Graphs with degree constraints

Élie de Panafieu,
Lander Ramos

RISC Institute, UPC Barcelona

AofA 2015

Available on Arxiv
$\mathrm{SG}_{n, m}^{(D)}$ denotes the set of simple labelled graphs with n vertices, m edges and all degrees in $D \subset \mathbb{Z} \geq 0$.
(Example: D contains the even integers.)

$\mathrm{MG}_{n, m}^{(D)}$ multigraphs, i.e. loops and multiedges allowed.

Examples

- regular graphs $D=\{d\}$ (Bender Canfield 1978),
- minimum degree constraint $D=\mathbb{Z}_{\geq \delta}$ (Pittel Wormald 2003),
- Euler graphs $D=\{2 n \mid n \geq 0\}$ (Read 1962, Robinson 1969).

Motivations

- expand the analytic combinatorics of graphs,
- asymptotics of connected graphs when m is proportional to n (Bender Canfield McKay 1990).

Related works

- configuration model (Wormald 1978, Bollobás 1980),
- graphs with a given degree sequence (Bender Canfield 1978),
- symmetric matrices with constant row sum
(Chyzak Mishna Salvy 2005).

We assume $|D| \geq 2$. The generating function of the set D is

$$
\operatorname{Set}_{D}(z)=\sum_{d \in D} \frac{z^{d}}{d!}
$$

Radius of convergence 0 e.g. cubic multigraphs $\sum_{\ell} \frac{(6 \ell)!}{288^{\ell}(3 \ell)!} \frac{z^{2 \ell}}{(2 \ell)!}$.

Large Powers Theorem (Flajolet Sedgewick 2009) saddle-point method. Derives the asymptotics of

$$
\left[z^{2 m}\right] A(z) \operatorname{Set}_{D}(z)^{n}
$$

when $\min (D)<\lim \frac{2 m}{n}<\max (D)$.

Multigraphs with degree constraints
Random multigraph with $n=2$ vertices, $m=3$ edges.

$$
(2,1),(2,2),(1,2)
$$

Compensation factor $\kappa(G)=\frac{\operatorname{orderings}(G)}{2^{m} m!}$, equal to 1 iff G is simple (Flajolet Knuth Pittel 1989, Janson Knuth Łuczak Pittel 1993).
The total weight of \mathcal{F} is $\sum_{G \in \mathcal{F}} \mathcal{K}(G)$.

Ordering on n vertices \leftrightarrow sequence of n labelled sets.

$$
\sum_{G \in \mathrm{MG}_{n, m}^{(D)}} \operatorname{orderings}(G)=(2 m)!\left[x^{2 m}\right] \operatorname{Set}_{D}(x)^{n}
$$

Multigraphs with degree constraints
Random multigraph with $n=2$ vertices, $m=3$ edges.

$$
\begin{array}{ccc}
12 & 3 & 4 \\
(2,1), & 5 & 6 \\
(2,2),(1,2)
\end{array}
$$

Compensation factor $\kappa(G)=\frac{\operatorname{orderings}(G)}{2^{m} m!}$, equal to 1 iff G is simple (Flajolet Knuth Pittel 1989, Janson Knuth Łuczak Pittel 1993).
The total weight of \mathcal{F} is $\sum_{G \in \mathcal{F}} \kappa(G)$.

Ordering on n vertices \leftrightarrow sequence of n labelled sets.

$$
\sum_{G \in \mathrm{MG}_{n, m}^{(D)}} \operatorname{orderings}(G)=(2 m)!\left[x^{2 m}\right] \operatorname{Set}_{D}(x)^{n}
$$

Multigraphs with degree constraints
Random multigraph with $n=2$ vertices, $m=3$ edges.

$$
\begin{array}{ccc}
12 & 3 & 4 \\
(2,1), & 5 & 6 \\
(2,2),(1,2)
\end{array}
$$

Compensation factor $\kappa(G)=\frac{\operatorname{orderings}(G)}{2^{m} m!}$, equal to 1 iff G is simple (Flajolet Knuth Pittel 1989, Janson Knuth Łuczak Pittel 1993).
The total weight of \mathcal{F} is $\sum_{G \in \mathcal{F}} \kappa(G)$.

