Graphs with degree constraints

Élie de Panafieu, Lander Ramos

> RISC Institute, UPC Barcelona

AofA 2015

Available on Arxiv

Introduction

 $SG_{n,m}^{(D)}$ denotes the set of simple labelled graphs with *n* vertices, *m* edges and all degrees in $D \subset \mathbb{Z}_{\geq 0}$. (Example: *D* contains the even integers.)

 $MG_{n,m}^{(D)}$ multigraphs, *i.e.* loops and multiedges allowed.

Introduction

Examples

- regular graphs $D=\{d\}$ (Bender Canfield 1978),
- minimum degree constraint $D=\mathbb{Z}_{\geq \delta}$ (Pittel Wormald 2003),
- Euler graphs $D = \{2n \mid n \geq 0\}$ (Read 1962, Robinson 1969).

Motivations

- expand the analytic combinatorics of graphs,
- asymptotics of connected graphs when m is proportional to n (Bender Canfield McKay 1990).

Related works

- configuration model (Wormald 1978, Bollobás 1980),
- graphs with a given degree sequence (Bender Canfield 1978),
- symmetric matrices with constant row sum (Chyzak Mishna Salvy 2005).

Analytic combinatorics

We assume $|D| \ge 2$. The generating function of the set D is

$$\operatorname{Set}_D(z) = \sum_{d \in D} \frac{z^d}{d!}.$$

Radius of convergence 0 *e.g.* cubic multigraphs $\sum_{\ell} \frac{(6\ell)!}{288^{\ell}(3\ell)!} \frac{z^{2\ell}}{(2\ell)!}$.

Large Powers Theorem (Flajolet Sedgewick 2009) saddle-point method. Derives the asymptotics of

 $[z^{2m}]A(z)\operatorname{Set}_D(z)^n$

when $\min(D) < \lim \frac{2m}{n} < \max(D)$.

Multigraphs with degree constraints

Random multigraph with n = 2 vertices, m = 3 edges.

Compensation factor $\kappa(G) = \frac{\text{orderings}(G)}{2^m m!}$, equal to 1 iff G is simple (Flajolet Knuth Pittel 1989, Janson Knuth Łuczak Pittel 1993). The total weight of \mathcal{F} is $\sum_{G \in \mathcal{F}} \kappa(G)$.

Ordering on *n* vertices \leftrightarrow sequence of *n* labelled sets.

 $\sum_{G \in \mathsf{MG}_{n,m}^{(D)}} \operatorname{orderings}(G) = (2m)! [x^{2m}] \operatorname{Set}_D(x)^n$

Multigraphs with degree constraints

Random multigraph with n = 2 vertices, m = 3 edges.

Compensation factor $\kappa(G) = \frac{\text{orderings}(G)}{2^m m!}$, equal to 1 iff G is simple (Flajolet Knuth Pittel 1989, Janson Knuth Łuczak Pittel 1993). The total weight of \mathcal{F} is $\sum_{G \in \mathcal{F}} \kappa(G)$.

Ordering on *n* vertices \leftrightarrow sequence of *n* labelled sets.

 $\overline{\sum_{G\in \mathsf{MG}_{n,m}^{(D)}}}$ orderings $(G)=(2m)! \ [x^{2m}] \operatorname{Set}_D(x)^n$

Multigraphs with degree constraints

Random multigraph with n = 2 vertices, m = 3 edges.

Compensation factor $\kappa(G) = \frac{\text{orderings}(G)}{2^m m!}$, equal to 1 iff G is simple (Flajolet Knuth Pittel 1989, Janson Knuth Łuczak Pittel 1993). The total weight of \mathcal{F} is $\sum_{G \in \mathcal{F}} \kappa(G)$.

