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Uniform random trees

Let Tn be the set of unordered trees on n vertices labelled by
[n] := {1, 2, . . . , n}.

Write Tn for a tree chosen uniformly from Tn.
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An algorithm due to Aldous

In order to study Tn, it’s useful to have a way of building it.

1. Start from the vertex labelled 1.

2. For 2 ≤ i ≤ n, connect vertex i to vertex Vi such that

Vi =

{
i − 1 with probability 1− (i − 2)/(n − 1)

uniform on {1, 2, . . . , i − 2} otherwise.

3. Take a uniform random permutation of the labels.



Aldous’ algorithm

Consider n = 10.
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V2 = 1 with probability 1
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V3 =

{
1 with probability 1/9

2 with probability 8/9
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V4 =

{
j with probability 1/9, 1 ≤ j ≤ 2

3 with probability 7/9

41 2 3
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V5 =

{
j with probability 1/9, 1 ≤ j ≤ 3

4 with probability 6/9
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V6 =

{
j with probability 1/9, 1 ≤ j ≤ 4

5 with probability 5/9
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Aldous’ algorithm

V9 =
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j with probability 1/9, 1 ≤ j ≤ 7
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9

8

321 4

5

6

7



Aldous’ algorithm

V10 =

{
j with probability 1/9, 1 ≤ j ≤ 8
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Aldous’ algorithm

Permute.
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Typical distances
Consider the tree before we permute. Let

Ln = inf{i ≥ 2 : Vi+1 6= i}.

We can use Ln to give us an idea of typical distances in the tree.

In our example, L10 = 4:
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Typical distances

For 2 ≤ i ≤ n, connect vertex i to vertex Vi such that

Vi =

{
i − 1 with probability 1− (i − 2)/(n − 1)

uniform on {1, 2, . . . , i − 2} otherwise.

Ln = inf{i ≥ 2 : Vi+1 6= i}

Proposition

As n→∞,

P
(

n−1/2Ln > x
)
→ exp(−x2/2).



Proof

P
(

n−1/2Ln > x
)

= P
(

Ln ≥ bxn1/2c+ 1
)

= P
(

2→ 1, 3→ 2, . . . , bxn1/2c+ 1→ bxn1/2c
)

= 1 ·
(

1− 1

n − 1

)(
1− 2

n − 1

)
· · ·

(
1− bxn1/2c − 1

n − 1

)
.

So

− logP
(

n−1/2Ln > x
)

= −
bxn1/2c−1∑

i=1

log

(
1− i

n − 1

)

∼
bxn1/2c−1∑

i=1

i

n
=
bxn1/2c(bxn1/2c − 1)

2n
∼ x2

2
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Typical distances

Once we have built this first stick of consecutive labels, we pick a
uniform starting point along that stick and attach a new stick with
a random length, and so on.

Imagine now that edges in the tree have length 1. The proposition
suggests that rescaling edge-lengths by n−1/2 will give some sort of
limit for the whole tree. The limiting version of the algorithm is as
follows.
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Line-breaking construction
Let E1,E2, . . . be independent Exponential(1/2) r.v.’s and set

Ck =
√∑k

i=1 Ei . (Equivalently, let C1,C2, . . . be the points of an

inhomogeneous Poisson process on R+ of intensity t dt.)
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0

(Note that P (C1 > x) = P
(
E1 > x2

)
= exp(−x2/2).)

I Consider the line-segments [0,C1), [C1,C2), . . ..

I Start from [0,C1) and proceed inductively.

I For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen
uniformly over the existing tree.
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The Brownian continuum random tree

[Picture by Igor Kortchemski]



The scaling limit of the uniform random tree

Theorem (Aldous (1991); Le Gall (2005))

Then
1√
n

Tn
d→ cT2 as n→∞

where T2 is Aldous’ Brownian continuum random tree and c is a
non-negative constant. (The convergence is in the sense of the
Gromov–Hausdorff distance.)



Trees as metric spaces

The vertices of Tn come equipped with a natural metric: the graph
distance.
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We write 1√
n

Tn for the metric space given by the vertices of Tn

with the graph distance divided by
√

n.



Measuring the distance between metric spaces
Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.
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x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.



Measuring the distance between metric spaces

The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.



