Combinatorial Characterization of Transducers with Bounded Variance

Sara Kropf

Alpen-Adria-Universität Klagenfurt

Joint work with Clemens Heuberger and Stephan Wagner

AofA Strobl, June 12, 2015

Motivation

Theorem (Hwang's Quasi-Power-Theorem)

Let Ω_n be a sequence of real random variables. Suppose the moment generating function satisfies

$$\mathbb{E}(e^{\Omega_n s}) = e^{u(s)\Phi(n) + v(s)}(1 + \mathcal{O}(\kappa_n^{-1}))$$

under some conditions.

Then

$$\mathbb{E}\Omega_n = u'(0)\Phi(n) + \mathcal{O}(1),$$

$$\mathbb{V}\Omega_n = u''(0)\Phi(n) + \mathcal{O}(1).$$

If $\sigma^2 := u''(0) \neq 0$, then $\frac{\Omega_n - \mathbb{E}\Omega_n}{\sqrt{\mathbb{V}\Omega_n}}$ is asymptotically normally distributed.

When is the variance bounded?

• transducer \mathcal{T} with a finite number of states

- transducer \mathcal{T} with a finite number of states
- Output(X_n) = sum of the output
- random word $X_n \in \mathcal{A}^n$ as input
- today: equidistribution on \mathcal{A}^n
- read from right to left

- transducer \mathcal{T} with a finite number of states
- Output(X_n) = sum of the output
- random word $X_n \in \mathcal{A}^n$ as input
- today: equidistribution on \mathcal{A}^n
- read from right to left

- transducer \mathcal{T} with a finite number of states
- Output(X_n) = sum of the output
- random word $X_n \in \mathcal{A}^n$ as input
- today: equidistribution on \mathcal{A}^n
- read from right to left

- transducer \mathcal{T} with a finite number of states
- Output(X_n) = sum of the output
- random word $X_n \in \mathcal{A}^n$ as input
- today: equidistribution on \mathcal{A}^n
- read from right to left

Example with $X_n = 11001$				
input: output:	11001 11	Output(11001) =		

- transducer \mathcal{T} with a finite number of states
- Output(X_n) = sum of the output
- random word $X_n \in \mathcal{A}^n$ as input
- today: equidistribution on \mathcal{A}^n
- read from right to left

- transducer \mathcal{T} with a finite number of states
- Output(X_n) = sum of the output
- random word $X_n \in \mathcal{A}^n$ as input
- today: equidistribution on \mathcal{A}^n
- read from right to left

Example with $X_n = 11001$ input: 11001output: 1011Output(11001) =

- transducer \mathcal{T} with a finite number of states
- Output(X_n) = sum of the output
- random word $X_n \in \mathcal{A}^n$ as input
- today: equidistribution on \mathcal{A}^n
- read from right to left

Example with $X_n = 11001$				
input: output:	11001 01011	Output(11001) =		

- transducer \mathcal{T} with a finite number of states
- Output(X_n) = sum of the output
- random word $X_n \in \mathcal{A}^n$ as input
- today: equidistribution on \mathcal{A}^n
- read from right to left

Example with $X_n = 11001$ input: 11001 output: 101011 Output(11001) =

- transducer \mathcal{T} with a finite number of states
- Output(X_n) = sum of the output
- random word $X_n \in \mathcal{A}^n$ as input
- today: equidistribution on \mathcal{A}^n
- read from right to left

Other Probability Model and Several Outputs

All results also possible for:

- inputs coming from a Markov chain
- for every transition a probability
- sum of probabilities of output transitions is 1

Some results are independent of the choice of this Markov chain.

Several simultaneous outputs.