Ordering on *n* vertices \leftrightarrow sequence of *n* labelled sets.

$$\sum_{G \in \mathsf{MG}_{n,m}^{(D)}} \kappa(G) = \frac{(2m)!}{2^m m!} [x^{2m}] \operatorname{Set}_D(x)^n$$

Inclusion-exclusion

(1) Mark all multiedges and loops

$$\mathsf{MG}_{n,m}^{(D)}(u,v) = \sum_{G \in \mathsf{MG}_{n,m}^{(D)}} \kappa(G) u^{\mathsf{marked multiedges}} v^{\mathsf{marked loops}},$$
$$\mathsf{MG}_{n,m}^{(D)}(0,0) = \sum_{G \in \mathsf{SG}_{n,m}^{(D)}} \kappa(G) = |\mathsf{SG}_{n,m}^{(D)}|.$$

(2) Mark some multiedges and loops to obtain $MG_{n,m}^{(D)}(u+1, v+1)$.

$$(,), (,), (,), (,), (,), (,)$$

- introduce marked multiedges and loops in the ordering,
- \bullet complete with normal edges, so that the ordering is in $\mathsf{MG}_{n,m}^{(D)}$

Problem the marked edges may intersect in complicated ways.

Inclusion-exclusion

(1) Mark all multiedges and loops

$$\mathsf{MG}_{n,m}^{(D)}(u,v) = \sum_{G \in \mathsf{MG}_{n,m}^{(D)}} \kappa(G) u^{\mathsf{marked multiedges}} v^{\mathsf{marked loops}},$$
$$\mathsf{MG}_{n,m}^{(D)}(0,0) = \sum_{G \in \mathsf{SG}_{n,m}^{(D)}} \kappa(G) = |\mathsf{SG}_{n,m}^{(D)}|.$$

(2) Mark some multiedges and loops to obtain $MG_{n,m}^{(D)}(u+1, v+1)$.

- introduce marked multiedges and loops in the ordering,
- complete with normal edges, so that the ordering is in $\mathsf{MG}_{n,m}^{(D)}$

Problem the marked edges may intersect in complicated ways.

Inclusion-exclusion

(1) Mark all multiedges and loops

$$\mathsf{MG}_{n,m}^{(D)}(u,v) = \sum_{G \in \mathsf{MG}_{n,m}^{(D)}} \kappa(G) u^{\mathsf{marked multiedges}} v^{\mathsf{marked loops}},$$
$$\mathsf{MG}_{n,m}^{(D)}(0,0) = \sum_{G \in \mathsf{SG}_{n,m}^{(D)}} \kappa(G) = |\mathsf{SG}_{n,m}^{(D)}|.$$

(2) Mark some multiedges and loops to obtain $MG_{n,m}^{(D)}(u+1, v+1)$.

- introduce marked multiedges and loops in the ordering,
- \bullet complete with normal edges, so that the ordering is in $\mathsf{MG}_{n,m}^{(D)}$

Problem the marked edges may intersect in complicated ways.

(3) Mark some multiegdes and loops, such that no vertex belongs to two marked edges.

 $\sum_{G \in \mathsf{MG}_{n,m}^{(D)}} \kappa(G)(-1)^{\mathsf{marked multiedges}} (-1)^{\mathsf{marked loops}}$ $= |\operatorname{SG}_{n,m}^{(D)}| + \mathsf{negligible}.$

(3) Mark some multiegdes and loops, such that no vertex belongs to two marked edges.

 $\sum_{G \in \mathsf{MG}_{n,m}^{(D)}} \kappa(G)(-1)^{\mathsf{marked multiedges}}(-1)^{\mathsf{marked loops}}$ $= |\operatorname{SG}_{n,m}^{(D)}| + \mathsf{negligible}.$

(3) Mark some multiegdes and loops, such that no vertex belongs to two marked edges.

 $\overline{\sum_{G\in \mathsf{MG}_{n,m}^{(D)}} \kappa(G)(-1)^{\mathsf{marked multiedges}}(-1)^{\mathsf{marked loops}}} }$ = $|\mathsf{SG}_{n,m}^{(D)}| + \mathsf{negligible}.$

Simple graphs with degree constraints

$$\frac{(2m)!}{2^m m!} [x^{2m}] \left(\sum_{k,\ell \ge 0} \frac{a_{n,2k+\ell} a_{m,2k+\ell}}{a_{2m,4k+2\ell}} \frac{(-W(x)^2)^k}{k!} \frac{(-W(x))^\ell}{\ell!} \right) \operatorname{Set}_D(x)^n,$$

where $a_{n,j} = \frac{n!}{(n-j)!n^j}$ and $W(x) = \frac{n}{4m} \frac{x^2 \operatorname{Set}_{D-2}(x)}{\operatorname{Set}_D(x)}.$

