B-trees and Pólya urns

Danièle GARDY

PRiSM (UVSQ)

with B. Chauvin and N. Pouyanne (LMV) and D.-H. Ton-That (PRiSM)

AofA, Strobl – June 2015
B-trees and algorithms

Some enumeration problems

Pólya urns
m integer ≥ 2 : parameter of the B-tree
Database applications: m « large » (several hundreds)

B-tree shape
- planar tree
- root: between 2 and $2m$ children
- other internal nodes: between m and $2m$ children
- nodes without children at same level
B-tree shape with parameter $m = 2$ and with 13 nodes
B-trees and Pólya urns

B-trees and algorithms

m integer ≥ 2 : parameter of the B-tree

B-tree

- B-tree shape
- *Research* tree: nodes contain records (keys) belonging to an ordered set $+$ at each node, the root keys determine the partition of non-root keys into subtrees

Root: between 1 and $2m - 1$ keys
Other nodes: between $m - 1$ and $2m - 1$ keys

All keys **distinct** : a tree with repeated keys in internal nodes cannot be a B-tree
A B-tree ($m = 2$) : B-tree shape + labelling as a research tree.
Variations

- Nodes have between m and $2m$ keys (internal nodes: between $m + 1$ and $2m + 1$ children)
- For such trees and $m = 1$: each node has 1 or 2 keys (internal nodes: 2 or 3 children)

2–3 trees

- Internal nodes may contain just an index, and the actual records are in leaves
Searching for a key X in a B-tree
Inserting a key X into a B-tree

- No repeated key
- Insertion of a new key: in a leaf
- Research tree → a single place in a terminal node to insert X
- B-tree shape → terminal nodes must be at the same level
- B-tree → terminal nodes contain between $m-1$ and $2m-1$ keys; what if the relevant node is already full?
Insertion of 60
Insertion of 60

What if we now wish to insert 63?
Insertion of 60

What if we now wish to insert 63?
Insertion of 63?
An internal node was split:

- A terminal node with maximal number of keys disappears
- 2 terminal nodes with minimal number of keys appear
- Parent node could accommodate one more key
Inserting a key X into a B-tree

- Need to keep the tree balanced \Rightarrow intricate algorithm
- Splitting a node may go all the way up to the root \Rightarrow tree grows from the root
Inserting a key X into a B-tree

- Need to keep the tree balanced ⇒ intricate algorithm
- Splitting a node may go all the way up to the root ⇒ tree grows from the root
- Analysis much more difficult than for other research trees
- Pólya urn approach useful for lower level
Counting issues for B-trees (shapes) with parameter m
Counting issues for B-trees (shapes) with parameter m

- Relation between height h and number of keys n of a tree

$$\log_{2m}(n + 1) \leq h \leq \log_m \frac{n + 1}{2} + 1.$$

- Number of trees with n keys
- Number of trees with height h
Some enumeration problems

Number of trees with \(n \) keys?

Proposition (Odlyzko 82)

Define \(E(z) \) as the g.f. enumerating 2-3 trees w.r.t. number \(n \) of leaves = number \(n-1 \) of keys in internal nodes

\[
E(z) = z + E(z^2 + z^3).
\]

Radius of convergence: golden ratio \(\frac{1+\sqrt{5}}{2} \)

Number of 2-3 trees with \(n \) leaves:

\[
e_n \sim \frac{\omega(n)}{n} \left(\frac{1 + \sqrt{5}}{2} \right)^n (1 + O(1/n)),
\]

\(\omega(n) \) periodic: average 0.71208... and period 0.86792...
Number of trees with n keys?

Proposition (Odlyzko 82)

Define $E(z)$ as the g.f. enumerating 2-3 trees w.r.t. number n of leaves = number $n-1$ of keys in internal nodes

$$E(z) = z + E(z^2 + z^3).$$

Radius of convergence: golden ratio $\frac{1 + \sqrt{5}}{2}$

Number of 2-3 trees with n leaves:

$$e_n \sim \frac{\omega(n)}{n} \left(\frac{1 + \sqrt{5}}{2} \right)^n (1 + O(1/n)),$$

$\omega(n)$ periodic: average 0.71208... and period 0.86792...