- algorithms with finite memory usage
- many digit expansions:
 - Hamming weight
 - sum of digits function, ...
- many recursions
- motifs

- algorithms with finite memory usage
- many digit expansions:
 - Hamming weight
 - sum of digits function, ...
- many recursions
- motifs

- completely *q*-additive functions
- digital sequences
- *q*-automatic sequences

• digit sum of binary expansion

- digit sum of binary expansion
- Hamming weight of non-adjacent form (NAF):
 - \bullet digits $\{0,\pm1\},$ base 2
 - at least one of any two adjacent digits is 0

- digit sum of binary expansion
- Hamming weight of non-adjacent form (NAF):
 - digits $\{0,\pm1\},$ base 2
 - at least one of any two adjacent digits is 0
- Hamming weight of width-w NAF:
 - digits $\{0, \pm 1, \pm 3, \dots, \pm (2^{w-1} 1)\}$, base 2
 - at least w 1 of w consecutive digits are 0

Variability Condition

Theorem (Hwang's Quasi-Power-Theorem)

Let Ω_n be a sequence of real random variables. Suppose the moment generating function satisfies

$$\mathbb{E}(e^{\Omega_n s}) = e^{u(s)\Phi(n) + v(s)}(1 + \mathcal{O}(\kappa_n^{-1}))$$

under some conditions.

Then

$$\mathbb{E}\Omega_n = u'(0)\Phi(n) + \mathcal{O}(1),$$

$$\mathbb{V}\Omega_n = u''(0)\Phi(n) + \mathcal{O}(1).$$

If $\sigma^2 := u''(0) \neq 0$, then $\frac{\Omega_n - \mathbb{E}\Omega_n}{\sqrt{\mathbb{V}\Omega_n}}$ is asymptotically normally distributed.

Assume that \mathcal{T} is strongly connected. Output(X_n) satisfies all asumptions, except maybe the variability condition $\sigma^2 \neq 0$.

Bounded Variance

Theorem (Heuberger–K.–Wagner 2015)

Let \mathcal{T} be strongly connected. Then the following assertions are equivalent:

- The asymptotic variance σ^2 is 0.
- There is a constant k such that the average output of every cycle is k.
- There is a constant k such that $Output(X_n) = kn + O(1)$.

Bounded Variance

Theorem (Heuberger–K.–Wagner 2015)

Let \mathcal{T} be strongly connected. Then the following assertions are equivalent:

- The asymptotic variance σ^2 is 0.
- There is a constant k such that the average output of every cycle is k.
- **③** There is a constant k such that $Output(X_n) = kn + O(1)$.

Corollary (Heuberger-K.-Wagner 201)

Let T be strongly connected, aperiodic with output alphabet $\{0,1\}$. Then the asymptotic variance σ^2 is 0 if and only if all output letters are the same.

Small Example

 \rightsquigarrow asymptotic variance $\neq 0$

Small Example

 \rightsquigarrow asymptotic variance $\neq 0$ Sage: $\sigma^2 = \frac{432}{2197}$

- $\bullet\,$ algebraic integer τ
- joint expansion of *d*-dimensional vectors in $\mathbb{Z}[\tau]^d$
- $\bullet\,$ redundant digit set ${\cal D}$ which satisfies

•
$$\mathcal{D} \cap \tau \mathbb{Z}^d = \{0\}$$

• a subadditivity condition

- $\bullet\,$ algebraic integer τ
- joint expansion of *d*-dimensional vectors in $\mathbb{Z}[\tau]^d$
- $\bullet\,$ redundant digit set ${\cal D}$ which satisfies

•
$$\mathcal{D} \cap \tau \mathbb{Z}^d = \{\mathbf{0}\}$$

- a subadditivity condition
- input: *τ*-adic expansions with the irredundant digit set *A* of length ≤ *n* with equidistribution

- $\bullet\,$ algebraic integer τ
- joint expansion of *d*-dimensional vectors in $\mathbb{Z}[\tau]^d$
- $\bullet\,$ redundant digit set ${\cal D}$ which satisfies

•
$$\mathcal{D} \cap \tau \mathbb{Z}^d = \{\mathbf{0}\}$$

- a subadditivity condition
- input: *τ*-adic expansions with the irredundant digit set *A* of length ≤ *n* with equidistribution

Theorem (Heigl-Heuberger 2012)

If the asymptotic variance σ^2 of the minimal Hamming weight with digit set \mathcal{D} is $\neq 0$, then the minimal Hamming weight is asymptotically normally distributed.