Result, after the simplification $a_{n,j} \sim 1$,

$$|\operatorname{SG}_{n,m}^{(D)}| = \frac{(2m)!}{2^m m!} [x^{2m}] e^{-W(x)^2 - W(x)} \operatorname{Set}_D(x)^n (1 + O(n^{-1})).$$

Application Euler graphs, with $Set_D(x) = cosh(x)$

$$\frac{(2m)!}{2^m m!} \frac{2e^{-\left(\frac{n\zeta^2}{4m}\right)^2 - \frac{n\zeta^2}{4m}}}{\sqrt{2\pi n\zeta \Phi'(\zeta)}} \frac{\cosh(\zeta)^n}{\zeta^{2m}},$$

where $\Phi(\zeta) = \zeta \tanh(\zeta) = \frac{2m}{n}$.

Excess k = m - n = edges – vertices. Asymptotics of connected graphs

- when $k = o(n^{1/3})$ (Wright 1980),
- when $k \to \infty$ (Bender Canfield McKay 1990), (Pittel Wormald 2005), (van der Hofstad Spencer 2006).

Erdős Rényi 1960 When $k \to \infty$, w.h.p. a graph without tree nor unicycle component is connected.

Excess k = m - n = edges – vertices. Asymptotics of connected graphs

• when $k = o(n^{1/3})$ (Wright 1980),

• when $k \to \infty$ (Bender Canfield McKay 1990), (Pittel Wormald 2005), (van der Hofstad Spencer 2006).

Erdős Rényi 1960 When $k \to \infty$, w.h.p. a graph without tree nor unicycle component is connected.

Excess k = m - n = edges – vertices. Asymptotics of connected graphs

- when $k = o(n^{1/3})$ (Wright 1980),
- when $k \to \infty$ (Bender Canfield McKay 1990), (Pittel Wormald 2005), (van der Hofstad Spencer 2006).

Erdős Rényi 1960 When $k \to \infty$, w.h.p. a graph without tree nor unicycle component is connected.

Excess k = m - n = edges – vertices. Asymptotics of connected graphs

• when $k = o(n^{1/3})$ (Wright 1980),

• when $k \to \infty$ (Bender Canfield McKay 1990), (Pittel Wormald 2005), (van der Hofstad Spencer 2006).

Erdős Rényi 1960 When $k \to \infty$, w.h.p. a graph without tree nor unicycle component is connected.

Excess k = m - n = edges – vertices. Asymptotics of connected graphs

• when $k = o(n^{1/3})$ (Wright 1980),

• when $k \to \infty$ (Bender Canfield McKay 1990), (Pittel Wormald 2005), (van der Hofstad Spencer 2006).

Erdős Rényi 1960 When $k \to \infty$, w.h.p. a graph without tree nor unicycle component is connected.

GF of simple graphs with minimum deg ≥ 2 and excess k

$$\mathsf{SG}_{k}^{(\geq 2)}(z) = \sum_{n\geq 0} |\mathsf{SG}_{n,m=k+n}^{(\geq 2)}| \frac{z^{n}}{n!} \sim \frac{(2k)!}{2^{k}k!} [x^{2k}] \frac{e^{-W(x)^{2}-W(x)}}{\left(1-2\frac{\mathsf{Set}_{\geq 2}(x)}{x^{2}}z\right)^{k+\frac{1}{2}}}$$

GF of graphs without trees $SG_k^{(\geq 2)}(T(z))$.

GF of graphs without trees nor unicycles $SG_k^{(\geq 2)}(T(z))e^{-V(z)}$, where V(z) is the generating function of unicycles.

Connected graphs with n vertices and excess k, proportionnal to n

$$\sim \frac{n!(2k)!}{2^k k!} [z^n x^{2k}] \frac{e^{-W(x)^2 - W(x)} \sqrt{1 - T(z)} e^{\frac{T(z)}{2} + \frac{T(z)^2}{4}}}{\left(1 - 2\frac{e^x - 1 - x}{x^2} T(z)\right)^{k + \frac{1}{2}}}$$

Graphs where each vertex v has a set of allowed degrees D_v ,

asymptotics when $m = O(n \log(n))$,

complete asymptotic expansion,

hypergraphs with degree constraints,

structure of random graphs with degree constraints,

structure of random graphs when $\lim \frac{m}{n} > \frac{1}{2}$.