Ordering on n vertices \leftrightarrow sequence of n labelled sets.

$$
\sum_{G \in \mathrm{MG}_{n, m}^{(D)}} \kappa(G)=\frac{(2 m)!}{2^{m} m!}\left[x^{2 m}\right] \operatorname{Set}_{D}(x)^{n}
$$

(1) Mark all multiedges and loops

$$
\begin{aligned}
& \operatorname{MG}_{n, m}^{(D)}(u, v)=\sum_{G \in \mathrm{MG}_{n, m}^{(D)}} \kappa(G) u^{\text {marked multiedges }} v^{\text {marked loops }}, \\
& \mathrm{MG}_{n, m}^{(D)}(0,0)=\sum_{G \in \mathrm{SG}_{n, m}^{(D)}} \kappa(G)=\left|\mathrm{SG}_{n, m}^{(D)}\right| .
\end{aligned}
$$

(2) Mark some multiedges and loops to obtain $\mathrm{MG}_{n, m}^{(D)}(u+1, v+1)$.

$$
(,),(,),(,),(,),(,)
$$

- introduce marked multiedges and loops in the ordering,
- complete with normal edges, so that the ordering is in $\mathrm{MG}_{n, m}^{(D)}$.

Problem the marked edges may intersect in complicated ways.
(1) Mark all multiedges and loops

$$
\begin{aligned}
& \operatorname{MG}_{n, m}^{(D)}(u, v)=\sum_{G \in \mathrm{MG}_{n, m}^{(D)}} \kappa(G) u^{\text {marked multiedges }} v^{\text {marked loops }}, \\
& \mathrm{MG}_{n, m}^{(D)}(0,0)=\sum_{G \in \mathrm{SG}_{n, m}^{(D)}} \kappa(G)=\left|\mathrm{SG}_{n, m}^{(D)}\right| .
\end{aligned}
$$

(2) Mark some multiedges and loops to obtain $\mathrm{MG}_{n, m}^{(D)}(u+1, v+1)$.

$$
(,),(3,2),(,),(1,1),(2,3)
$$

- introduce marked multiedges and loops in the ordering,
- complete with normal edges, so that the ordering is in $\mathrm{MG}_{n, m}^{(D)}$.

Problem the marked edges may intersect in complicated ways.
(1) Mark all multiedges and loops

$$
\begin{aligned}
& \operatorname{MG}_{n, m}^{(D)}(u, v)=\sum_{G \in \mathrm{MG}_{n, m}^{(D)}} \kappa(G) u^{\text {marked multiedges }} v^{\text {marked loops }}, \\
& \mathrm{MG}_{n, m}^{(D)}(0,0)=\sum_{G \in \mathrm{SG}_{n, m}^{(D)}} \kappa(G)=\left|\mathrm{SG}_{n, m}^{(D)}\right| .
\end{aligned}
$$

(2) Mark some multiedges and loops to obtain $\mathrm{MG}_{n, m}^{(D)}(u+1, v+1)$.

$$
(2,1),(3,2),(1,2),(1,1),(2,3)
$$

- introduce marked multiedges and loops in the ordering,
- complete with normal edges, so that the ordering is in $\mathrm{MG}_{n, m}^{(D)}$.

Problem the marked edges may intersect in complicated ways.

Marked multigraphs

$\mathrm{MG}_{n, m}^{(D)}=\left\{\begin{array}{c}\text { Each vertex belongs } \\ \text { to at most one loop } \\ \text { or one double edge. }\end{array}\right\}$

(3) Mark some multiegdes and loops, such that no vertex belongs to two marked edges.

$$
\begin{gathered}
\sum_{G \in \mathrm{MG}_{n, m}^{(D)}} \kappa(G)(-1)^{\text {marked multiedges }}(-1)^{\text {marked loops }} \\
=\left|\mathrm{SG}_{n, m}^{(D)}\right|+\text { negligible. }
\end{gathered}
$$