Heigl-Heuberger construct a transducer for each τ and \mathcal{D} :

• cycle with average output 0

Heigl-Heuberger construct a transducer for each τ and \mathcal{D} :

- cycle with average output 0
- but not all minimal weights are 0
- 0····0 always leads to the initial state
- \rightsquigarrow cycle with average output $\neq 0$

Heigl-Heuberger construct a transducer for each τ and \mathcal{D} :

- cycle with average output 0
- but not all minimal weights are 0
- 0····0 always leads to the initial state
- \rightsquigarrow cycle with average output $\neq 0$
- variability condition is satisfied
- \rightsquigarrow asymptotic normality

Bounded Variance

Theorem (Heuberger–K.–Wagner 2015)

Let \mathcal{T} be strongly connected. Then the following assertions are equivalent:

- The asymptotic variance σ^2 is 0.
- There is a constant k such that the average output of every cycle is k.
- So There is a constant k such that $Output(X_n) = kn + O(1)$.

- $1 \Leftrightarrow 2$:
 - assume: asymptotic expected value of $Output(X_n)$ is 0
 - probability generating function

$$A(y,z) = \sum_{l \in \mathbb{R}} \sum_{n=0}^{\infty} a_{ln} K^{-n} y^{l} z^{n}$$

with K = |A| and a_{ln} = number of input words of length n with output sum l

• A(1, z) has a simple dominant pole at z = 1

 $1 \Leftrightarrow 2$:

۲

- assume: asymptotic expected value of $Output(X_n)$ is 0
- probability generating function

$$A(y,z) = \sum_{l \in \mathbb{R}} \sum_{n=0}^{\infty} a_{ln} K^{-n} y^l z^n$$

with K = |A| and $a_{ln} =$ number of input words of length n with output sum l

•
$$A(1,z)$$
 has a simple dominant pole at $z=1$

$$\mathbb{E}(\operatorname{Output}(X_n)) = [z^n]A_y(1,z) = \mathcal{O}(1)$$

 $\mathbb{V}(\operatorname{Output}(X_n)) = [z^n]A_{yy}(1,z) + \mathcal{O}(1)$

• probability generating functions

• probability generating functions

C(y,z), P(y,z)

• by the symbolic method:

$$A(y,z) = \frac{1}{1-C(y,z)}P(y,z)$$

• probability generating functions

• by the symbolic method:

$$A(y,z) = \frac{1}{1-C(y,z)}P(y,z)$$

$$P(1, z)$$
 is analytic in $|z| < 1 + \varepsilon$
 $P(1, 1) \neq 0$

•
$$1 - C(1, z) = (1 - z)g(z)$$
 with $g(1) \neq 0$

• Singularity Analysis \rightsquigarrow

$$\mathbb{V}(\text{Output}(X_n)) = P(1,1)g(1)^{-2}C_{yy}(1,1)n + O(1)$$

• thus,

$$\mathbb{V}(\operatorname{Output}(X_n)) = \mathcal{O}(1)$$

$$\iff \qquad C_{yy}(1,1) = 0$$

$$\iff \qquad \sum_{C \in \mathcal{C}} \operatorname{Output}(C)^2 \mathcal{K}^{-\operatorname{Length}(C)} = 0$$

$$\iff \qquad \forall C \in \mathcal{C} : \operatorname{Output}(C) = 0$$

Singular Variance-Covariance Matrix

Consider *m* different outputs k_1, \ldots, k_m of a transducer instead of Output.

Using a multi-dimensional Quasi-Power-Theorem:

Theorem (K. 2015+)

The m output sums are asymptotically jointly normally distributed, if and only if:

$$a_0Length(C) + a_1k_1(C) + \cdots + a_mk_m(C) = 0$$

holding for all cycles C implies that $a_0 = \cdots = a_m = 0$.