Measuring the distance between metric spaces

(X , d) and (X ′, d ′) are at Gromov-Hausdorff distance less than
ε > 0 if there exists a correspondence R between X and X ′ such
that dis(R) < 2ε. Write

dGH((X , d), (X ′, d ′)) < ε.



The Brownian CRT

Why Brownian continuum random tree?

Because T2 can be obtained by a glueing operation performed on
the standard Brownian excursion, (e(t), 0 ≤ t ≤ 1).
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The Brownian CRT
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[Pictures by Igor Kortchemski]



Critical Galton–Watson trees
Consider a Galton–Watson branching process with offspring
distribution (pk)k≥0.

Suppose that the offspring distribution is critical i.e.∑∞
k=0 kpk = 1, and condition the tree to have total progeny n.

Let T GW
n be the family tree associated with this process (thought

of as a rooted plane tree with n vertices).



Combinatorial trees

By taking different offspring distributions, we can obtain various
different natural combinatorial models:

I Poisson(1) corresponds to the uniform random tree (once we
forget the planar order and give the tree a uniform labelling).

I Geometric(1/2) gives a uniform plane tree.

I p0 = 1/2, p2 = 1/2 gives a uniform (complete) binary tree (as
long as n is odd).



The finite-variance case

Theorem (Aldous (1993); Le Gall (2005))

Suppose σ2 :=
∑∞

k=2(k − 1)2pk <∞. Then

1√
n

TGW
n

d→ cσT2 as n→∞

where T2 is Aldous’ Brownian continuum random tree and cσ is a
non-negative constant. (The convergence is in the sense of the
Gromov–Hausdorff distance.)



Infinite variance

What if the offspring distribution does not have finite variance? It
is natural to consider offspring distributions such that pk ∼ k−1−α

for α ∈ (1, 2) (or, more generally, distributions in the domain of
attraction of a stable law of parameter α).



The infinite-variance case

Theorem (Duquesne & Le Gall (2002); Duquesne (2003))

Suppose that (pk)k≥0 lies in the domain of attraction of a stable
law of index α ∈ (1, 2). Then as n→∞,

1

n1−1/α
TGW
n

d→ cαTα,

where Tα is the stable tree of parameter α and cα is a
non-negative constant. (The convergence is in the sense of the
Gromov–Hausdorff distance.)



The stable trees

[Pictures by Igor Kortchemski]



The stable trees

The stable trees also possess a functional encoding (although the
excursions concerned are rather more involved to describe).
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[Pictures by Igor Kortchemski]

An important difference between the stable trees for α ∈ (1, 2) and
the Brownian CRT is that the Brownian CRT is binary. The stable
trees, on the other hand, have only branch-points of infinite degree.
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A uniform measure

The principal theme of the rest of this talk is how to give a
(relatively) simple description of the stable trees (and how to use it
to get at their distributional properties).

For α ∈ (1, 2], the stable tree Tα is naturally endowed with a
“uniform” probability measure µα, which is the limit of the discrete
uniform measure on T GW

n . It turns out that µα is supported by the
set of leaves of Tα.

Aldous’ theory of continuum random trees tells us that we can
characterize the laws of such trees via sampling.
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Reduced trees

Let X1,X2, . . . be leaves sampled independently from Tα according
to µα, and let Tα,n be the subtree spanned by the root ρ and
X1, . . . ,Xn:

ρ
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Characterising the law of a stable tree

Tα,n can be thought of in two parts: its tree-shape Tα,n (a rooted
unordered tree with n labelled leaves) and its edge-lengths.

The laws of (Tα,n, n ≥ 1) (the random finite-dimensional
distributions) are sufficient to fully specify the law of Tα.

Moreover,

Tα =
⋃
n≥1

Tα,n.
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Reminder: Aldous’ line-breaking construction of the
Brownian CRT

Let C1,C2, . . . be the points of an inhomogeneous Poisson process
on R+ of intensity t dt.
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Line-breaking construction
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Line-breaking construction
T̃6
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Line-breaking construction

It turns out that the line-breaking construction precisely gives the
random finite-dimensional distributions for the Brownian CRT, i.e.

(T̃n, n ≥ 1)
d
=
(

1√
2
T2,n, n ≥ 1

)
.

