A line-breaking construction of the stable trees

Christina Goldschmidt (Oxford) Joint work with Bénédicte Haas (Paris-Dauphine)

Uniform random trees

Let \mathbb{T}_{n} be the set of unordered trees on n vertices labelled by $[n]:=\{1,2, \ldots, n\}$.

Write T_{n} for a tree chosen uniformly from \mathbb{T}_{n}.

Uniform random trees

Let \mathbb{T}_{n} be the set of unordered trees on n vertices labelled by $[n]:=\{1,2, \ldots, n\}$.

Write T_{n} for a tree chosen uniformly from \mathbb{T}_{n}.

What happens as n grows?

An algorithm due to Aldous

In order to study T_{n}, it's useful to have a way of building it.

1. Start from the vertex labelled 1.
2. For $2 \leq i \leq n$, connect vertex i to vertex V_{i} such that

$$
V_{i}=\left\{\begin{array}{l}
i-1 \text { with probability } 1-(i-2) /(n-1) \\
\text { uniform on }\{1,2, \ldots, i-2\} \text { otherwise }
\end{array}\right.
$$

3. Take a uniform random permutation of the labels.

Aldous' algorithm

Consider $n=10$.
(1)

Aldous' algorithm

$V_{2}=1$ with probability 1
(1) (2)

Aldous' algorithm

$V_{3}= \begin{cases}1 & \text { with probability } 1 / 9 \\ 2 & \text { with probability } 8 / 9\end{cases}$
(1) (2) (3)

Aldous' algorithm

$V_{4}= \begin{cases}j & \text { with probability } 1 / 9,1 \leq j \leq 2 \\ 3 & \text { with probability } 7 / 9\end{cases}$

Aldous' algorithm

$V_{5}= \begin{cases}j & \text { with probability } 1 / 9,1 \leq j \leq 3 \\ 4 & \text { with probability } 6 / 9\end{cases}$

Aldous' algorithm

$V_{6}= \begin{cases}j & \text { with probability } 1 / 9,1 \leq j \leq 4 \\ 5 & \text { with probability } 5 / 9\end{cases}$

Aldous' algorithm

$V_{7}= \begin{cases}j & \text { with probability } 1 / 9,1 \leq j \leq 5 \\ 6 & \text { with probability } 4 / 9\end{cases}$

Aldous' algorithm

$V_{8}= \begin{cases}j & \text { with probability } 1 / 9,1 \leq j \leq 6 \\ 7 & \text { with probability } 3 / 9\end{cases}$

Aldous' algorithm

$V_{9}= \begin{cases}j & \text { with probability } 1 / 9,1 \leq j \leq 7 \\ 8 & \text { with probability } 2 / 9\end{cases}$

Aldous' algorithm

$V_{10}= \begin{cases}j & \text { with probability } 1 / 9,1 \leq j \leq 8 \\ 9 & \text { with probability } 1 / 9\end{cases}$

Aldous' algorithm

Permute.

Typical distances

Consider the tree before we permute. Let

$$
L_{n}=\inf \left\{i \geq 2: V_{i+1} \neq i\right\}
$$

We can use L_{n} to give us an idea of typical distances in the tree.

In our example, $L_{10}=4$:

Typical distances

For $2 \leq i \leq n$, connect vertex i to vertex V_{i} such that

$$
V_{i}=\left\{\begin{array}{l}
i-1 \text { with probability } 1-(i-2) /(n-1) \\
\text { uniform on }\{1,2, \ldots, i-2\} \text { otherwise }
\end{array}\right.
$$

$L_{n}=\inf \left\{i \geq 2: V_{i+1} \neq i\right\}$

Proposition
As $n \rightarrow \infty$,

$$
\mathbb{P}\left(n^{-1 / 2} L_{n}>x\right) \rightarrow \exp \left(-x^{2} / 2\right)
$$

Proof

$$
\begin{aligned}
& \mathbb{P}\left(n^{-1 / 2} L_{n}>x\right)=\mathbb{P}\left(L_{n} \geq\left\lfloor x n^{1 / 2}\right\rfloor+1\right) \\
& =\mathbb{P}\left(2 \rightarrow 1,3 \rightarrow 2, \ldots,\left\lfloor x n^{1 / 2}\right\rfloor+1 \rightarrow\left\lfloor x n^{1 / 2}\right\rfloor\right) \\
& =1 \cdot\left(1-\frac{1}{n-1}\right)\left(1-\frac{2}{n-1}\right) \cdots\left(1-\frac{\left\lfloor x n^{1 / 2}\right\rfloor-1}{n-1}\right) .
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \mathbb{P}\left(n^{-1 / 2} L_{n}>x\right)=\mathbb{P}\left(L_{n} \geq\left\lfloor x n^{1 / 2}\right\rfloor+1\right) \\
& =\mathbb{P}\left(2 \rightarrow 1,3 \rightarrow 2, \ldots,\left\lfloor x n^{1 / 2}\right\rfloor+1 \rightarrow\left\lfloor x n^{1 / 2}\right\rfloor\right) \\
& =1 \cdot\left(1-\frac{1}{n-1}\right)\left(1-\frac{2}{n-1}\right) \cdots\left(1-\frac{\left\lfloor x n^{1 / 2}\right\rfloor-1}{n-1}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
-\log \mathbb{P}\left(n^{-1 / 2} L_{n}>x\right) & =-\sum_{i=1}^{\left\lfloor x n^{1 / 2}\right\rfloor-1} \log \left(1-\frac{i}{n-1}\right) \\
& \sim \sum_{i=1}^{\left\lfloor x n^{1 / 2}\right\rfloor-1} \frac{i}{n}=\frac{\left\lfloor x n^{1 / 2}\right\rfloor\left(\left\lfloor x n^{1 / 2}\right\rfloor-1\right)}{2 n} \sim \frac{x^{2}}{2} .
\end{aligned}
$$

Typical distances

Once we have built this first stick of consecutive labels, we pick a uniform starting point along that stick and attach a new stick with a random length, and so on.

Typical distances

Once we have built this first stick of consecutive labels, we pick a uniform starting point along that stick and attach a new stick with a random length, and so on.

Imagine now that edges in the tree have length 1. The proposition suggests that rescaling edge-lengths by $n^{-1 / 2}$ will give some sort of limit for the whole tree. The limiting version of the algorithm is as follows.

Line-breaking construction

Let E_{1}, E_{2}, \ldots be independent Exponential(1/2) r.v.'s and set $C_{k}=\sqrt{\sum_{i=1}^{k} E_{i}}$. (Equivalently, let C_{1}, C_{2}, \ldots be the points of an inhomogeneous Poisson process on \mathbb{R}_{+}of intensity $t d t$.)

Line-breaking construction

Let E_{1}, E_{2}, \ldots be independent Exponential(1/2) r.v.'s and set $C_{k}=\sqrt{\sum_{i=1}^{k} E_{i}}$. (Equivalently, let C_{1}, C_{2}, \ldots be the points of an inhomogeneous Poisson process on \mathbb{R}_{+}of intensity $t d t$.)