Bounded Covariance

- random variable $(Input(X_n), Output(X_n))$
- 2-dimensional version of the Quasi-Power-Theorem
- $\bullet \rightsquigarrow$ asymptotic normal distribution

Bounded Covariance

- random variable (Input(X_n), Output(X_n))
- 2-dimensional version of the Quasi-Power-Theorem
- $\bullet \rightsquigarrow$ asymptotic normal distribution
- When is the covariance bounded?
- covariance bounded ↔ components of the asymptotic random variable are independent

Definition

An independent transducer is a transducer which has a bounded covariance of $(Input(X_n), Output(X_n))$.

Functional Digraph

Definition (Functional Digraph)

A functional digraph is a directed graph where every vertex has out-degree 1.

This is a map from a finite set into itself.

Functional Digraph

Definition (Functional Digraph)

A functional digraph is a directed graph where every vertex has out-degree 1.

This is a map from a finite set into itself.

Definition

 \mathcal{D}_1 and \mathcal{D}_2 are the sets of functional digraphs with one respectively two components which are subgraphs of the given transducer.

Bounded Covariance

$$\begin{split} \mathsf{InputOutput}(\mathcal{D}_1) &= \sum_{D \in \mathcal{D}_1} \mathsf{Input}(\mathsf{cycle})\mathsf{Output}(\mathsf{cycle}), \\ \mathsf{InputOutput}(\mathcal{D}_2) &= \sum_{D \in \mathcal{D}_2} \mathsf{Input}(\mathsf{one cycle})\mathsf{Output}(\mathsf{other cycle}) \end{split}$$

Bounded Covariance

$$\begin{split} \mathsf{InputOutput}(\mathcal{D}_1) &= \sum_{D \in \mathcal{D}_1} \mathsf{Input}(\mathsf{cycle})\mathsf{Output}(\mathsf{cycle}), \\ \mathsf{InputOutput}(\mathcal{D}_2) &= \sum_{D \in \mathcal{D}_2} \mathsf{Input}(\mathsf{one cycle})\mathsf{Output}(\mathsf{other cycle}) \end{split}$$

Theorem (Heuberger–K.–Wagner 2015)

Suppose the asymptotic expected value of $(Input(X_n), Output(X_n))$ is (0, 0). Then the transducer is independent if and only if

 $InputOutput(\mathcal{D}_2) = InputOutput(\mathcal{D}_1).$

Also possible: 2 outputs, Markov chain

Width-w Non-Adjacent Form

- asymptotic covariance = 0
- arbitrarily large independent transducers
- Hamming weight of binary expansion and Hamming weight of *w*-NAF are independent
- w = 2: NAF (Heuberger-Prodinger 2007)

Width-w Non-Adjacent Form

- $2 \le w_1 < w_2$ with $w_1 \ne w_2 1$:
 - closed walk with input 0
 - closed walk with input 10^{w_2-1}
 - closed walk with input $10^{w_1-1}10^{w_1-1}0\cdots 0$

$$\Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ * & 1 & 1 \\ * & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = 0$$

 \rightsquigarrow asymptotic normal distribution

Gray Code

First values:

0	0	6	101
1	1	7	100
2	11	8	1100
3	10	9	1101
4	110	10	1111
5	111	11	1110

Gray Code

First values:

0	0	6	101
1	1	7	100
2	11	8	1100
3	10	9	1101
4	110	10	1111
5	111	11	1110

• starting transitions unimportant

Gray Code

First values:

0	0	6	101
1	1	7	100
2	11	8	1100
3	10	9	1101
4	110	10	1111
5	111	11	1110

- starting transitions unimportant
- asymptotic covariance = 0
- independent transducer
- Hamming weight of binary expansion and Hamming weight of Gray code are independent

Conclusion

- combinatorial description for transducers with
 - bounded variance
 - singular variance-covariance matrix
 - bounded covariance
- $\bullet \rightsquigarrow$ asymptotically normally distributed
- can be checked
 - without long computations
 - in general settings

