Combinatorial Characterization of Transducers with Bounded Variance

Sara Kropf

Alpen-Adria-Universität Klagenfurt
Joint work with Clemens Heuberger and Stephan Wagner

AofA
Strobl, June 12, 2015

Motivation

Theorem (Hwang's Quasi-Power-Theorem)

Let Ω_{n} be a sequence of real random variables. Suppose the moment generating function satisfies

$$
\mathbb{E}\left(e^{\Omega_{n} s}\right)=e^{u(s) \Phi(n)+v(s)}\left(1+\mathcal{O}\left(\kappa_{n}^{-1}\right)\right)
$$

under some conditions.
Then

$$
\begin{aligned}
& \mathbb{E} \Omega_{n}=u^{\prime}(0) \Phi(n)+\mathcal{O}(1) \\
& \mathbb{V} \Omega_{n}=u^{\prime \prime}(0) \Phi(n)+\mathcal{O}(1)
\end{aligned}
$$

If $\sigma^{2}:=u^{\prime \prime}(0) \neq 0$, then $\frac{\Omega_{n}-\mathbb{E} \Omega_{n}}{\sqrt{V \Omega_{n}}}$ is asymptotically normally distributed.

When is the variance bounded?

Transducers

- transducer \mathcal{T} with a finite number of states

Transducers

- transducer \mathcal{T} with a finite number of states
- Output $\left(X_{n}\right)=$ sum of the output
- random word $X_{n} \in \mathcal{A}^{n}$ as input
- today: equidistribution on \mathcal{A}^{n}
- read from right to left

Transducers

- transducer \mathcal{T} with a finite number of states
- Output $\left(X_{n}\right)=$ sum of the output
- random word $X_{n} \in \mathcal{A}^{n}$ as input
- today: equidistribution on \mathcal{A}^{n}
- read from right to left

Example with $X_{n}=11001$

$$
\begin{aligned}
& \text { input: } 11001 \\
& \text { output: }
\end{aligned}
$$

Output(11001) $=$

Transducers

- transducer \mathcal{T} with a finite number of states
- Output $\left(X_{n}\right)=$ sum of the output
- random word $X_{n} \in \mathcal{A}^{n}$ as input
- today: equidistribution on \mathcal{A}^{n}
- read from right to left

Example with $X_{n}=11001$

$$
\begin{array}{cr}
\text { input: } & 11001 \\
\text { output: } & 1
\end{array}
$$

Output(11001) $=$

Transducers

- transducer \mathcal{T} with a finite number of states
- Output $\left(X_{n}\right)=$ sum of the output
- random word $X_{n} \in \mathcal{A}^{n}$ as input
- today: equidistribution on \mathcal{A}^{n}
- read from right to left

Example with $X_{n}=11001$

$$
\begin{array}{cr}
\text { input: } & 11001 \\
\text { output: } & 11
\end{array}
$$

Output(11001) $=$

Transducers

- transducer \mathcal{T} with a finite number of states
- Output $\left(X_{n}\right)=$ sum of the output
- random word $X_{n} \in \mathcal{A}^{n}$ as input
- today: equidistribution on \mathcal{A}^{n}
- read from right to left

Example with $X_{n}=11001$

$$
\begin{array}{rr}
\text { input: } & 11001 \\
\text { output: } & 011
\end{array}
$$

Output(11001) $=$

Transducers

- transducer \mathcal{T} with a finite number of states
- Output $\left(X_{n}\right)=$ sum of the output
- random word $X_{n} \in \mathcal{A}^{n}$ as input
- today: equidistribution on \mathcal{A}^{n}
- read from right to left

Example with $X_{n}=11001$

$$
\begin{array}{rr}
\text { input: } & 11001 \\
\text { output: } & 1011
\end{array}
$$