Similar result for general B-trees?
Number of trees with height \(h \)?

Proposition (Reingold 79)

The number \(a_h \) of 2-3 trees with height \(h \) satisfies the recurrence relation

\[
a_{h+1} = a_h^2 + a_h^3
\]

with \(a_0 = 2 \). It is asymptotically equal to

\[
a_h = \kappa^{3^h} \left(1 + O \left(\frac{1}{2^{3^h}} \right) \right) \quad \text{with} \quad \kappa = 2.30992632\ldots
\]

First values (\(h \geq 0 \)) : 2, 12, 1872, 6563711232, ...

Known sequence?
B-trees and Pólya urns

Some enumeration problems

Visit the OEIS Booth at the Joint Math Meetings in San Antonio Jan 10-13!

Search: seq:2,12,1872

<table>
<thead>
<tr>
<th>A125295</th>
<th>Number of different non-self-crossing ways of moving a tower of Hanoi from one peg onto another peg.</th>
</tr>
</thead>
</table>

1, 2, 12, 1872, 6563711232, 282779818171805601512225436992, 22612323824183627495724605329051582849645435308724691155451562180219751385945830223511552 (list; graph; rules; info; history; text; internal format)

OFFSET 0,2

COMMENTS

In other words, a sequence of moves starting with all disks on the starting peg, ending with all disks on the destination peg and never more than once producing the same distribution of disks among the pegs (assuming 3 pegs).

LINKS

Table of n, a(n) for n=1..6.
Wikipedia, Tower of Hanoi

FORMULA

a(n+1)=(a(n)^2)(a(n)+1) log a(n) grows somewhat faster than O(3^n).

MAPLE

f:=proc(n) option remember; if n = 0 then 1 else f(n-1)*2*f(n-1-1); fi; end;

MATHEMATICA

t={1, 2}; Do[AppendTo[t, t[[1-1]]*3+Floor[3/2]], {n, 6}]; t

ORLOVSKY, Feb 02 2012 *)

PROG

(scheme)
(define (next n) (+ n 1))
(define (list-elements nr-of-elements n0 next)
(let list-elements ((i 0) (n n0))
(show i n)
(let ((i (add1 i)))
(if (< i nr-of-elements) (list-elements i (next n)))))
(define (show i n) (printf "N(-a)=" a-n-n" i n))
(list-elements 6 1 next)
Hanoi tower: start from

and move disks (never more than one); a disk may never be atop a smaller one; the end result should be
The number of different non-self-crossing ways of moving a tower of Hanoi from one peg onto another peg, with $h + 1$ disks, is given by the recurrence

$$a_{h+1} = a_h^2 + a_h^3 \quad (a_0 = 2)$$
The number of different non-self-crossing ways of moving a tower of Hanoi from one peg onto another peg, with $h+1$ disks, is given by the recurrence

$$a_{h+1} = a_h^2 + a_h^3 \quad (a_0 = 2)$$

This is exactly the recurrence for the number of 2-3 trees of height h!

⇒ bijection between 2-3 trees of height h and sequences of non-self-crossing ways to move $h+1$ disks?
Some enumeration problems

- Leaf with one key \iff move a single disk from initial to final peg in one step
- Leaf with two keys \iff move a single disk from initial to final peg in two steps
- Recursive structure of the tree \iff recursive sequence of disk moves
B-trees and Pólya urns

Some enumeration problems
Quickest way to solve the Hanoi problem \iff “thinnest” 2-3 tree

Slowest way to solve it without redundant moves \iff “fattest” 2-3 tree

Number of disk moves $=$ number of keys in the 2-3 tree

Bottom disk at height 1 \iff root at level 0
Number of moves of bottom disk $=$ number of keys in the root node

Number of moves of disk at height $i - 1 = $ Number of keys at level i
Number of trees with height h?