Marked multigraphs

$\mathrm{MG}_{n, m}^{(D)}=\left\{\begin{array}{c}\text { Each vertex belongs } \\ \text { to at most one loop } \\ \text { or one double edge. }\end{array}\right\}$

(3) Mark some multiegdes and loops, such that no vertex belongs to two marked edges.

$$
\begin{gathered}
\sum_{G \in \mathrm{MG}_{n, m}^{(D)}} \kappa(G)(-1)^{\text {marked multiedges }}(-1)^{\text {marked loops }} \\
=\left|\mathrm{SG}_{n, m}^{(D)}\right|+\text { negligible. }
\end{gathered}
$$

Marked multigraphs

$\mathrm{MG}_{n, m}^{(D)}=\left\{\begin{array}{c}\text { Each vertex belongs } \\ \text { to at most one loop } \\ \text { or one double edge. }\end{array}\right\}$

(3) Mark some multiegdes and loops, such that no vertex belongs to two marked edges.

$$
\begin{gathered}
\sum_{G \in \mathrm{MG}_{n, m}^{(D)}} \kappa(G)(-1)^{\text {marked multiedges }}(-1)^{\text {marked loops }} \\
=\left|\mathrm{SG}_{n, m}^{(D)}\right|+\text { negligible. }
\end{gathered}
$$

$(2,1),(3,2),(1,2),(1,1),(2,3)$
$\Sigma_{k=0}$
$\left(2 k, \ell, n_{n-2 k-\ell}^{n}\right)$
$\frac{(2 k)!}{2^{k} k!}$
(2k)! $2^{k} \ell!$
$(2 k, \ell, m-2 k-\ell)$
$(2 m-4 k-2 \ell)!\left[x^{2 m-4 k-2 \ell]}\right.$
$(2,1),(1,2)$
$\operatorname{Set}_{D-2}(x)^{2 k+\ell} \operatorname{Set}_{D}(x)^{n-2 k-\ell}$

$$
(-1)^{k}(-1)^{l}
$$

Simple graphs with degree constraints

$$
\frac{(2 m)!}{2^{m} m!}\left[x^{2 m}\right]\left(\sum_{k, \ell \geq 0} \frac{a_{n, 2 k+\ell} a_{m, 2 k+\ell}}{a_{2 m, 4 k+2 \ell}} \frac{\left(-W(x)^{2}\right)^{k}}{k!} \frac{(-W(x))^{\ell}}{\ell!}\right) \operatorname{Set}_{D}(x)^{n},
$$

where $a_{n, j}=\frac{n!}{(n-j)!n^{j}}$ and $W(x)=\frac{n}{4 m} \frac{x^{2} \operatorname{Set}_{D-2}(x)}{\operatorname{Set}_{D}(x)}$.

Result, after the simplification $a_{n, j} \sim 1$,

$$
\left|\mathrm{SG}_{n, m}^{(D)}\right|=\frac{(2 m)!}{2^{m} m!}\left[x^{2 m}\right] e^{-W(x)^{2}-W(x)} \operatorname{Set}_{D}(x)^{n}\left(1+O\left(n^{-1}\right)\right) .
$$

Application Euler graphs, with $\operatorname{Set}_{D}(x)=\cosh (x)$

$$
\frac{(2 m)!}{2^{m} m!} \frac{2 e^{-\left(\frac{n c^{2}}{4 m}\right)^{2}-\frac{n \zeta^{2}}{4 m}}}{\sqrt{2 \pi n \zeta \Phi^{\prime}(\zeta)}} \frac{\cosh (\zeta)^{n}}{\zeta^{2 m}}
$$

where $\Phi(\zeta)=\zeta \tanh (\zeta)=\frac{2 m}{n}$.

Connected graphs with large excess

Excess $k=m-n=$ edges - vertices.
Asymptotics of connected graphs

- when $k=o\left(n^{1 / 3}\right)$ (Wright 1980),
- when $k \rightarrow \infty$ (Bender Canfield McKay 1990),
(Pittel Wormald 2005),
(van der Hofstad Spencer 2006).
Erdős Rényi 1960 When $k \rightarrow \infty$, w.h.p. a graph without tree nor unicycle component is connected.