(Note that $\left.\mathbb{P}\left(C_{1}>x\right)=\mathbb{P}\left(E_{1}>x^{2}\right)=\exp \left(-x^{2} / 2\right).\right)$

Line-breaking construction

Let E_{1}, E_{2}, \ldots be independent Exponential $(1 / 2)$ r.v.'s and set $C_{k}=\sqrt{\sum_{i=1}^{k} E_{i}}$. (Equivalently, let C_{1}, C_{2}, \ldots be the points of an inhomogeneous Poisson process on \mathbb{R}_{+}of intensity $t d t$.)

(Note that $\left.\mathbb{P}\left(C_{1}>x\right)=\mathbb{P}\left(E_{1}>x^{2}\right)=\exp \left(-x^{2} / 2\right).\right)$

- Consider the line-segments $\left[0, C_{1}\right),\left[C_{1}, C_{2}\right), \ldots$
- Start from $\left[0, C_{1}\right)$ and proceed inductively.
- For $i \geq 2$, attach $\left[C_{i-1}, C_{i}\right.$) at a random point chosen uniformly over the existing tree.

Line-breaking construction

Line-breaking construction

The Brownian continuum random tree

The scaling limit of the uniform random tree

Theorem (Aldous (1991); Le Gall (2005))
Then

$$
\frac{1}{\sqrt{n}} T_{n} \xrightarrow{d} c \mathcal{T}_{2} \quad \text { as } n \rightarrow \infty
$$

where \mathcal{T}_{2} is Aldous' Brownian continuum random tree and c is a non-negative constant. (The convergence is in the sense of the Gromov-Hausdorff distance.)

Trees as metric spaces

The vertices of T_{n} come equipped with a natural metric: the graph distance.

We write $\frac{1}{\sqrt{n}} T_{n}$ for the metric space given by the vertices of T_{n} with the graph distance divided by \sqrt{n}.

Measuring the distance between metric spaces
Suppose that (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ are compact metric spaces.

Measuring the distance between metric spaces

 Suppose that (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ are compact metric spaces.A correspondence R is a subset of $X \times X^{\prime}$ such that for every $x \in X$, there exists $x^{\prime} \in X^{\prime}$ with $\left(x, x^{\prime}\right) \in R$ and vice versa.

Measuring the distance between metric spaces Suppose that (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ are compact metric spaces.

A correspondence R is a subset of $X \times X^{\prime}$ such that for every $x \in X$, there exists $x^{\prime} \in X^{\prime}$ with $\left(x, x^{\prime}\right) \in R$ and vice versa.

Measuring the distance between metric spaces
The distortion of R is

$$
\operatorname{dis}(R)=\sup \left\{\left|d(x, y)-d^{\prime}\left(x^{\prime}, y^{\prime}\right)\right|:\left(x, x^{\prime}\right),\left(y, y^{\prime}\right) \in R\right\}
$$

Measuring the distance between metric spaces

(X, d) and $\left(X^{\prime}, d^{\prime}\right)$ are at Gromov-Hausdorff distance less than $\epsilon>0$ if there exists a correspondence R between X and X^{\prime} such that $\operatorname{dis}(R)<2 \epsilon$. Write

$$
\mathrm{d}_{\mathrm{GH}}\left((X, d),\left(X^{\prime}, d^{\prime}\right)\right)<\epsilon .
$$

The Brownian CRT

Why Brownian continuum random tree?
Because \mathcal{T}_{2} can be obtained by a glueing operation performed on the standard Brownian excursion, $(e(t), 0 \leq t \leq 1)$.

The Brownian CRT

The Brownian CRT

The Brownian CRT

The Brownian CRT

The Brownian CRT

The Brownian CRT

The Brownian CRT

The Brownian CRT

The Brownian CRT

[Pictures by Igor Kortchemski]

Critical Galton-Watson trees

Consider a Galton-Watson branching process with offspring distribution $\left(p_{k}\right)_{k \geq 0}$.

Suppose that the offspring distribution is critical i.e. $\sum_{k=0}^{\infty} k p_{k}=1$, and condition the tree to have total progeny n.

Let T_{n}^{GW} be the family tree associated with this process (thought of as a rooted plane tree with n vertices).

Combinatorial trees

By taking different offspring distributions, we can obtain various different natural combinatorial models:

- Poisson(1) corresponds to the uniform random tree (once we forget the planar order and give the tree a uniform labelling).
- Geometric($1 / 2$) gives a uniform plane tree.
- $p_{0}=1 / 2, p_{2}=1 / 2$ gives a uniform (complete) binary tree (as long as n is odd).

The finite-variance case

Theorem (Aldous (1993); Le Gall (2005))
Suppose $\sigma^{2}:=\sum_{k=2}^{\infty}(k-1)^{2} p_{k}<\infty$. Then

$$
\frac{1}{\sqrt{n}} T_{n}^{G W} \xrightarrow{d} c_{\sigma} \mathcal{T}_{2} \quad \text { as } n \rightarrow \infty
$$

where \mathcal{T}_{2} is Aldous' Brownian continuum random tree and c_{σ} is a non-negative constant. (The convergence is in the sense of the Gromov-Hausdorff distance.)

Infinite variance

What if the offspring distribution does not have finite variance? It is natural to consider offspring distributions such that $p_{k} \sim k^{-1-\alpha}$ for $\alpha \in(1,2)$ (or, more generally, distributions in the domain of attraction of a stable law of parameter α).

The infinite-variance case

Theorem (Duquesne \& Le Gall (2002); Duquesne (2003)) Suppose that $\left(p_{k}\right)_{k \geq 0}$ lies in the domain of attraction of a stable law of index $\alpha \in(1,2)$. Then as $n \rightarrow \infty$,

$$
\frac{1}{n^{1-1 / \alpha}} T_{n}^{G W} \xrightarrow{d} c_{\alpha} \mathcal{T}_{\alpha},
$$

where \mathcal{T}_{α} is the stable tree of parameter α and c_{α} is a non-negative constant. (The convergence is in the sense of the Gromov-Hausdorff distance.)

The stable trees

The stable trees

The stable trees also possess a functional encoding (although the excursions concerned are rather more involved to describe).

The stable trees

The stable trees also possess a functional encoding (although the excursions concerned are rather more involved to describe).

An important difference between the stable trees for $\alpha \in(1,2)$ and the Brownian CRT is that the Brownian CRT is binary. The stable trees, on the other hand, have only branch-points of infinite degree.

A uniform measure

The principal theme of the rest of this talk is how to give a (relatively) simple description of the stable trees (and how to use it to get at their distributional properties).

A uniform measure

The principal theme of the rest of this talk is how to give a (relatively) simple description of the stable trees (and how to use it to get at their distributional properties).

For $\alpha \in(1,2]$, the stable tree \mathcal{T}_{α} is naturally endowed with a "uniform" probability measure μ_{α}, which is the limit of the discrete uniform measure on T_{n}^{GW}. It turns out that μ_{α} is supported by the set of leaves of \mathcal{T}_{α}.