Output(11001) $=$

Transducers

- transducer \mathcal{T} with a finite number of states
- Output $\left(X_{n}\right)=$ sum of the output
- random word $X_{n} \in \mathcal{A}^{n}$ as input
- today: equidistribution on \mathcal{A}^{n}
- read from right to left

Example with $X_{n}=11001$

$$
\begin{array}{rr}
\text { input: } & 11001 \\
\text { output: } & 01011
\end{array}
$$

Output(11001) $=$

Transducers

- transducer \mathcal{T} with a finite number of states
- Output $\left(X_{n}\right)=$ sum of the output
- random word $X_{n} \in \mathcal{A}^{n}$ as input
- today: equidistribution on \mathcal{A}^{n}
- read from right to left

Example with $X_{n}=11001$

$$
\begin{array}{rr}
\text { input: } & 11001 \\
\text { output: } & 101011
\end{array}
$$

Output(11001) $=$

Transducers

- transducer \mathcal{T} with a finite number of states
- Output $\left(X_{n}\right)=$ sum of the output
- random word $X_{n} \in \mathcal{A}^{n}$ as input
- today: equidistribution on \mathcal{A}^{n}
- read from right to left

Example with $X_{n}=11001$

$$
\begin{array}{rr}
\text { input: } & 11001 \\
\text { output: } & 101011
\end{array}
$$

Output(11001) $=4$

Other Probability Model and Several Outputs

All results also possible for:

- inputs coming from a Markov chain
- for every transition a probability
- sum of probabilities of output transitions is 1
Some results are independent of the choice of this Markov chain.

Several simultaneous outputs.

Applications

- algorithms with finite memory usage
- many digit expansions:
- Hamming weight
- sum of digits function, ...
- many recursions
- motifs

Applications

- algorithms with finite memory usage
- many digit expansions:
- Hamming weight
- sum of digits function, ...
- many recursions
- motifs
- completely q-additive functions
- digital sequences
- q-automatic sequences

Applications

- digit sum of binary expansion

Applications

- digit sum of binary expansion

- Hamming weight of non-adjacent form (NAF):
- digits $\{0, \pm 1\}$, base 2
- at least one of any two adjacent
 digits is 0

Applications

- digit sum of binary expansion

- Hamming weight of non-adjacent form (NAF):
- digits $\{0, \pm 1\}$, base 2
- at least one of any two adjacent digits is 0
- Hamming weight of width-w NAF:
- digits $\left\{0, \pm 1, \pm 3, \ldots, \pm\left(2^{w-1}-1\right)\right\}$, base 2
- at least $w-1$ of w consecutive digits are 0

Variability Condition

Theorem (Hwang's Quasi-Power-Theorem)

Let Ω_{n} be a sequence of real random variables. Suppose the moment generating function satisfies

$$
\mathbb{E}\left(e^{\Omega_{n} s}\right)=e^{u(s) \Phi(n)+v(s)}\left(1+\mathcal{O}\left(\kappa_{n}^{-1}\right)\right)
$$

under some conditions.
Then

$$
\begin{aligned}
& \mathbb{E} \Omega_{n}=u^{\prime}(0) \Phi(n)+\mathcal{O}(1) \\
& \mathbb{V} \Omega_{n}=u^{\prime \prime}(0) \Phi(n)+\mathcal{O}(1)
\end{aligned}
$$

If $\sigma^{2}:=u^{\prime \prime}(0) \neq 0$, then $\frac{\Omega_{n}-\mathbb{E} \Omega_{n}}{\sqrt{V \Omega_{n}}}$ is asymptotically normally distributed.

Assume that \mathcal{T} is strongly connected.
$\operatorname{Output}\left(X_{n}\right)$ satisfies all asumptions, except maybe the variability condition $\sigma^{2} \neq 0$.

Bounded Variance

Theorem (Heuberger-K.-Wagner 2015)

Let \mathcal{T} be strongly connected. Then the following assertions are equivalent:
(1) The asymptotic variance σ^{2} is 0 .
(2) There is a constant k such that the average output of every cycle is k.
(3) There is a constant k such that $\operatorname{Output}\left(X_{n}\right)=k n+\mathcal{O}(1)$.