Question: does there exist a similar line-breaking construction for
the stable trees with α ∈ (1, 2)?
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Marchal’s algorithm
Marchal (2008) discovered a recursive construction of the
tree-shapes. Build (T̃n, n ≥ 1) as follows:

I Start from a single edge, rooted at one end-point and with
the other other end-point labelled 1.

I At all subsequent steps, assign edges weight α− 1 and
vertices of degree d ≥ 3 weight d − 1− α.

I At step n, pick an edge or a vertex with probability
proportional to their weights.

I If we pick an edge, subdivide it into two edges and attach the
leaf labelled n to the middle vertex we just created.

I If we pick a vertex, attach the leaf labelled n to it.
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Marchal’s algorithm

Then
(T̃n, n ≥ 1)

d
= (Tα,n, n ≥ 1).

(The α = 2 case is Rémy’s algorithm (1985) for building a uniform
binary rooted tree with n labelled leaves.)

Moreover,
1

n1−1/α
T̃n

a.s.→ c ′αTα

as n→∞ [Curien-Haas (2013)].

Our new line-breaking construction gives a nested sequence of
continuous trees which converge a.s. to Tα without any need for
rescaling.
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The generalized Mittag-Leffler distribution

For β ∈ (0, 1), let σβ be a stable random variable with Laplace
transform

E [exp(−λσβ)] = exp(−λβ), λ ≥ 0.

Say that a non-negative random variable M has the generalized
Mittag-Leffler distribution with parameters β ∈ (0, 1) and θ > −β,
and write M ∼ ML(β, θ), if

E [f (M)] = Cβ,θE
[
σ−θβ f

(
σ−ββ

)]
.

for all suitable test-functions f . The law of M is characterized by
its moments:

E
[
Mk
]

=
Γ(θ)Γ(θ/β + k)

Γ(θ/β)Γ(θ + kβ)

for any k ≥ 1.

If β = 1/2 and n ≥ 1, ML(1/2, n − 1/2) = 2
√

Gamma(n, 1).
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If β = 1/2 and n ≥ 1, ML(1/2, n − 1/2) = 2
√

Gamma(n, 1).
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A generalized Pólya urn scheme

ML(β, θ) arises as an almost sure limit in the context of a
generalized Pólya urn scheme.

Start with weight 0 on black and weight θ/β on red.

Pick a colour with probability proportional to its weight in the urn.

I If black is picked, add 1/β to the black weight.

I If red is picked, add 1− 1/β to the black weight and 1 to the
red weight.

Let Rn be the weight of red at step n. Then [Janson (2006)],

n−βRn
a.s.→ W ∼ ML(β, θ).



A generalized Pólya urn scheme

ML(β, θ) arises as an almost sure limit in the context of a
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Urns in Marchal’s algorithm
Idea: there are many such urns embedded in Marchal’s algorithm!

Consider the distance Dn between the root and the leaf labelled 1.
The associated weight is (α− 1)Dn. Let Wn be the remaining
weight in the rest of the tree.

D1 = 1 and W1 = 0.

At each subsequent step,

I with probability proportional to (α− 1)Dn, we pick one of the
Dn edges between the root and 1 to split. Then,
Dn+1 = Dn + 1, the associated weight increases by α− 1, and
Wn+1 = Wn + (2− α) + (α− 1) = Wn + 1;

I with probability proportional to Wn add the new edge
elsewhere; this yields Wn+1 = Wn + α.

(We always add weight α to the whole tree.)
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Urns in Marchal’s algorithm

Then (Dn, n ≥ 1) behaves exactly as the red weight in the
generalized Pólya urn with β = θ = 1− 1/α. It follows that

1

n1−1/α
Dn

d→ ML(1− 1/α, 1− 1/α)

as n→∞.

This suggests that the first stick in any line-breaking construction
should have length distributed as ML(1− 1/α, 1− 1/α).
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A Markov chain

We define an increasing R+-valued process which will play a role
similar to that of the inhomogeneous Poisson process in the
Brownian case.

Let (Mn, n ≥ 1) be a Markov chain such that

I Mn ∼ ML(1− 1/α, n − 1/α) for n ≥ 1.