Graphs without trees $=$ graphs with minimum degree ≥ 2 with vertices replaced by rooted trees.

Connected graphs with large excess

Excess $k=m-n=$ edges - vertices.
Asymptotics of connected graphs

- when $k=o\left(n^{1 / 3}\right)$ (Wright 1980),
- when $k \rightarrow \infty$ (Bender Canfield McKay 1990),
(Pittel Wormald 2005),
(van der Hofstad Spencer 2006).
Erdős Rényi 1960 When $k \rightarrow \infty$, w.h.p. a graph without tree nor unicycle component is connected.

Graphs without trees $=$ graphs with minimum degree ≥ 2 with vertices replaced by rooted trees.

Connected graphs with large excess

Excess $k=m-n=$ edges - vertices.
Asymptotics of connected graphs

- when $k=o\left(n^{1 / 3}\right)$ (Wright 1980),
- when $k \rightarrow \infty$ (Bender Canfield McKay 1990),
(Pittel Wormald 2005),
(van der Hofstad Spencer 2006).
Erdős Rényi 1960 When $k \rightarrow \infty$, w.h.p. a graph without tree nor unicycle component is connected.

Graphs without trees $=$ graphs with minimum degree ≥ 2 with vertices replaced by rooted trees.

Connected graphs with large excess

Excess $k=m-n=$ edges - vertices.
Asymptotics of connected graphs

- when $k=o\left(n^{1 / 3}\right)$ (Wright 1980),
- when $k \rightarrow \infty$ (Bender Canfield McKay 1990), (Pittel Wormald 2005),
(van der Hofstad Spencer 2006).
Erdős Rényi 1960 When $k \rightarrow \infty$, w.h.p. a graph without tree nor unicycle component is connected.

Graphs without trees $=$ graphs with minimum degree ≥ 2 with vertices replaced by rooted trees.

Connected graphs with large excess

Excess $k=m-n=$ edges - vertices.
Asymptotics of connected graphs

- when $k=o\left(n^{1 / 3}\right)$ (Wright 1980),
- when $k \rightarrow \infty$ (Bender Canfield McKay 1990),
(Pittel Wormald 2005),
(van der Hofstad Spencer 2006).
Erdős Rényi 1960 When $k \rightarrow \infty$, w.h.p. a graph without tree nor unicycle component is connected.

Graphs without trees $=$ graphs with minimum degree ≥ 2 with vertices replaced by rooted trees.

Connected graphs with large excess

GF of simple graphs with minimum deg ≥ 2 and excess k
$\mathrm{SG}_{k}^{(\geq 2)}(z)=\sum_{n \geq 0}\left|\mathrm{SG}_{n, m=k+n}^{(\geq 2)}\right| \frac{z^{n}}{n!} \sim \frac{(2 k)!}{2^{k} k!}\left[x^{2 k}\right] \frac{e^{-W(x)^{2}-W(x)}}{\left(1-2 \frac{\operatorname{Set}>2(x)}{x^{2}} z\right)^{k+\frac{1}{2}}}$.
GF of graphs without trees $\mathrm{SG}_{k}^{(\geq 2)}(T(z))$.
GF of graphs without trees nor unicycles $\mathrm{SG}_{k}^{(\geq 2)}(T(z)) e^{-V(z)}$, where $V(z)$ is the generating function of unicycles.

Connected graphs with n vertices and excess k, proportionnal to n

$$
\sim \frac{n!(2 k)!}{2^{k} k!}\left[z^{n} x^{2 k}\right] \frac{e^{-W(x)^{2}-W(x)} \sqrt{1-T(z)} e^{\frac{T(z)}{2}+\frac{T(z)^{2}}{4}}}{\left(1-2 \frac{e^{x}-1-x}{x^{2}} T(z)\right)^{k+\frac{1}{2}}}
$$

Graphs where each vertex v has a set of allowed degrees D_{v},
asymptotics when $m=O(n \log (n))$,
complete asymptotic expansion,
hypergraphs with degree constraints,
structure of random graphs with degree constraints,
structure of random graphs when $\lim \frac{m}{n}>\frac{1}{2}$.