Bounded Variance

Theorem (Heuberger-K.-Wagner 2015)

Let \mathcal{T} be strongly connected. Then the following assertions are equivalent:
(1) The asymptotic variance σ^{2} is 0 .
(2) There is a constant k such that the average output of every cycle is k.
(3) There is a constant k such that $\operatorname{Output}\left(X_{n}\right)=k n+\mathcal{O}(1)$.

Corollary (Heuberger-K.-Wagner 201)

Let \mathcal{T} be strongly connected, aperiodic with output alphabet $\{0,1\}$.
Then the asymptotic variance σ^{2} is 0 if and only if all output letters are the same.

Small Example

\rightsquigarrow asymptotic variance $\neq 0$

Small Example

\rightsquigarrow asymptotic variance $\neq 0$
Sage: $\sigma^{2}=\frac{432}{2197}$
ALPEN-ADRIA Anesese

Example: τ-adic Digit Expansion

- algebraic integer τ
- joint expansion of d-dimensional vectors in $\mathbb{Z}[\tau]^{d}$
- redundant digit set \mathcal{D} which satisfies
- $\mathcal{D} \cap \tau \mathbb{Z}^{d}=\{0\}$
- a subadditivity condition

Example: τ-adic Digit Expansion

- algebraic integer τ
- joint expansion of d-dimensional vectors in $\mathbb{Z}[\tau]^{d}$
- redundant digit set \mathcal{D} which satisfies
- $\mathcal{D} \cap \tau \mathbb{Z}^{d}=\{0\}$
- a subadditivity condition
- input: τ-adic expansions with the irredundant digit set \mathcal{A} of length $\leq n$ with equidistribution

Example: τ-adic Digit Expansion

- algebraic integer τ
- joint expansion of d-dimensional vectors in $\mathbb{Z}[\tau]^{d}$
- redundant digit set \mathcal{D} which satisfies
- $\mathcal{D} \cap \tau \mathbb{Z}^{d}=\{0\}$
- a subadditivity condition
- input: τ-adic expansions with the irredundant digit set \mathcal{A} of length $\leq n$ with equidistribution

Theorem (Heigl-Heuberger 2012)

If the asymptotic variance σ^{2} of the minimal Hamming weight with digit set \mathcal{D} is $\neq 0$, then the minimal Hamming weight is asymptotically normally distributed.

Example: τ-adic Digit Expansion

Heigl-Heuberger construct a transducer for each τ and \mathcal{D} :

- cycle with average output 0

Example: τ-adic Digit Expansion

Heigl-Heuberger construct a transducer for each τ and \mathcal{D} :

- cycle with average output 0
- but not all minimal weights are 0
- $0 \cdots 0$ always leads to the initial state
- \rightsquigarrow cycle with average output $\neq 0$

Example: τ-adic Digit Expansion

Heigl-Heuberger construct a transducer for each τ and \mathcal{D} :

- cycle with average output 0
- but not all minimal weights are 0
- $0 \cdots 0$ always leads to the initial state
- \rightsquigarrow cycle with average output $\neq 0$
- variability condition is satisfied
- \rightsquigarrow asymptotic normality

Bounded Variance

Theorem (Heuberger-K.-Wagner 2015)

Let \mathcal{T} be strongly connected. Then the following assertions are equivalent:
(1) The asymptotic variance σ^{2} is 0 .
(2) There is a constant k such that the average output of every cycle is k.
(3) There is a constant k such that $\operatorname{Output}\left(X_{n}\right)=k n+\mathcal{O}(1)$.