I The backward transition fron Mn+1 to Mn is given by

Mn = Mn+1 βn,

where βn is independent of Mn+1 and

βn ∼ Beta

(
(n + 1)α− 2

α− 1
,

1

α− 1

)
.
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A Markov chain

Lemma
If α = 2, (Mn, n ≥ 1) are the ordered points of an inhomogeneous
Poisson process on R+ with intensity t

2 dt.

Sketch proof.

It suffices to show that (M2
n/4, n ≥ 1) are the ordered points of a

Poisson process of rate 1. But
Mn ∼ ML(1/2, n − 1/2) = 2

√
Gamma(n, 1) and so

M2
n/4 ∼ Gamma(n, 1).

The relationship between successive points encoded in
Mn = βnMn+1 where βn ∼ Beta(2n, 1) gives exactly the right
dependence structure.
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Line-breaking construction of the stable tree (I)

I Start with M1 and set L1 = M1. Let T̃1 be the tree consisting
of a line-segment of length L1.

I For n ≥ 1, given T̃n (which has total length Ln):

1. Let Bn+1 ∼ Beta(1, 2−α
α−1 ) be independent of everything we

have already constructed. We will glue a new branch of length
(Mn+1 −Mn) · Bn+1 onto T̃n, at a point to be specified; let
Ln+1 = Ln + (Mn+1 −Mn) · Bn+1 be the new total length.

2. In order to find where to glue the new branch, we first select
either the set of edges of T̃n, with probability Ln/Mn, or the
set of branchpoints of T̃n, with probability 1− Ln/Mn.

3. If we select the edges in 2, glue the new branch at a uniform
point along T̃n.

4. If we select the branchpoints in 2, pick a branchpoint at
random in such a way that a branchpoint of degree d ≥ 3 is
chosen with probability proportional to d − 1− α. Then glue
the new branch to the selected branchpoint.
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Line-breaking construction of the stable tree (II)

I Start with M1 and set L1 = M1. Let T̃1 be the tree consisting
of a line-segment of length L1.

I For n ≥ 1, given T̃n (which has total length Ln):

1. Let Bn+1 ∼ Beta(1, 2−α
α−1 ) be independent of everything we

have already constructed. We will glue a new branch of length
(Mn+1 −Mn) · Bn+1 onto T̃n, at a point to be specified; let
Ln+1 = Ln + (Mn+1 −Mn) · Bn+1 be the new total length.

2. In order to find where to glue the new branch, we first select
either the set of edges of T̃n, with probability Ln/Mn, or the

internal vertex v with probability W
(n)
v /Mn.

3. If we select the edges in 2, glue the new branch at a uniform
point along T̃n and assign the new internal vertex weight

W
(n+1)
v = (Mn+1 −Mn) · (1− Bn+1).

4. If we select the internal vertex v in 2, glue the new branch to

it and let W
(n+1)
v = W

(n)
v + (Mn+1 −Mn) · (1− Bn+1).
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Line-breaking constructions

Theorem (Haas & G.)

Let (T̃n, n ≥ 1) be the sequence of trees produced by either version
of the construction. Then

(T̃n, n ≥ 1)
d
= (Tα,n, n ≥ 1)

and, therefore,

Tα
d
=
⋃
n≥1

T̃n.



Remarks

In the case α = 2, we have Beta
(

1, 2−α
α−1

)
= Beta(1, 0). We

interpret this as Bn = 1 almost surely for all n ≥ 1. Then we
recover (a scaled version of) Aldous’ Poisson line-breaking
construction of the Brownian CRT.

The tree-shapes (T̃n, n ≥ 1) of (T̃n, n ≥ 1) perform Marchal’s
algorithm.
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Consequences: distributional results for (Tα,n, n ≥ 1)
Edge-lengths:
Let t be a discrete rooted tree with n ≥ 2 leaves and k edges.
Then conditionally on Tα,n = t, the sequence of edge-lengths of
Tα,n has the same distribution as

Mn · βk · (D1,D2, . . . ,Dk),

where these random variables are independent and

Mn ∼ ML(1− 1/α, n − 1/α)