A uniform measure

The principal theme of the rest of this talk is how to give a (relatively) simple description of the stable trees (and how to use it to get at their distributional properties).

For $\alpha \in(1,2]$, the stable tree \mathcal{T}_{α} is naturally endowed with a "uniform" probability measure μ_{α}, which is the limit of the discrete uniform measure on T_{n}^{GW}. It turns out that μ_{α} is supported by the set of leaves of \mathcal{T}_{α}.

Aldous' theory of continuum random trees tells us that we can characterize the laws of such trees via sampling.

Reduced trees

Let X_{1}, X_{2}, \ldots be leaves sampled independently from \mathcal{T}_{α} according to μ_{α}, and let $\mathcal{T}_{\alpha, n}$ be the subtree spanned by the root ρ and X_{1}, \ldots, X_{n} :

Reduced trees

Let X_{1}, X_{2}, \ldots be leaves sampled independently from \mathcal{T}_{α} according to μ_{α}, and let $\mathcal{T}_{\alpha, n}$ be the subtree spanned by the root ρ and X_{1}, \ldots, X_{n} :

Characterising the law of a stable tree

$\mathcal{T}_{\alpha, n}$ can be thought of in two parts: its tree-shape $T_{\alpha, n}$ (a rooted unordered tree with n labelled leaves) and its edge-lengths.

Characterising the law of a stable tree

$\mathcal{T}_{\alpha, n}$ can be thought of in two parts: its tree-shape $T_{\alpha, n}$ (a rooted unordered tree with n labelled leaves) and its edge-lengths.

The laws of ($\mathcal{T}_{\alpha, n}, n \geq 1$) (the random finite-dimensional distributions) are sufficient to fully specify the law of \mathcal{T}_{α}.

Characterising the law of a stable tree

$\mathcal{T}_{\alpha, n}$ can be thought of in two parts: its tree-shape $T_{\alpha, n}$ (a rooted unordered tree with n labelled leaves) and its edge-lengths.

The laws of ($\mathcal{T}_{\alpha, n}, n \geq 1$) (the random finite-dimensional distributions) are sufficient to fully specify the law of \mathcal{T}_{α}.

Moreover,

$$
\mathcal{T}_{\alpha}=\overline{\bigcup_{n \geq 1} \mathcal{T}_{\alpha, n}}
$$

Reminder: Aldous' line-breaking construction of the Brownian CRT

Let C_{1}, C_{2}, \ldots be the points of an inhomogeneous Poisson process on \mathbb{R}_{+}of intensity $t d t$.

Line-breaking construction

$\tilde{\mathcal{T}}_{1}$

Line-breaking construction

$\tilde{\mathcal{T}}_{2}$

Line-breaking construction

$\tilde{\mathcal{T}}_{3}$

Line-breaking construction

$\tilde{\mathcal{T}}_{4}$

Line-breaking construction

$\tilde{\mathcal{T}}_{5}$

Line-breaking construction

$\tilde{\mathcal{T}}_{6}$

Line-breaking construction

It turns out that the line-breaking construction precisely gives the random finite-dimensional distributions for the Brownian CRT, i.e.

$$
\left(\tilde{\mathcal{T}}_{n}, n \geq 1\right) \stackrel{d}{=}\left(\frac{1}{\sqrt{2}} \mathcal{T}_{2, n}, n \geq 1\right) .
$$

Line-breaking construction

It turns out that the line-breaking construction precisely gives the random finite-dimensional distributions for the Brownian CRT, i.e.

$$
\left(\tilde{\mathcal{T}}_{n}, n \geq 1\right) \stackrel{d}{=}\left(\frac{1}{\sqrt{2}} \mathcal{T}_{2, n}, n \geq 1\right)
$$

Question: does there exist a similar line-breaking construction for the stable trees with $\alpha \in(1,2)$?

Marchal's algorithm

Marchal (2008) discovered a recursive construction of the tree-shapes. Build ($\tilde{T}_{n}, n \geq 1$) as follows:

Marchal's algorithm

Marchal (2008) discovered a recursive construction of the tree-shapes. Build ($\tilde{T}_{n}, n \geq 1$) as follows:

- Start from a single edge, rooted at one end-point and with the other other end-point labelled 1.

Marchal's algorithm

Marchal (2008) discovered a recursive construction of the tree-shapes. Build ($\tilde{T}_{n}, n \geq 1$) as follows:

- Start from a single edge, rooted at one end-point and with the other other end-point labelled 1.
- At all subsequent steps, assign edges weight $\alpha-1$ and vertices of degree $d \geq 3$ weight $d-1-\alpha$.

Marchal's algorithm

Marchal (2008) discovered a recursive construction of the tree-shapes. Build ($\tilde{T}_{n}, n \geq 1$) as follows:

- Start from a single edge, rooted at one end-point and with the other other end-point labelled 1.
- At all subsequent steps, assign edges weight $\alpha-1$ and vertices of degree $d \geq 3$ weight $d-1-\alpha$.
- At step n, pick an edge or a vertex with probability proportional to their weights.

Marchal's algorithm

Marchal (2008) discovered a recursive construction of the tree-shapes. Build ($\tilde{T}_{n}, n \geq 1$) as follows:

- Start from a single edge, rooted at one end-point and with the other other end-point labelled 1.
- At all subsequent steps, assign edges weight $\alpha-1$ and vertices of degree $d \geq 3$ weight $d-1-\alpha$.
- At step n, pick an edge or a vertex with probability proportional to their weights.
- If we pick an edge, subdivide it into two edges and attach the leaf labelled n to the middle vertex we just created.

Marchal's algorithm

Marchal (2008) discovered a recursive construction of the tree-shapes. Build ($\tilde{T}_{n}, n \geq 1$) as follows:

- Start from a single edge, rooted at one end-point and with the other other end-point labelled 1.
- At all subsequent steps, assign edges weight $\alpha-1$ and vertices of degree $d \geq 3$ weight $d-1-\alpha$.
- At step n, pick an edge or a vertex with probability proportional to their weights.
- If we pick an edge, subdivide it into two edges and attach the leaf labelled n to the middle vertex we just created.
- If we pick a vertex, attach the leaf labelled n to it.

Marchal's algorithm

Marchal's algorithm

Then

$$
\left(\tilde{T}_{n}, n \geq 1\right) \stackrel{d}{=}\left(T_{\alpha, n}, n \geq 1\right)
$$

(The $\alpha=2$ case is Rémy's algorithm (1985) for building a uniform binary rooted tree with n labelled leaves.)

Marchal's algorithm

Then

$$
\left(\tilde{T}_{n}, n \geq 1\right) \stackrel{d}{=}\left(T_{\alpha, n}, n \geq 1\right)
$$

(The $\alpha=2$ case is Rémy's algorithm (1985) for building a uniform binary rooted tree with n labelled leaves.)