Idea of the Proof of the Theorem

$1 \Leftrightarrow 2$:

- assume: asymptotic expected value of $\operatorname{Output}\left(X_{n}\right)$ is 0
- probability generating function

$$
A(y, z)=\sum_{l \in \mathbb{R}} \sum_{n=0}^{\infty} a_{l n} K^{-n} y^{\prime} z^{n}
$$

with $K=|\mathcal{A}|$ and $a_{l n}=$ number of input words of length n with output sum I

- $A(1, z)$ has a simple dominant pole at $z=1$

Idea of the Proof of the Theorem

$1 \Leftrightarrow 2$:

- assume: asymptotic expected value of $\operatorname{Output}\left(X_{n}\right)$ is 0
- probability generating function

$$
A(y, z)=\sum_{l \in \mathbb{R}} \sum_{n=0}^{\infty} a a_{l n} K^{-n} y^{\prime} z^{n}
$$

with $K=|\mathcal{A}|$ and $a_{\text {l }}=$ number of input words of length n with output sum I

- $A(1, z)$ has a simple dominant pole at $z=1$
-

$$
\begin{aligned}
\mathbb{E}\left(\operatorname{Output}\left(X_{n}\right)\right) & =\left[z^{n}\right] A_{y}(1, z)=\mathcal{O}(1) \\
\mathbb{V}\left(\operatorname{Output}\left(X_{n}\right)\right) & =\left[z^{n}\right] A_{y y}(1, z)+\mathcal{O}(1)
\end{aligned}
$$

Idea of the Proof of the Theorem

Decomposition:

Idea of the Proof of the Theorem

Decomposition:

- probability generating functions

$$
C(y, z), P(y, z)
$$

Idea of the Proof of the Theorem

Decomposition:

- probability generating functions

$$
C(y, z), P(y, z)
$$

- by the symbolic method:

$$
A(y, z)=\frac{1}{1-C(y, z)} P(y, z)
$$

Idea of the Proof of the Theorem

Decomposition:

- probability generating functions

$$
C(y, z), P(y, z)
$$

- by the symbolic method:

$$
A(y, z)=\frac{1}{1-C(y, z)} P(y, z)
$$

- $P(1, z)$ is analytic in $|z|<1+\varepsilon$
- $P(1,1) \neq 0$
- $1-C(1, z)=(1-z) g(z)$ with $g(1) \neq 0$

Idea of the Proof of the Theorem

- Singularity Analysis \rightsquigarrow

$$
\mathbb{V}\left(\operatorname{Output}\left(X_{n}\right)\right)=P(1,1) g(1)^{-2} C_{y y}(1,1) n+\mathcal{O}(1)
$$

- thus,

$$
\left.\begin{array}{rl}
\mathbb{V}\left(\text { Output }\left(X_{n}\right)\right) & =\mathcal{O}(1) \\
& \\
C_{y y}(1,1) & =0 \\
\Longleftrightarrow \quad \sum_{C \in \mathcal{C}} \operatorname{Output}(C)^{2} K^{-\operatorname{Length}(C)} & =0 \\
& \Leftrightarrow \quad \forall C \in \mathcal{C}: \operatorname{Output}(C)
\end{array}\right)=0
$$

Singular Variance-Covariance Matrix

Consider m different outputs k_{1}, \ldots, k_{m} of a transducer instead of Output. Using a multi-dimensional Quasi-Power-Theorem:

Theorem (K. 2015+)

The m output sums are asymptotically jointly normally distributed, if and only if:

$$
a_{0} \operatorname{Length}(C)+a_{1} k_{1}(C)+\cdots+a_{m} k_{m}(C)=0
$$

holding for all cycles C implies that $a_{0}=\cdots=a_{m}=0$.