βk ∼ Beta

(
k,

nα− 1

α− 1

)
(D1,D2, . . . ,Dk) ∼ Dir(1, 1, . . . , 1).∗

*Dirichlet distribution: Dir(a1, . . . , an) has density

Γ(a1 + . . . + an)∏n
i=1 Γ(ai )

x
a1−1
1 . . . xan−1

n

with respect to Lebesgue measure on{
(x1, . . . , xn) ∈ [0, 1]n :

n∑
i=1

xi = 1
}
.
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Consequences: distributional results for (Tα,n, n ≥ 1)

Total length of the conditioned tree:
Conditionally on Tα,n having k edges, the total length of the tree
Tα,n has the same distribution as

Mn · βk ,

where these random variables are independent and
Mn ∼ ML(1− 1/α, n − 1/α) and βk ∼ Beta(k, nα−1

α−1 ).



Consequences: distributional results for (Tα,n, n ≥ 1)

Total length of the unconditioned tree:
The total length of the tree Tα,n has the same distribution as

Mn ·

n−1∏
j=1

βj +
n−1∑
i=1

Bi (1− βi )
n−1∏
j=i+1

βj

 ,

where the random variables on the right-hand side are mutually
independent and such that

Mn ∼ ML(1− 1/α, n − 1/α)

βi ∼ Beta

(
(i + 1)α− 2

α− 1
,

1

α− 1

)
, i ≥ 1

B1,B2, . . . ,Bn ∼ Beta

(
1,

2− α
α− 1

)
.



Open problem

Does there exist a discrete version of our line-breaking construction
(à la Aldous’ construction of the uniform random tree)?



A line-breaking construction of the stable trees, joint with
Bénédicte Haas,
Electronic Journal of Probability 20 (2015), paper no. 16, pp.1-24.



Beta-Gamma algebra
The proof relies heavily on the following distributional facts.

I If B ∼ Beta(a, b) and G ∼ Gamma(a + b, 1) are independent
then

G × (B, 1− B)
d
= (G1,G2),

where G1 ∼ Gamma(a, 1) and G2 ∼ Gamma(b, 1) are
independent.

Looked at the other way around,(
G1

G1 + G2
,

G2

G1 + G2

)
d
= (B, 1− B)

and is independent of G1 + G2 ∼ Gamma(a + b, 1).

I Let D = (D1,D2, . . . ,Dn) ∼ Dir(a1, a2, . . . , an) and
P (I = i |D) = Di . Then, conditionally on the event {I = i},
we have

(D1, . . . ,Di , . . . ,Dn) ∼ Dir(a1, . . . , ai + 1, . . . , an).
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An idea of the proof (of version (II))

The key point is that, conditionally on the shapes T̃1, T̃2, . . . , T̃n

(with T̃n having k edges and ` internal vertices), the edge-lengths
and vertex weights are such that

(L
(n)
1 , . . . , L

(n)
k ,W

(n)
1 , . . . ,W

(n)
` )

d
= ML(1− 1/α, n − 1/α)× Dir

(
1, . . . , 1,

d1 − 1− α
α− 1

, . . . ,
d` − 1− α
α− 1

)
where the two terms on the RHS are independent.

This can be proved inductively.
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= ML(1− 1/α, n − 1/α)× Dir
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, . . . ,
d` − 1− α
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)

Recall that we add our new branch either at a node or somewhere
uniformly chosen along the edges. So we pick an edge or a vertex
with probability proportional to its weight.

This amounts to taking a size-biased pick from amongst the
co-ordinates of the Dirichlet vector, and has the effect of adding 1
to the corresponding parameter.

If we pick a co-ordinate which corresponded to an edge, it now has
parameter 2. Splitting that co-ordinate with an independent
uniform gives back 2 co-ordinates with parameter 1.
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Whether we picked an edge or a vertex, we now want to add one
co-ordinate equal to 1 (representing the new edge) and either a
co-ordinate equal to 2−α

α−1 (for a new vertex) or an additional weight
to the existing vertex whose weight we already biased:
d−1−α
α−1 + 1 + 2−α

α−1 = (d+1)−1−α
α−1 .

This is the role of (Bn, 1− Bn) ∼ Beta(1, 2−α
α−1 ).
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Recall that
Mn = Mn+1 βn.

The βn factor is precisely what is needed to rescale the Dirichlet
vector in order to accommodate the extra co-ordinates we added.
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