Moreover,

$$
\frac{1}{n^{1-1 / \alpha}} \tilde{T}_{n} \xrightarrow{\text { a.s. }} c_{\alpha}^{\prime} \mathcal{T}_{\alpha}
$$

as $n \rightarrow \infty$ [Curien-Haas (2013)].

Marchal's algorithm

Then

$$
\left(\tilde{T}_{n}, n \geq 1\right) \stackrel{d}{=}\left(T_{\alpha, n}, n \geq 1\right)
$$

(The $\alpha=2$ case is Rémy's algorithm (1985) for building a uniform binary rooted tree with n labelled leaves.)

Moreover,

$$
\frac{1}{n^{1-1 / \alpha}} \tilde{T}_{n} \xrightarrow{\text { a.s. }} c_{\alpha}^{\prime} \mathcal{T}_{\alpha}
$$

as $n \rightarrow \infty$ [Curien-Haas (2013)].
Our new line-breaking construction gives a nested sequence of continuous trees which converge a.s. to \mathcal{T}_{α} without any need for rescaling.

The generalized Mittag-Leffler distribution

For $\beta \in(0,1)$, let σ_{β} be a stable random variable with Laplace transform

$$
\mathbb{E}\left[\exp \left(-\lambda \sigma_{\beta}\right)\right]=\exp \left(-\lambda^{\beta}\right), \quad \lambda \geq 0
$$

The generalized Mittag-Leffler distribution

For $\beta \in(0,1)$, let σ_{β} be a stable random variable with Laplace transform

$$
\mathbb{E}\left[\exp \left(-\lambda \sigma_{\beta}\right)\right]=\exp \left(-\lambda^{\beta}\right), \quad \lambda \geq 0
$$

Say that a non-negative random variable M has the generalized Mittag-Leffler distribution with parameters $\beta \in(0,1)$ and $\theta>-\beta$, and write $M \sim \operatorname{ML}(\beta, \theta)$, if

$$
\mathbb{E}[f(M)]=C_{\beta, \theta} \mathbb{E}\left[\sigma_{\beta}^{-\theta} f\left(\sigma_{\beta}^{-\beta}\right)\right]
$$

for all suitable test-functions f.

The generalized Mittag-Leffler distribution

For $\beta \in(0,1)$, let σ_{β} be a stable random variable with Laplace transform

$$
\mathbb{E}\left[\exp \left(-\lambda \sigma_{\beta}\right)\right]=\exp \left(-\lambda^{\beta}\right), \quad \lambda \geq 0
$$

Say that a non-negative random variable M has the generalized Mittag-Leffler distribution with parameters $\beta \in(0,1)$ and $\theta>-\beta$, and write $M \sim \operatorname{ML}(\beta, \theta)$, if

$$
\mathbb{E}[f(M)]=C_{\beta, \theta} \mathbb{E}\left[\sigma_{\beta}^{-\theta} f\left(\sigma_{\beta}^{-\beta}\right)\right]
$$

for all suitable test-functions f. The law of M is characterized by its moments:

$$
\mathbb{E}\left[M^{k}\right]=\frac{\Gamma(\theta) \Gamma(\theta / \beta+k)}{\Gamma(\theta / \beta) \Gamma(\theta+k \beta)}
$$

for any $k \geq 1$.

The generalized Mittag-Leffler distribution

For $\beta \in(0,1)$, let σ_{β} be a stable random variable with Laplace transform

$$
\mathbb{E}\left[\exp \left(-\lambda \sigma_{\beta}\right)\right]=\exp \left(-\lambda^{\beta}\right), \quad \lambda \geq 0
$$

Say that a non-negative random variable M has the generalized Mittag-Leffler distribution with parameters $\beta \in(0,1)$ and $\theta>-\beta$, and write $M \sim \operatorname{ML}(\beta, \theta)$, if

$$
\mathbb{E}[f(M)]=C_{\beta, \theta} \mathbb{E}\left[\sigma_{\beta}^{-\theta} f\left(\sigma_{\beta}^{-\beta}\right)\right]
$$

for all suitable test-functions f. The law of M is characterized by its moments:

$$
\mathbb{E}\left[M^{k}\right]=\frac{\Gamma(\theta) \Gamma(\theta / \beta+k)}{\Gamma(\theta / \beta) \Gamma(\theta+k \beta)}
$$

for any $k \geq 1$.
If $\beta=1 / 2$ and $n \geq 1, \operatorname{ML}(1 / 2, n-1 / 2)=2 \sqrt{\operatorname{Gamma}(n, 1)}$.

A generalized Pólya urn scheme

$\mathrm{ML}(\beta, \theta)$ arises as an almost sure limit in the context of a generalized Pólya urn scheme.

A generalized Pólya urn scheme

$\mathrm{ML}(\beta, \theta)$ arises as an almost sure limit in the context of a generalized Pólya urn scheme.

Start with weight 0 on black and weight θ / β on red.

A generalized Pólya urn scheme

$\mathrm{ML}(\beta, \theta)$ arises as an almost sure limit in the context of a generalized Pólya urn scheme.

Start with weight 0 on black and weight θ / β on red.
Pick a colour with probability proportional to its weight in the urn.

A generalized Pólya urn scheme

$\mathrm{ML}(\beta, \theta)$ arises as an almost sure limit in the context of a generalized Pólya urn scheme.

Start with weight 0 on black and weight θ / β on red.
Pick a colour with probability proportional to its weight in the urn.

- If black is picked, add $1 / \beta$ to the black weight.
- If red is picked, add $1-1 / \beta$ to the black weight and 1 to the red weight.

Let R_{n} be the weight of red at step n. Then [Janson (2006)],

$$
n^{-\beta} R_{n} \xrightarrow{\text { a.s. }} W \sim \operatorname{ML}(\beta, \theta) .
$$

Urns in Marchal's algorithm

Idea: there are many such urns embedded in Marchal's algorithm!

Urns in Marchal's algorithm

Idea: there are many such urns embedded in Marchal's algorithm!

Consider the distance D_{n} between the root and the leaf labelled 1 . The associated weight is $(\alpha-1) D_{n}$. Let W_{n} be the remaining weight in the rest of the tree.
$D_{1}=1$ and $W_{1}=0$.

Urns in Marchal's algorithm

Idea: there are many such urns embedded in Marchal's algorithm!

Consider the distance D_{n} between the root and the leaf labelled 1 . The associated weight is $(\alpha-1) D_{n}$. Let W_{n} be the remaining weight in the rest of the tree.
$D_{1}=1$ and $W_{1}=0$.
At each subsequent step,
(We always add weight α to the whole tree.)

Urns in Marchal's algorithm

Idea: there are many such urns embedded in Marchal's algorithm!

Consider the distance D_{n} between the root and the leaf labelled 1 . The associated weight is $(\alpha-1) D_{n}$. Let W_{n} be the remaining weight in the rest of the tree.
$D_{1}=1$ and $W_{1}=0$.
At each subsequent step,

- with probability proportional to $(\alpha-1) D_{n}$, we pick one of the D_{n} edges between the root and 1 to split. Then, $D_{n+1}=D_{n}+1$, the associated weight increases by $\alpha-1$, and $W_{n+1}=W_{n}+(2-\alpha)+(\alpha-1)=W_{n}+1$;
(We always add weight α to the whole tree.)

