n) \rightarrow_{n} \infty, L_{i}(n) \rightarrow_{n} L_{i}, C(n) \rightarrow_{n} C$
Hope: $X(n) \rightarrow X$ and

$$
X \stackrel{\mathcal{D}}{\underline{\mathcal{D}}} \sum_{i} L_{i} X_{i}+C
$$

'nice' metric, Roesler 91, Neininger-Rüschendorf 04, 05,

DIVIDE-and-CONQUER ALGORITHMS

Split a problem of some level into problems of smaller level. Continue until solvable.
Quicksort is typical example for stochastic divide-and-conquer algorithm.
Input: n different number
Output: These numbers in natural order
Algorithm Quicksort:

- Pick a pivot by random.
- Build list (urn) of strictly smaller, the list containing only the pivot and list of strictly larger numbers than the pivot.
- Store them in this order.
- Recall algorithm (independently) for every list with 2 or more elements.
$Y(n)$ denotes number of comparisons (=running time). Backward view for WBP

$$
Y(n)=Y^{1}\left(I_{n}\right)+Y^{2}\left(n+1-I_{n}\right)+n-1
$$

Y^{1}, Y^{2}, I_{n} independent, $Y^{1} \stackrel{\mathcal{D}}{=} Y^{2}, I_{n}$ uniformly on $\{0,1,2, \ldots, n-1\}$
Then $X(n):=\frac{Y(n)-E Y(n)}{n+1}$ satisfies

$$
X(n) \stackrel{\mathcal{D}}{=} \frac{I(n)}{n+1} X_{1}(I(n))+\frac{n+1-I_{n}}{n+1} X_{2}(n+1-I(n))+C(I(n))
$$

$X_{1}, X_{2}, I(n)$ independent, $\frac{I(n)}{n+1} \rightarrow U$ uniformly distributed, $C(I(n)) \rightarrow_{n} C(U)$
Obtain Quicksort recursion in limit

$$
X \stackrel{\mathcal{D}}{=} U X_{1}+(1-U) X_{2}+C(U)
$$

Unique solution in L^{p}.

BINARY SEARCH TREE

Input $U_{n}, n \in \mathbb{N}$ iid uniform distribution on $[0,1]$
Every $U_{\mid n}$ provides binary search tree $T_{n}=T\left(U_{1}, \ldots, U_{n}\right)$

- $\left(T_{n}\right)_{n}$ is a Markov chain. Transitions choose uniformly an inner leave and add edge. Régnier '89 found the L^{2}-martingale

$$
X\left(T_{n}\right)=\frac{Y\left(T_{n}\right)-E Y\left(T_{n}\right)}{n+1}
$$

Provides $\left(X\left(T_{n}\right)\right) \rightarrow X$ almost surely.

BINARY SEARCH TREE

Input: Sequence $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}_{\neq}^{n}$
Here $x=(88,46,90,60,98,47,24,95,78)$
(88, 46, 90, 60, 98, 47, 24, 95, 78)
(88, 46, 90, 60, 98, 47, 24, 95, 78)

$$
(\mathbf{8 8}, \mathbf{4 6}, \mathbf{9 0}, 60,98,47,24,95,78)
$$

$(\mathbf{8 8}, \mathbf{4 6}, \mathbf{9 0}, \mathbf{6 0}, 98,47,24,95,78)$

$(\mathbf{8 8}, \mathbf{4 6}, \mathbf{9 0}, \mathbf{6 0}, \mathbf{9 8}, 47,24,95,78)$

$(\mathbf{8 8}, \mathbf{4 6}, \mathbf{9 0}, \mathbf{6 0}, \mathbf{9 8}, \mathbf{4 7}, 24,95,78)$

$(88,46,90,60,98,47,24,95,78)$

$(88,46,90,60,98,47,24,95,78)$

$(88,46,90,60,98,47,24,95,78)$

If you traverse from left to right, you obtain the ordered input.