Bounded Covariance

- random variable ($\operatorname{Input}\left(X_{n}\right)$, Output $\left.\left(X_{n}\right)\right)$
- 2-dimensional version of the Quasi-Power-Theorem
- \rightsquigarrow asymptotic normal distribution

Bounded Covariance

- random variable $\left(\operatorname{Input}\left(X_{n}\right)\right.$, Output $\left.\left(X_{n}\right)\right)$
- 2-dimensional version of the Quasi-Power-Theorem
- \rightsquigarrow asymptotic normal distribution
- When is the covariance bounded?
- covariance bounded \leftrightarrow components of the asymptotic random variable are independent

Definition

An independent transducer is a transducer which has a bounded covariance of $\left(\operatorname{Input}\left(X_{n}\right)\right.$, Output $\left.\left(X_{n}\right)\right)$.

Functional Digraph

Definition (Functional Digraph)

A functional digraph is a directed graph where every vertex has out-degree 1 .

This is a map from a finite set into itself.

Functional Digraph

Definition (Functional Digraph)

A functional digraph is a directed graph where every vertex has out-degree 1 .

This is a map from a finite set into itself.

Definition

\mathcal{D}_{1} and \mathcal{D}_{2} are the sets of functional digraphs with one respectively two
 components which are subgraphs of the given transducer.

Bounded Covariance

$\operatorname{InputOutput}\left(\mathcal{D}_{1}\right)=\sum_{D \in \mathcal{D}_{1}} \operatorname{Input}($ cycle $)$ Output(cycle),
InputOutput $\left(\mathcal{D}_{2}\right)=\sum_{D \in \mathcal{D}_{2}} \operatorname{Input}($ one cycle)Output(other cycle)

MLPEN-RDRIG

Bounded Covariance

$$
\begin{aligned}
& \text { InputOutput }\left(\mathcal{D}_{1}\right)=\sum_{D \in \mathcal{D}_{1}} \operatorname{Input}(\text { cycle }) \text { Output(cycle) } \\
& \text { InputOutput }\left(\mathcal{D}_{2}\right)=\sum_{D \in \mathcal{D}_{2}} \operatorname{Input}(\text { one cycle)Output(other cycle) }
\end{aligned}
$$

Theorem (Heuberger-K.-Wagner 2015)

Suppose the asymptotic expected value of (Input $\left(X_{n}\right)$, Output $\left.\left(X_{n}\right)\right)$ is $(0,0)$.
Then the transducer is independent if and only if

$$
\text { InputOutput }\left(\mathcal{D}_{2}\right)=\operatorname{InputOutput}\left(\mathcal{D}_{1}\right)
$$

Also possible: 2 outputs, Markov chain

Width-w Non-Adjacent Form

- asymptotic covariance $=0$
- arbitrarily large independent transducers
- Hamming weight of binary expansion and Hamming weight of w-NAF are independent
- $w=2$: NAF (Heuberger-Prodinger 2007)

Width-w Non-Adjacent Form

$2 \leq w_{1}<w_{2}$ with $w_{1} \neq w_{2}-1$:

- closed walk with input 0
- closed walk with input $10^{w_{2}-1}$
- closed walk with input $10^{w_{1}-1} 10^{w_{1}-1} 0 \cdots 0$

$$
\Rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
* & 1 & 1 \\
* & 2 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=0
$$

\rightsquigarrow asymptotic normal distribution

Gray Code

First values:

0	0	6	101
1	1	7	100
2	11	8	1100
3	10	9	1101
4	110	10	1111
5	111	11	1110

Gray Code

First values:

0	0	6	101
1	1	7	100
2	11	8	1100
3	10	9	1101
4	110	10	1111
5	111	11	1110

- starting transitions unimportant

Gray Code

First values:

0	0	6	101
1	1	7	100
2	11	8	1100
3	10	9	1101
4	110	10	1111
5	111	11	1110

- starting transitions unimportant
- asymptotic covariance $=0$
- independent transducer
- Hamming weight of binary expansion and Hamming weight of Gray code are independent

Conclusion

- combinatorial description for transducers with
- bounded variance
- singular variance-covariance matrix
- bounded covariance
- \rightsquigarrow asymptotically normally distributed
- can be checked
- without long computations
- in general settings