Urns in Marchal's algorithm

Idea: there are many such urns embedded in Marchal's algorithm!

Consider the distance D_{n} between the root and the leaf labelled 1 . The associated weight is $(\alpha-1) D_{n}$. Let W_{n} be the remaining weight in the rest of the tree.
$D_{1}=1$ and $W_{1}=0$.
At each subsequent step,

- with probability proportional to $(\alpha-1) D_{n}$, we pick one of the D_{n} edges between the root and 1 to split. Then, $D_{n+1}=D_{n}+1$, the associated weight increases by $\alpha-1$, and $W_{n+1}=W_{n}+(2-\alpha)+(\alpha-1)=W_{n}+1$;
- with probability proportional to W_{n} add the new edge elsewhere; this yields $W_{n+1}=W_{n}+\alpha$.
(We always add weight α to the whole tree.)

Urns in Marchal's algorithm

Then $\left(D_{n}, n \geq 1\right)$ behaves exactly as the red weight in the generalized Pólya urn with $\beta=\theta=1-1 / \alpha$. It follows that

$$
\frac{1}{n^{1-1 / \alpha}} D_{n} \xrightarrow{d} \mathrm{ML}(1-1 / \alpha, 1-1 / \alpha)
$$

as $n \rightarrow \infty$.

Urns in Marchal's algorithm

Then ($D_{n}, n \geq 1$) behaves exactly as the red weight in the generalized Pólya urn with $\beta=\theta=1-1 / \alpha$. It follows that

$$
\frac{1}{n^{1-1 / \alpha}} D_{n} \xrightarrow{d} \mathrm{ML}(1-1 / \alpha, 1-1 / \alpha)
$$

as $n \rightarrow \infty$.

This suggests that the first stick in any line-breaking construction should have length distributed as $\operatorname{ML}(1-1 / \alpha, 1-1 / \alpha)$.

A Markov chain

We define an increasing \mathbb{R}_{+}-valued process which will play a role similar to that of the inhomogeneous Poisson process in the Brownian case.

A Markov chain

We define an increasing \mathbb{R}_{+}-valued process which will play a role similar to that of the inhomogeneous Poisson process in the Brownian case.

Let $\left(M_{n}, n \geq 1\right)$ be a Markov chain such that

- $M_{n} \sim \operatorname{ML}(1-1 / \alpha, n-1 / \alpha)$ for $n \geq 1$.
- The backward transition fron M_{n+1} to M_{n} is given by

$$
M_{n}=M_{n+1} \beta_{n},
$$

where β_{n} is independent of M_{n+1} and

$$
\beta_{n} \sim \operatorname{Beta}\left(\frac{(n+1) \alpha-2}{\alpha-1}, \frac{1}{\alpha-1}\right) .
$$

A Markov chain

Lemma
If $\alpha=2$, $\left(M_{n}, n \geq 1\right)$ are the ordered points of an inhomogeneous Poisson process on \mathbb{R}_{+}with intensity $\frac{t}{2} d t$.

A Markov chain

Lemma
If $\alpha=2,\left(M_{n}, n \geq 1\right)$ are the ordered points of an inhomogeneous Poisson process on \mathbb{R}_{+}with intensity $\frac{t}{2} d t$.

Sketch proof.
It suffices to show that $\left(M_{n}^{2} / 4, n \geq 1\right)$ are the ordered points of a Poisson process of rate 1. But $M_{n} \sim \operatorname{ML}(1 / 2, n-1 / 2)=2 \sqrt{\operatorname{Gamma}(n, 1)}$ and so $M_{n}^{2} / 4 \sim \operatorname{Gamma}(n, 1)$.

A Markov chain

Lemma
If $\alpha=2,\left(M_{n}, n \geq 1\right)$ are the ordered points of an inhomogeneous Poisson process on \mathbb{R}_{+}with intensity $\frac{t}{2} d t$.

Sketch proof.
It suffices to show that $\left(M_{n}^{2} / 4, n \geq 1\right)$ are the ordered points of a Poisson process of rate 1. But $M_{n} \sim \operatorname{ML}(1 / 2, n-1 / 2)=2 \sqrt{\operatorname{Gamma}(n, 1)}$ and so $M_{n}^{2} / 4 \sim \operatorname{Gamma}(n, 1)$.

The relationship between successive points encoded in $M_{n}=\beta_{n} M_{n+1}$ where $\beta_{n} \sim \operatorname{Beta}(2 n, 1)$ gives exactly the right dependence structure.

Line-breaking construction of the stable tree (I)

Line-breaking construction of the stable tree (I)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.

Line-breaking construction of the stable tree (I)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.
- For $n \geq 1$, given $\tilde{\mathcal{T}}_{n}$ (which has total length L_{n}):

Line-breaking construction of the stable tree (I)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.
- For $n \geq 1$, given $\tilde{\mathcal{T}}_{n}$ (which has total length L_{n}):

1. Let $B_{n+1} \sim \operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)$ be independent of everything we have already constructed. We will glue a new branch of length $\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ onto $\tilde{\mathcal{T}}_{n}$, at a point to be specified; let $L_{n+1}=L_{n}+\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ be the new total length.

Line-breaking construction of the stable tree (I)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.
- For $n \geq 1$, given $\tilde{\mathcal{T}}_{n}$ (which has total length L_{n}):

1. Let $B_{n+1} \sim \operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)$ be independent of everything we have already constructed. We will glue a new branch of length $\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ onto $\tilde{\mathcal{T}}_{n}$, at a point to be specified; let $L_{n+1}=L_{n}+\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ be the new total length.
2. In order to find where to glue the new branch, we first select either the set of edges of $\tilde{\mathcal{T}}_{n}$, with probability L_{n} / M_{n}, or the set of branchpoints of $\tilde{\mathcal{T}}_{n}$, with probability $1-L_{n} / M_{n}$.

Line-breaking construction of the stable tree (I)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.
- For $n \geq 1$, given $\tilde{\mathcal{T}}_{n}$ (which has total length L_{n}):

1. Let $B_{n+1} \sim \operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)$ be independent of everything we have already constructed. We will glue a new branch of length $\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ onto $\tilde{\mathcal{T}}_{n}$, at a point to be specified; let $L_{n+1}=L_{n}+\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ be the new total length.
2. In order to find where to glue the new branch, we first select either the set of edges of $\tilde{\mathcal{T}}_{n}$, with probability L_{n} / M_{n}, or the set of branchpoints of $\tilde{\mathcal{T}}_{n}$, with probability $1-L_{n} / M_{n}$.
3. If we select the edges in 2 , glue the new branch at a uniform point along $\tilde{\mathcal{T}}_{n}$.