Proposition

Asymptotic number b_h of B-trees with parameter m, height h

$$b_h = \kappa_m^{(\mu+1)^h} \left(1 + O\left(\frac{1}{(m+1)^{\mu+1}}\right)\right),$$

with $\mu = 2m$ or $2m - 1$ and

$$\kappa_m = \nu_0 \prod_{\ell \geq 0} \left(1 + \frac{1}{c_\ell} + \ldots + \frac{1}{c_m^\ell} \right)^{1/(\mu+1)^{h+1}}.$$

where $c_0 = m + 1$ and

$$c_{h+1} = c_h^{\mu+1} \left(1 + \frac{1}{c_h} + \ldots + \frac{1}{c_h^m} \right).$$
Back to insertion in a B-tree

Can we analyze the evolution of a B-tree (as done for binary search trees) ?

- Balancing condition \Rightarrow an insertion can have far-reaching consequences : modify the ancestor nodes on a path up to the root plus the sister nodes
- We can analyze what happens at the lower level
Fringe: Terminal nodes, according to the number of keys in each of them

A terminal node has type k when it contains exactly $m + k - 2$ keys ($1 \leq k \leq m + 1$)

There are $m + k - 1$ distinct ways to insert a key in such a node
B-tree with n keys

- $X_n^{(k)}$: number of terminal nodes of type k
- $G_n^{(k)}$: number of ways to insert a key in nodes of type k

\[
X_n = \begin{pmatrix} X_n^{(1)} \\ \vdots \\ X_n^{(m)} \end{pmatrix}; \quad G_n = \begin{pmatrix} G_n^{(1)} \\ \vdots \\ G_n^{(m)} \end{pmatrix}
\]

\[
G_n = DX_n \quad \text{with} \quad D = \begin{pmatrix} m \\ m + 1 \\ \vdots \\ 2m - 1 \end{pmatrix}
\]
B-trees and Pólya urns

$G_n^{(k)}$ number of insertion possibilities of type k in a tree with n keys

$$G_n = \begin{pmatrix} G_n^{(1)} \\ \vdots \\ G_n^{(m)} \end{pmatrix}$$

is a Pólya urn with m colors, balance $S = 1$, and replacement matrix

$$R_m = \begin{pmatrix} -m & m + 1 \\ -(m + 1) & m + 2 \\ \vdots \\ 2m & -(2m - 2) & 2m - 1 \\ & \vdots \\ & & -(2m - 1) \end{pmatrix}.$$

The eigenvalues satisfy the equation

$$(\lambda + m) \ldots (\lambda + 2m - 1) = \frac{(2m)!}{m!}$$
Equation for eigenvalues λ_j

$$(\lambda + m) \ldots (\lambda + 2m - 1) = \frac{(2m)!}{m!}$$

- $\lambda_1 = 1$
- $\lambda_2, \overline{\lambda_2}$ conjugate with maximal real part < 1; $\sigma_2 := \Re(\lambda_2)$

<table>
<thead>
<tr>
<th>m</th>
<th>σ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>0.4775726941</td>
</tr>
<tr>
<td>58</td>
<td>0.4866133472</td>
</tr>
<tr>
<td>59</td>
<td>0.4953467200</td>
</tr>
<tr>
<td>60</td>
<td>0.5037882018</td>
</tr>
<tr>
<td>61</td>
<td>0.5119521623</td>
</tr>
<tr>
<td>62</td>
<td>0.5198520971</td>
</tr>
</tbody>
</table>
Variation of σ^2 according to m
Theorem (∼ Janson) \(G_n \) vector for insertion possibilities

- **Gaussian** if \(m \leq 59 \): \(\frac{G_n - nv_1}{\sqrt{n}} \) converges in distribution towards \(G \)
- **non Gaussian** if \(m \geq 60 \)

\[
G_n = nv_1 + 2\Re \left(n^{\lambda_2} W v_2 \right) + o(n^{\sigma_2})
\]

with

- \(v_1, v_2 \) are deterministic vectors
- \(W \) is the limit of a complex-valued martingale
- \(o(\cdot) \) is for a.s. and in all \(L^p, p \geq 1 \).