Analysis of Bidirectional Ballot Sequences and Random Walks Ending in their Maximum

Benjamin Hackl ${ }^{\text {AAU }}$, Clemens Heuberger ${ }^{\text {AAU }}$, Helmut Prodinger ${ }^{\text {SU }}$, Stephan Wagner ${ }^{\text {SU }}$

Alpen-Adria-Universität Klagenfurt, Stellenbosch University
09.06.2015

More-Sums-than-Differences Sets (MSTD)

Definition (Nathanson)

Finite subset $S \subset \mathbb{Z}$ called More-Sums-than-Differences-Set:

$$
|S+S|>|S-S|
$$

$$
\begin{aligned}
& S+S:=\left\{s_{1}+s_{2} \mid s_{1}, s_{2} \in S\right\} \\
& S-S:=\left\{s_{1}-s_{2} \mid s_{1}, s_{2} \in S\right\} .
\end{aligned}
$$

Subtraction non-commutative: expect $|S-S|>|S+S|$.
Example (Conway, 1960s)

$$
\begin{aligned}
S= & \{0,2,3,4,7,11,12,14\} \\
S+S= & \{0,2,3,4,5,6,7,8,9,10,11,12,13 \\
& 14,15,16,17,18,19,21,22,23,24,25,26,28\} \\
S-S= & \{-14,-12,-11,-10,-9,-8,-7,-5,-4,-3,-2,-1,0 \\
& 1,2,3,4,5,7,8,9,10,11,12,14\}
\end{aligned}
$$

Construct MSTD sets

Aim: construct many MSTD-subsets of $\{0, \ldots, n-1\}$.

Zhao's Construction of MSTD Sets

Theorem (Zhao 2010)

Let

$$
\begin{aligned}
L & =\{0,2,3,7,8,9,10\} \\
M & \subseteq\{11, \ldots, n-12\} \\
R & =\{n-11, n-10, n-9, n-8, n-6, n-3, n-2, n-1\}
\end{aligned}
$$

such that every prefix and every suffix of $\{11, \ldots, n-12\}$ has more than half of its elements in M.
$\Longrightarrow S:=L \cup M \cup R$ is MSTD-set.

$$
\left.\begin{array}{rlrl}
\pm(n-7) & \notin S-S \\
L+L & =\{0, \ldots, 20\} \backslash\{1\}, & & \Longrightarrow \quad|S-S|
\end{array}\right)=2 n-3, ~ 子 r+R=\{2 n-22, \ldots, 2 n-2\}
$$

If $M+M=\{22, \ldots, 2 n-24\}$:

$$
S+S=\{0, \ldots, 2 n-2\} \backslash\{1\} \Longrightarrow|S+S|=2 n-2
$$

Zhao's Construction of MSTD Sets (2)

Lemma (Zhao 2010)

Let $M \subseteq\{1, \ldots, m\}$ such that every prefix and every suffix of $\{1, \ldots, m\}$ has more than half of its elements in M.
Then $M+M=\{2, \ldots, 2 m\}$.
Proof. WLOG let $2 \leq x \leq m$. Pigeonhole principle: $y, x-y \in M$ for some $y \in\{1, \ldots, x-1\}$. Thus $x=y+(x-y) \in M+M$.

Definition

Bidirectional Ballot Sequence: word over $\{0,1\}$ such that every prefix and every suffix contains strictly more ones than zeros.

Bijection between sets M as above and bidirectional ballot sequences of length m.
\# MSTD-subsets of $\{0, \ldots, n-1\} \geq B_{n-22}$, the number of bidirectional ballot sequences of length $n-22$.

Number of Bidirectional Ballot Sequences

 B_{n} : number of bidirectional ballot sequences of length n.Theorem (Zhao 2010)

$$
\frac{B_{n}}{2^{n}}=\Theta\left(\frac{1}{n}\right) .
$$

Theorem (Bousquet-Mélou-Ponty 2008)

$$
\frac{B_{n}}{2^{n}} \sim \frac{1}{4 n} .
$$

Conjecture (Zhao 2010)

$$
\frac{B_{n}}{2^{n}}=\frac{1}{4 n}+\frac{1}{6 n^{2}}+O\left(\frac{1}{n^{3}}\right) .
$$

Theorem (Hackl-H-Prodinger-Wagner 2015)

$$
\frac{B_{n}}{2^{n}}=\frac{1}{4 n}+\frac{1}{6 n^{2}}+\frac{7}{45 n^{3}}+\frac{10}{63 n^{4}}+O\left(\frac{\log n}{n^{5}}\right) .
$$

Admissible Random Walks

Bidirectional Ballot Sequence: word over $\{0,1\}$ such that every prefix and every suffix contains strictly more ones than zeros.

Definition

A random walk on \mathbb{Z} is called admissible of height $h \geq 0$, if $\in[0, h]$ at all times and ends in h.
It is called admissible, if it is admissible of some height h.

Bijection: Bidirectional Ballot Sequences of length $n+2 \longleftrightarrow$ admissible walks of length n.

Analysis of Admissible Random Walks

$q_{n}^{(h)}$: probability that random path of length n is admissible of height h
q_{n} : probability that random path of length n is admissible

- Generating function for $\left(q_{n}^{(h)}\right)_{n \geq 0}$?
- Explicit expression for $q_{n}^{(h)}$?
- Asymptotic expression for q_{n} for $n \rightarrow \infty$?
- Height of an admissible random path of length n :
- moments,
- local limit theorem.