Line-breaking construction of the stable tree (I)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.
- For $n \geq 1$, given $\tilde{\mathcal{T}}_{n}$ (which has total length L_{n}):

1. Let $B_{n+1} \sim \operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)$ be independent of everything we have already constructed. We will glue a new branch of length $\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ onto $\tilde{\mathcal{T}}_{n}$, at a point to be specified; let $L_{n+1}=L_{n}+\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ be the new total length.
2. In order to find where to glue the new branch, we first select either the set of edges of $\tilde{\mathcal{T}}_{n}$, with probability L_{n} / M_{n}, or the set of branchpoints of $\tilde{\mathcal{T}}_{n}$, with probability $1-L_{n} / M_{n}$.
3. If we select the edges in 2 , glue the new branch at a uniform point along $\tilde{\mathcal{T}}_{n}$.
4. If we select the branchpoints in 2, pick a branchpoint at random in such a way that a branchpoint of degree $d \geq 3$ is chosen with probability proportional to $d-1-\alpha$. Then glue the new branch to the selected branchpoint.

Line-breaking construction of the stable tree (II)

Line-breaking construction of the stable tree (II)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.

Line-breaking construction of the stable tree (II)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.
- For $n \geq 1$, given $\tilde{\mathcal{T}}_{n}$ (which has total length L_{n}):

Line-breaking construction of the stable tree (II)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.
- For $n \geq 1$, given $\tilde{\mathcal{T}}_{n}$ (which has total length L_{n}):

1. Let $B_{n+1} \sim \operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)$ be independent of everything we have already constructed. We will glue a new branch of length $\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ onto $\tilde{\mathcal{T}}_{n}$, at a point to be specified; let $L_{n+1}=L_{n}+\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ be the new total length.

Line-breaking construction of the stable tree (II)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.
- For $n \geq 1$, given $\tilde{\mathcal{T}}_{n}$ (which has total length L_{n}):

1. Let $B_{n+1} \sim \operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)$ be independent of everything we have already constructed. We will glue a new branch of length $\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ onto $\tilde{\mathcal{T}}_{n}$, at a point to be specified; let $L_{n+1}=L_{n}+\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ be the new total length.
2. In order to find where to glue the new branch, we first select either the set of edges of $\tilde{\mathcal{T}}_{n}$, with probability L_{n} / M_{n}, or the internal vertex v with probability $W_{v}^{(n)} / M_{n}$.

Line-breaking construction of the stable tree (II)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.
- For $n \geq 1$, given $\tilde{\mathcal{T}}_{n}$ (which has total length L_{n}):

1. Let $B_{n+1} \sim \operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)$ be independent of everything we have already constructed. We will glue a new branch of length $\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ onto $\tilde{\mathcal{T}}_{n}$, at a point to be specified; let $L_{n+1}=L_{n}+\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ be the new total length.
2. In order to find where to glue the new branch, we first select either the set of edges of $\tilde{\mathcal{T}}_{n}$, with probability L_{n} / M_{n}, or the internal vertex v with probability $W_{v}^{(n)} / M_{n}$.
3. If we select the edges in 2 , glue the new branch at a uniform point along $\tilde{\mathcal{T}}_{n}$ and assign the new internal vertex weight $W_{v}^{(n+1)}=\left(M_{n+1}-M_{n}\right) \cdot\left(1-B_{n+1}\right)$.

Line-breaking construction of the stable tree (II)

- Start with M_{1} and set $L_{1}=M_{1}$. Let $\tilde{\mathcal{T}}_{1}$ be the tree consisting of a line-segment of length L_{1}.
- For $n \geq 1$, given $\tilde{\mathcal{T}}_{n}$ (which has total length L_{n}):

1. Let $B_{n+1} \sim \operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)$ be independent of everything we have already constructed. We will glue a new branch of length $\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ onto $\tilde{\mathcal{T}}_{n}$, at a point to be specified; let $L_{n+1}=L_{n}+\left(M_{n+1}-M_{n}\right) \cdot B_{n+1}$ be the new total length.
2. In order to find where to glue the new branch, we first select either the set of edges of $\tilde{\mathcal{T}}_{n}$, with probability L_{n} / M_{n}, or the internal vertex v with probability $W_{v}^{(n)} / M_{n}$.
3. If we select the edges in 2 , glue the new branch at a uniform point along $\tilde{\mathcal{T}}_{n}$ and assign the new internal vertex weight $W_{v}^{(n+1)}=\left(M_{n+1}-M_{n}\right) \cdot\left(1-B_{n+1}\right)$.
4. If we select the internal vertex v in 2 , glue the new branch to it and let $W_{v}^{(n+1)}=W_{v}^{(n)}+\left(M_{n+1}-M_{n}\right) \cdot\left(1-B_{n+1}\right)$.

Line-breaking constructions

Theorem (Haas \& G.)
Let $\left(\tilde{\mathcal{T}}_{n}, n \geq 1\right)$ be the sequence of trees produced by either version of the construction. Then

$$
\left(\tilde{\mathcal{T}}_{n}, n \geq 1\right) \stackrel{d}{=}\left(\mathcal{T}_{\alpha, n}, n \geq 1\right)
$$

and, therefore,

$$
\mathcal{T}_{\alpha} \stackrel{d}{=} \bigcup_{n \geq 1} \tilde{\mathcal{T}}_{n} .
$$

Remarks

In the case $\alpha=2$, we have $\operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)=\operatorname{Beta}(1,0)$. We interpret this as $B_{n}=1$ almost surely for all $n \geq 1$. Then we recover (a scaled version of) Aldous' Poisson line-breaking construction of the Brownian CRT.

Remarks

In the case $\alpha=2$, we have $\operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)=\operatorname{Beta}(1,0)$. We interpret this as $B_{n}=1$ almost surely for all $n \geq 1$. Then we recover (a scaled version of) Aldous' Poisson line-breaking construction of the Brownian CRT.

The tree-shapes ($\tilde{T}_{n}, n \geq 1$) of ($\tilde{\mathcal{T}}_{n}, n \geq 1$) perform Marchal's algorithm.

Consequences: distributional results for $\left(\mathcal{T}_{\alpha, n}, n \geq 1\right)$

Edge-lengths:
Let t be a discrete rooted tree with $n \geq 2$ leaves and k edges.
Then conditionally on $T_{\alpha, n}=\mathrm{t}$, the sequence of edge-lengths of $\mathcal{T}_{\alpha, n}$ has the same distribution as

$$
M_{n} \cdot \beta_{k} \cdot\left(D_{1}, D_{2}, \ldots, D_{k}\right)
$$

where these random variables are independent and

$$
\begin{aligned}
& M_{n} \sim \operatorname{ML}(1-1 / \alpha, n-1 / \alpha) \\
& \beta_{k} \sim \operatorname{Beta}\left(k, \frac{n \alpha-1}{\alpha-1}\right) \\
& \left(D_{1}, D_{2}, \ldots, D_{k}\right) \sim \operatorname{Dir}(1,1, \ldots, 1) . *
\end{aligned}
$$

Consequences: distributional results for $\left(\mathcal{T}_{\alpha, n}, n \geq 1\right)$