PROCESSES as SOLUTION

Processes $X=X(t)_{t \in[0,1]}$ in D

$$
X \stackrel{\mathcal{D}}{=}\left(\sum_{i} A_{i}(t) X_{i}\left(B_{i}(t)\right)+C(t)\right)_{t}
$$

- $\left(\left(A_{i}, B_{i}\right)_{i}, C\right), X_{j}, j \in \mathbb{N}$ independent,
- $X_{j} \stackrel{\mathcal{D}}{=} X$

Ex: Brownian motion

$$
X \stackrel{\mathcal{D}}{=}\left(\mathbb{1}_{t<1 / 2} \frac{1}{\sqrt{2}} X_{1}(2 t)+1_{t \geq 1 / 2} \frac{1}{\sqrt{2}}\left(X_{1}(1)+X_{2}(2 t-1)\right)\right)_{t}
$$

Ex: α-stable processes
Ex: Find Analysis of algorithms, Grübel-Roesler '96 for $H=D[0,1]$ cadlag functions

$$
X \stackrel{\mathcal{D}}{=}\left(\mathbb{1}_{t<U} U X_{1}\left(\frac{t}{U}\right)+\mathbb{1}_{U \leq t}(1-U) X_{2}\left(\frac{t-U}{1-U}\right)+1\right)_{t}
$$

U uniformly distributed on $[0,1]$ Unique solution in $L^{p}, p>1$

Ex: Quicksort process on D_{-}

$$
X \stackrel{\mathcal{D}}{=}\left(U X_{1}\left(1 \wedge \frac{t}{U}\right)+(1-U) X_{2}\left(0 \vee \frac{t-U}{1-U}\right)+C(U, t)\right)_{t}
$$

$$
\begin{aligned}
X(0) & =0 \\
C(x, t) & =C(x)+2 \mathbb{1}_{x \geq t}((1-t) \ln (1-t)+(1-x) \ln (1-x)+1)-(x-t) \ln (x-t) \\
C(x) & =1+2 x \ln x+2(1-x) \ln (1-x)
\end{aligned}
$$

Unique solution in $L^{p}, p>1$ (under $\left.E(X(t))=0\right)$
General: Knof '06 for finite dimensional distribution and
Sulzbach, functional contraction method with Zolotarev metric

QUICKSORT on the FLY

Conrado Martinéz: Partial Quicksort
Input: sequence of length n
Output: l smallest in order
Procedure: Recall Quicksort always for left most list with 2 or more elements Publish first smallest then second smallest and so on

Observation: When element published, algorithm had done only necessary comparisons, not more. Take $\frac{l}{n}$ as time.
$Y(n, l)$ number of comparisons
$X\left(n, \frac{l}{n}\right)=\frac{Y(n, l)-E Y(n, l)}{n}$

Theorem Roesler Let $U_{i}, i \in \mathbb{N}$, be independent uniformly distributed. Then $X(n, \cdot)$ converges almost surely to the Quicksort process X in Skorodhod metric.

Proof: - Formulation on D_{-}instead of D.
$-X(t)=\left(\mathbb{1}_{t \leq U} U X^{1}\left(\frac{t}{U}\right)+\mathbb{1}_{t>U}(1-U) X^{2}\left(\frac{t-U}{1-U}\right)+\mathbb{1}_{t>U} U Q^{1}+C(U, t)\right)_{t}$

- $R_{m}=\Sigma_{|v|<n} L_{v} * C_{v} \rightarrow_{m} X$ in sup-metric and L^{p}
$-R_{m}\left(U_{1}, \ldots, U_{n}\right) \rightarrow_{m} X(n,$.
- Skorodhod J_{1}-metric not complete.
- τ_{n} random time change, $X\left(n, \tau_{n}\right) \rightarrow X$ in sup-metric and L^{p}
$-\sup _{t}\left|\tau_{n}(t)-t\right| \rightarrow 0$

Two stage contraction

SKORODHOD SPACE D

D equipped with Skorodhod J_{1}-metric d

$$
d(f, g)=\inf \left\{\epsilon>0 \mid \exists \lambda \in \Lambda:\|f-g \circ \lambda\|_{\infty}<\epsilon,\|\lambda-\mathrm{id}\|_{\infty}<\epsilon\right\}
$$

where Λ is the set of all bijective increasing functions $\lambda:[0,1] \rightarrow[0,1]$.

Big distance in supremum metric, small in Skorodhod metric