Generating Function for $\left(q_{n}^{(h)}\right)_{n \geq 0}$

$q_{n}^{(h)}$: probability that random path of length n is admissible of height h
Chebyshev polynomials of the second kind

$$
U_{h+1}(x)=2 x U_{h}(x)-U_{h-1}(x) \text { for } h \geq 1, U_{0}(x)=1, U_{1}(x)=2 x
$$

Proposition

$$
q_{n}^{(h)}=2\left[z^{n+1}\right] \frac{1}{U_{h+1}(1 / z)} \quad(h \geq 0, n \geq 0)
$$

$(h+1) \times(h+1)$ transfer matrix

$$
M_{h}=\left(\begin{array}{cccccc}
0 & 1 / 2 & 0 & \cdots & \cdots & 0 \\
1 / 2 & 0 & 1 / 2 & \cdots & \cdots & 0 \\
0 & 1 / 2 & 0 & \ddots & & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & & \ddots & \ddots & 1 / 2 \\
0 & 0 & 0 & \cdots & 1 / 2 & 0
\end{array}\right) .
$$

Explicit Expression for $q_{n}^{(h)}$

$q_{n}^{(h)}$: probability that random path of length n is admissible of height h

Theorem

$$
\begin{aligned}
& \qquad q_{n-2}^{(h)}=\frac{4}{2^{n}} \sum_{k \geq 0} \frac{2 v_{h, k}^{2}-\frac{n}{2}}{(n-1) \frac{n}{2}}\binom{n}{\frac{n}{2}-v_{h, k}} \cdot \llbracket h \equiv n \bmod 2 \rrbracket \\
& \text { for } v_{h, k}:=(h+2)(2 k+1) / 2, h \geq 0 \text { and } n \geq 2
\end{aligned}
$$

Prune tails, approximate binomial coefficient in central region $\left(|\alpha| \leq n^{2 / 3}\right)$

$$
\binom{n}{\frac{n}{2}-\alpha} \sim \frac{2^{n+1 / 2}}{\sqrt{n \pi}} \exp \left(-\frac{2 \alpha^{2}}{n}\right)
$$

complete tails ...

Harmonic Sum

$$
q_{n-2} \sim \frac{8 \sqrt{2}}{\sqrt{n \pi}} \frac{1}{n-1} \sum_{\substack{h, k \geq 0 \\ h \equiv n \bmod 2}} \frac{2 v_{h, k}^{2}-\frac{n}{2}}{n} \exp \left(-\frac{2 v_{h, k}^{2}}{n}\right)
$$

Use Mellin transform to obtain asymptotics.

Asymptotics

Theorem (Hackl-H-Prodinger-Wagner 2015)

$$
q_{n}=\frac{1}{n}-\frac{4}{3 n^{2}}+\frac{88}{45 n^{3}}-\frac{976}{315 n^{4}}+O\left(\frac{\log n}{n^{5}}\right) .
$$

Expectation, variance and r th moment of the height of admissible random walks on \mathbb{Z} :

$$
\begin{aligned}
& \mathbb{E} H_{n}=\frac{\sqrt{2 \pi^{3}}}{4} \sqrt{n}-2+\frac{3 \sqrt{2 \pi^{3}}}{16 \sqrt{n}}-\frac{539 \sqrt{2 \pi^{3}}}{5760 \sqrt{n^{3}}}+O\left(\frac{1}{\sqrt{n^{5}}}\right), \\
& \mathbb{V} H_{n}=\frac{28 \zeta(3)-\pi^{3}}{8} n+\frac{224 \zeta(3)-9 \pi^{3}}{48}+O\left(\frac{1}{n}\right), \\
& \mathbb{E} H_{n}^{r} \sim \frac{r}{\sqrt{\pi}} \Gamma\left(\frac{r+1}{2}\right)\left(2^{r+1}-1\right) 2^{-r / 2} \zeta(r+1) n^{r / 2} .
\end{aligned}
$$

Local Limit Thoerem

Theorem (Hackl-H-Prodinger-Wagner 2015)

If

$$
\frac{6}{\sqrt{\log n}}<\eta:=\frac{h}{\sqrt{n}}<\frac{\sqrt{\log n}}{2}
$$

then

$$
\begin{aligned}
\mathbb{P}\left(H_{n}=h\right) & =\frac{q_{n}^{(h)}}{q_{n}} \\
& \sim \frac{4 \sqrt{2}}{\sqrt{\pi n}} \sum_{k \geq 0}\left((2 k+1)^{2} \eta^{2}-1\right) \exp \left(-\frac{(2 k+1)^{2} \eta^{2}}{2}\right) \\
& =\frac{4 \pi^{2}}{\eta^{3} \sqrt{n}} \sum_{k \geq 1}(-1)^{k-1} k^{2} \exp \left(-\frac{\pi^{2} k^{2}}{2 \eta^{2}}\right) .
\end{aligned}
$$

Chebyshev Polynomials of the First Kind and Random Walks

 on $\mathbb{Z}_{\geq 0}$Chebyshev polynomials of the first and second kind:
$T_{h+1}(x)=2 x T_{h}(x)-T_{h-1}(x) \quad$ for $h \geq 1, \quad T_{0}(x)=1, \quad T_{1}(x)=x$, $U_{h+1}(x)=2 x U_{h}(x)-U_{h-1}(x) \quad$ for $h \geq 1, \quad U_{0}(x)=1, \quad U_{1}(x)=2 x$.
$p_{n}^{(h)}$: probability that a random walk on $\mathbb{Z}_{\geq 0}$ (transition probability 1 from 0 to 1) is admissible of height h.

$$
p_{n}^{(h)}=2\left[z^{n+1}\right] \frac{1}{T_{h+1}(1 / z)} .
$$