Edge-lengths:
Let t be a discrete rooted tree with $n \geq 2$ leaves and k edges.
Then conditionally on $T_{\alpha, n}=\mathrm{t}$, the sequence of edge-lengths of $\mathcal{T}_{\alpha, n}$ has the same distribution as

$$
M_{n} \cdot \beta_{k} \cdot\left(D_{1}, D_{2}, \ldots, D_{k}\right)
$$

where these random variables are independent and

$$
\begin{aligned}
& M_{n} \sim \operatorname{ML}(1-1 / \alpha, n-1 / \alpha) \\
& \beta_{k} \sim \operatorname{Beta}\left(k, \frac{n \alpha-1}{\alpha-1}\right) \\
& \left(D_{1}, D_{2}, \ldots, D_{k}\right) \sim \operatorname{Dir}(1,1, \ldots, 1) . *
\end{aligned}
$$

$*_{\text {Dirichlet distribution: }} \operatorname{Dir}\left(a_{1}, \ldots, a_{n}\right)$ has density

$$
\frac{\Gamma\left(a_{1}+\ldots+a_{n}\right)}{\prod_{i=1}^{n} \Gamma\left(a_{i}\right)} x_{1}^{a_{1}-1} \ldots x_{n}^{a_{n}-1}
$$

with respect to Lebesgue measure on

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}: \sum_{i=1}^{n} x_{i}=1\right\} .
$$

Consequences: distributional results for $\left(\mathcal{T}_{\alpha, n}, n \geq 1\right)$

Total length of the conditioned tree:
Conditionally on $T_{\alpha, n}$ having k edges, the total length of the tree $\mathcal{T}_{\alpha, n}$ has the same distribution as

$$
M_{n} \cdot \beta_{k},
$$

where these random variables are independent and $M_{n} \sim \operatorname{ML}(1-1 / \alpha, n-1 / \alpha)$ and $\beta_{k} \sim \operatorname{Beta}\left(k, \frac{n \alpha-1}{\alpha-1}\right)$.

Consequences: distributional results for $\left(\mathcal{T}_{\alpha, n}, n \geq 1\right)$

Total length of the unconditioned tree:
The total length of the tree $\mathcal{T}_{\alpha, n}$ has the same distribution as

$$
M_{n} \cdot\left(\prod_{j=1}^{n-1} \beta_{j}+\sum_{i=1}^{n-1} B_{i}\left(1-\beta_{i}\right) \prod_{j=i+1}^{n-1} \beta_{j}\right)
$$

where the random variables on the right-hand side are mutually independent and such that

$$
\begin{aligned}
& M_{n} \sim \operatorname{ML}(1-1 / \alpha, n-1 / \alpha) \\
& \beta_{i} \sim \operatorname{Beta}\left(\frac{(i+1) \alpha-2}{\alpha-1}, \frac{1}{\alpha-1}\right), \quad i \geq 1 \\
& B_{1}, B_{2}, \ldots, B_{n} \sim \operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right) .
\end{aligned}
$$

Open problem

Does there exist a discrete version of our line-breaking construction (à la Aldous' construction of the uniform random tree)?

A line-breaking construction of the stable trees, joint with Bénédicte Haas,
Electronic Journal of Probability 20 (2015), paper no. 16, pp.1-24.

Beta-Gamma algebra

The proof relies heavily on the following distributional facts.

- If $B \sim \operatorname{Beta}(a, b)$ and $G \sim \operatorname{Gamma}(a+b, 1)$ are independent then

$$
G \times(B, 1-B) \stackrel{d}{=}\left(G_{1}, G_{2}\right)
$$

where $G_{1} \sim \operatorname{Gamma}(a, 1)$ and $G_{2} \sim \operatorname{Gamma}(b, 1)$ are independent.

Beta-Gamma algebra

The proof relies heavily on the following distributional facts.

- If $B \sim \operatorname{Beta}(a, b)$ and $G \sim \operatorname{Gamma}(a+b, 1)$ are independent then

$$
G \times(B, 1-B) \stackrel{d}{=}\left(G_{1}, G_{2}\right)
$$

where $G_{1} \sim \operatorname{Gamma}(a, 1)$ and $G_{2} \sim \operatorname{Gamma}(b, 1)$ are independent. Looked at the other way around,

$$
\left(\frac{G_{1}}{G_{1}+G_{2}}, \frac{G_{2}}{G_{1}+G_{2}}\right) \stackrel{d}{=}(B, 1-B)
$$

and is independent of $G_{1}+G_{2} \sim \operatorname{Gamma}(a+b, 1)$.

Beta-Gamma algebra

The proof relies heavily on the following distributional facts.

- If $B \sim \operatorname{Beta}(a, b)$ and $G \sim \operatorname{Gamma}(a+b, 1)$ are independent then

$$
G \times(B, 1-B) \stackrel{d}{=}\left(G_{1}, G_{2}\right)
$$

where $G_{1} \sim \operatorname{Gamma}(a, 1)$ and $G_{2} \sim \operatorname{Gamma}(b, 1)$ are independent. Looked at the other way around,

$$
\left(\frac{G_{1}}{G_{1}+G_{2}}, \frac{G_{2}}{G_{1}+G_{2}}\right) \stackrel{d}{=}(B, 1-B)
$$

and is independent of $G_{1}+G_{2} \sim \operatorname{Gamma}(a+b, 1)$.

- Let $\mathbf{D}=\left(D_{1}, D_{2}, \ldots, D_{n}\right) \sim \operatorname{Dir}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbb{P}(I=i \mid \mathbf{D})=D_{i}$. Then, conditionally on the event $\{I=i\}$, we have

$$
\left(D_{1}, \ldots, D_{i}, \ldots, D_{n}\right) \sim \operatorname{Dir}\left(a_{1}, \ldots, a_{i}+1, \ldots, a_{n}\right)
$$

An idea of the proof (of version (II))

The key point is that, conditionally on the shapes $\tilde{T}_{1}, \tilde{T}_{2}, \ldots, \tilde{T}_{n}$ (with \tilde{T}_{n} having k edges and ℓ internal vertices), the edge-lengths and vertex weights are such that
$\left(L_{1}^{(n)}, \ldots, L_{k}^{(n)}, W_{1}^{(n)}, \ldots, W_{\ell}^{(n)}\right)$

$$
\stackrel{d}{=} \mathrm{ML}(1-1 / \alpha, n-1 / \alpha) \times \operatorname{Dir}\left(1, \ldots, 1, \frac{d_{1}-1-\alpha}{\alpha-1}, \ldots, \frac{d_{\ell}-1-\alpha}{\alpha-1}\right)
$$

where the two terms on the RHS are independent.

