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Introduction

SG
(D)
n,m denotes the set of simple labelled graphs

with n vertices, m edges and all degrees in D ⊂ Z≥0.
(Example: D contains the even integers.)

MG
(D)
n,m multigraphs, i.e. loops and multiedges allowed.



Introduction

Examples

regular graphs D = {d} (Bender Canfield 1978),

minimum degree constraint D = Z≥δ (Pittel Wormald 2003),

Euler graphs D = {2n |n ≥ 0} (Read 1962, Robinson 1969).

Motivations

expand the analytic combinatorics of graphs,

asymptotics of connected graphs when m is proportional to n
(Bender Canfield McKay 1990).

Related works

configuration model (Wormald 1978, Bollobás 1980),

graphs with a given degree sequence (Bender Canfield 1978),

symmetric matrices with constant row sum
(Chyzak Mishna Salvy 2005).



Analytic combinatorics

We assume |D| ≥ 2. The generating function of the set D is

SetD(z) =
∑
d∈D

zd

d!
.

Radius of convergence 0 e.g. cubic multigraphs
∑

`
(6`)!

288`(3`)!
z2`

(2`)! .

Large Powers Theorem (Flajolet Sedgewick 2009) saddle-point method.
Derives the asymptotics of

[z2m]A(z) SetD(z)n

when min(D) < lim 2m
n < max(D).



Multigraphs with degree constraints

Random multigraph with n = 2 vertices, m = 3 edges.
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)

(2, 1), (2, 2), (1, 2)

Compensation factor κ(G ) = orderings(G)
2mm! , equal to 1 iff G is simple

(Flajolet Knuth Pittel 1989, Janson Knuth  Luczak Pittel 1993).
The total weight of F is

∑
G∈F κ(G ).

Ordering on n vertices↔ sequence of n labelled sets.∑
G∈MG

(D)
n,m

orderings(G ) = (2m)! [x2m] SetD(x)n
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Inclusion-exclusion

(1) Mark all multiedges and loops

MG
(D)
n,m(u, v) =

∑
G∈MG

(D)
n,m

κ(G )umarked multiedgesvmarked loops,

MG
(D)
n,m(0, 0) =

∑
G∈SG(D)

n,m

κ(G ) = | SG
(D)
n,m |.

(2) Mark some multiedges and loops to obtain MG
(D)
n,m(u+ 1, v + 1).
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introduce marked multiedges and loops in the ordering,

complete with normal edges, so that the ordering is in MG
(D)
n,m.

Problem the marked edges may intersect in complicated ways.
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Marked multigraphs

MG
(D)
n,m =

{
Each vertex belongs
to at most one loop
or one double edge.

} ⊎ 
There exists a “bad” vertex.



(3) Mark some multiegdes and loops, such that no vertex belongs
to two marked edges.∑

G∈MG
(D)
n,m

κ(G )(−1)marked multiedges(−1)marked loops

= | SG
(D)
n,m |+ negligible.
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∑
k,`≥0 k = 1, ` = 1( n

2k,`,n−2k−`
)
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(2k)!
2kk!

{2, 3}
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Simple graphs with degree constraints
(2m)!
2mm! [x2m]

(∑
k,`≥0

an,2k+`am,2k+`
a2m,4k+2`

(−W (x)2)k

k!
(−W (x))`

`!

)
SetD(x)n,

where an,j = n!
(n−j)!nj and W (x) = n

4m
x2 SetD−2(x)

SetD(x)
.

Result, after the simplification an,j ∼ 1,

| SG
(D)
n,m | =

(2m)!

2mm!
[x2m]e−W (x)2−W (x) SetD(x)n

(
1 + O(n−1)

)
.

Application Euler graphs, with SetD(x) = cosh(x)

(2m)!

2mm!

2e
−
(

nζ2

4m

)2

− nζ2

4m√
2πnζΦ′(ζ)

cosh(ζ)n

ζ2m
,

where Φ(ζ) = ζ tanh(ζ) = 2m
n .



Connected graphs with large excess

Excess k = m − n = edges− vertices.
Asymptotics of connected graphs

when k = o(n1/3) (Wright 1980),

when k →∞ (Bender Canfield McKay 1990),

when k →∞

(Pittel Wormald 2005),

when k →∞

(van der Hofstad Spencer 2006).

Erdős Rényi 1960 When k →∞, w.h.p. a graph without tree nor
unicycle component is connected.

Graphs without trees = graphs with minimum degree ≥ 2

Graphs without trees =

with vertices replaced by rooted trees.
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Connected graphs with large excess

GF of simple graphs with minimum deg ≥ 2 and excess k

SG
(≥2)
k (z) =

∑
n≥0
| SG

(≥2)
n,m=k+n |

zn

n!
∼ (2k)!

2kk!
[x2k ]

e−W (x)2−W (x)(
1− 2

Set≥2(x)

x2
z
)k+ 1

2

.

GF of graphs without trees SG
(≥2)
k (T (z)).

GF of graphs without trees nor unicycles SG
(≥2)
k (T (z))e−V (z),

where V (z) is the generating function of unicycles.

Connected graphs with n vertices and excess k, proportionnal to n

∼ n!(2k)!

2kk!
[znx2k ]

e−W (x)2−W (x)
√

1− T (z)e
T (z)
2

+T (z)2

4(
1− 2 ex−1−x

x2
T (z)

)k+ 1
2



Future extensions

Graphs where each vertex v has a set of allowed degrees Dv ,

asymptotics when m = O(n log(n)),

complete asymptotic expansion,

hypergraphs with degree constraints,

structure of random graphs with degree constraints,

structure of random graphs when lim m
n > 1

2 .