An idea of the proof (of version (II))

The key point is that, conditionally on the shapes $\tilde{T}_{1}, \tilde{T}_{2}, \ldots, \tilde{T}_{n}$ (with \tilde{T}_{n} having k edges and ℓ internal vertices), the edge-lengths and vertex weights are such that
$\left(L_{1}^{(n)}, \ldots, L_{k}^{(n)}, W_{1}^{(n)}, \ldots, W_{\ell}^{(n)}\right)$

$$
\stackrel{d}{=} \mathrm{ML}(1-1 / \alpha, n-1 / \alpha) \times \operatorname{Dir}\left(1, \ldots, 1, \frac{d_{1}-1-\alpha}{\alpha-1}, \ldots, \frac{d_{\ell}-1-\alpha}{\alpha-1}\right)
$$

where the two terms on the RHS are independent.
This can be proved inductively.

An idea of the proof (of version (II))

$$
\begin{aligned}
& \left(L_{1}^{(n)}, \ldots, L_{k}^{(n)}, W_{1}^{(n)}, \ldots, W_{\ell}^{(n)}\right) \\
& \stackrel{d}{=} \operatorname{ML}(1-1 / \alpha, n-1 / \alpha) \times \operatorname{Dir}\left(1, \ldots, 1, \frac{d_{1}-1-\alpha}{\alpha-1}, \ldots, \frac{d_{\ell}-1-\alpha}{\alpha-1}\right)
\end{aligned}
$$

Recall that we add our new branch either at a node or somewhere uniformly chosen along the edges. So we pick an edge or a vertex with probability proportional to its weight.

An idea of the proof (of version (II))

$$
\begin{aligned}
& \left(L_{1}^{(n)}, \ldots, L_{k}^{(n)}, W_{1}^{(n)}, \ldots, W_{\ell}^{(n)}\right) \\
& \stackrel{d}{=} \operatorname{ML}(1-1 / \alpha, n-1 / \alpha) \times \operatorname{Dir}\left(1, \ldots, 1, \frac{d_{1}-1-\alpha}{\alpha-1}, \ldots, \frac{d_{\ell}-1-\alpha}{\alpha-1}\right)
\end{aligned}
$$

Recall that we add our new branch either at a node or somewhere uniformly chosen along the edges. So we pick an edge or a vertex with probability proportional to its weight.

This amounts to taking a size-biased pick from amongst the co-ordinates of the Dirichlet vector, and has the effect of adding 1 to the corresponding parameter.

An idea of the proof (of version (II))

$$
\begin{aligned}
& \left(L_{1}^{(n)}, \ldots, L_{k}^{(n)}, W_{1}^{(n)}, \ldots, W_{\ell}^{(n)}\right) \\
& \stackrel{d}{=} \operatorname{ML}(1-1 / \alpha, n-1 / \alpha) \times \operatorname{Dir}\left(1, \ldots, 1, \frac{d_{1}-1-\alpha}{\alpha-1}, \ldots, \frac{d_{\ell}-1-\alpha}{\alpha-1}\right)
\end{aligned}
$$

Recall that we add our new branch either at a node or somewhere uniformly chosen along the edges. So we pick an edge or a vertex with probability proportional to its weight.

This amounts to taking a size-biased pick from amongst the co-ordinates of the Dirichlet vector, and has the effect of adding 1 to the corresponding parameter.

If we pick a co-ordinate which corresponded to an edge, it now has parameter 2. Splitting that co-ordinate with an independent uniform gives back 2 co-ordinates with parameter 1 .

An idea of the proof (of version (II))

$$
\begin{aligned}
& \left(L_{1}^{(n)}, \ldots, L_{k}^{(n)}, W_{1}^{(n)}, \ldots, W_{\ell}^{(n)}\right) \\
& \stackrel{d}{=} \operatorname{ML}(1-1 / \alpha, n-1 / \alpha) \times \operatorname{Dir}\left(1, \ldots, 1, \frac{d_{1}-1-\alpha}{\alpha-1}, \ldots, \frac{d_{\ell}-1-\alpha}{\alpha-1}\right)
\end{aligned}
$$

Whether we picked an edge or a vertex, we now want to add one co-ordinate equal to 1 (representing the new edge) and either a co-ordinate equal to $\frac{2-\alpha}{\alpha-1}$ (for a new vertex) or an additional weight to the existing vertex whose weight we already biased:
$\frac{d-1-\alpha}{\alpha-1}+1+\frac{2-\alpha}{\alpha-1}=\frac{(d+1)-1-\alpha}{\alpha-1}$.

An idea of the proof (of version (II))

$$
\begin{aligned}
& \left(L_{1}^{(n)}, \ldots, L_{k}^{(n)}, W_{1}^{(n)}, \ldots, W_{\ell}^{(n)}\right) \\
& \stackrel{d}{=} \operatorname{ML}(1-1 / \alpha, n-1 / \alpha) \times \operatorname{Dir}\left(1, \ldots, 1, \frac{d_{1}-1-\alpha}{\alpha-1}, \ldots, \frac{d_{\ell}-1-\alpha}{\alpha-1}\right)
\end{aligned}
$$

Whether we picked an edge or a vertex, we now want to add one co-ordinate equal to 1 (representing the new edge) and either a co-ordinate equal to $\frac{2-\alpha}{\alpha-1}$ (for a new vertex) or an additional weight to the existing vertex whose weight we already biased:
$\frac{d-1-\alpha}{\alpha-1}+1+\frac{2-\alpha}{\alpha-1}=\frac{(d+1)-1-\alpha}{\alpha-1}$.
This is the role of $\left(B_{n}, 1-B_{n}\right) \sim \operatorname{Beta}\left(1, \frac{2-\alpha}{\alpha-1}\right)$.

An idea of the proof (of version (II))

$$
\begin{aligned}
& \left(L_{1}^{(n)}, \ldots, L_{k}^{(n)}, W_{1}^{(n)}, \ldots, W_{\ell}^{(n)}\right) \\
& \stackrel{d}{=} \operatorname{ML}(1-1 / \alpha, n-1 / \alpha) \times \operatorname{Dir}\left(1, \ldots, 1, \frac{d_{1}-1-\alpha}{\alpha-1}, \ldots, \frac{d_{\ell}-1-\alpha}{\alpha-1}\right)
\end{aligned}
$$

Recall that

$$
M_{n}=M_{n+1} \beta_{n} .
$$

An idea of the proof (of version (II))

$$
\begin{aligned}
& \left(L_{1}^{(n)}, \ldots, L_{k}^{(n)}, W_{1}^{(n)}, \ldots, W_{\ell}^{(n)}\right) \\
& \stackrel{d}{=} \operatorname{ML}(1-1 / \alpha, n-1 / \alpha) \times \operatorname{Dir}\left(1, \ldots, 1, \frac{d_{1}-1-\alpha}{\alpha-1}, \ldots, \frac{d_{\ell}-1-\alpha}{\alpha-1}\right)
\end{aligned}
$$

Recall that

$$
M_{n}=M_{n+1} \beta_{n} .
$$

The β_{n} factor is precisely what is needed to rescale the Dirichlet vector in order to accommodate the extra co-ordinates we added.

A line-breaking construction of the stable trees, joint with Bénédicte Haas, Electronic Journal of Probability 20 (2015), paper no. 16, pp.1-24.

