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2-trees

2-trees are constructed recursively:

Start with a complete graph K3 of order 3 (a triangle)

At each further step, choose an edge and attach a new triangle to it
(i.e., add a new vertex and connect it to the two ends of the chosen
edge).

They are a special case of k-trees (same principle, but we start with a
complete graph of order k + 1 and attach a new complete graph Kk+1 to
an existing clique of order k). 1-trees are just ordinary trees.
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Example: construction of a 2-tree
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Background

The number of spanning trees of random 2-trees (using various
different models of randomness) was recently considered by Xiao and
Zhao, who made several conjectures on the growth (based on
simulations).

Ehrenmüller and Rué studied spanning trees of 2-trees (as well as
series-parallel graphs and 2-connected series-parallel graphs) in
another very recent paper and determined the average number of
spanning trees in random labelled 2-trees asymptotically.
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Edge-rooted 2-trees

It will often be convenient to regard 2-trees as rooted at an edge; this edge
is part of a number of triangles, each of which has two edge-rooted 2-trees
attached to it (one on each of the other two edges).
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Models of random 2-trees

We consider six different models of random 2-trees, each essentially
corresponding to a random tree model:

Uniform models

Uniform “labelled” 2-trees: 2-trees with triangles labelled from 1 to n
(corresponds to labelled trees)

Uniform “binary” 2-trees: no edge may be part of more than two
triangles (corresponds to random binary trees)

Uniform “plane” 2-trees: edge-rooted 2-trees, the different triangles
that belong to the root edge are ordered left to right (corresponds to
random plane trees)
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Models of random 2-trees

We consider six different models of random 2-trees, each essentially
corresponding to a random tree model:

Random attachment models

Uniform random attachment: an edge is selected uniformly at random
at each step and a new triangle attached to it (corresponds to
recursive trees)

Uniform restricted attachment: an edge is selected uniformly at
random among those that are not yet part of two triangles
(corresponds to binary increasing trees)

Preferential attachment: each edge is chosen with probability
proportionate to the number of triangles it belongs to (corresponds to
plane-oriented recursive trees)
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A useful decomposition

For counting spanning trees, it is useful to consider edge-rooted 2-trees,
and to study auxiliary quantities in addition to the number of spanning
trees:

τ(T ) denotes the number of spanning trees of an (edge-rooted) 2-tree
T ,

ρ(T ) denotes the number of spanning trees that contain the root
edge,

σ(T ) = τ(T )− ρ(T ) denotes the number of spanning trees that do
not contain the root edge.
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A useful decomposition

Lemma

Let T be an edge-rooted 2-tree whose root is part of a single triangle. The
edge-rooted sub-2-trees attached on the two other sides of this triangle are
denoted by T1 and T2 respectively. Then we have

ρ(T ) = τ(T1)ρ(T2) + ρ(T1)τ(T2) and σ(T ) = τ(T1)τ(T2).

T1 T2
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A useful decomposition

Lemma

Let T be an edge-rooted 2-tree with k triangles containing the root edge.
The edge-rooted sub-2-trees containing those triangles are denoted by
T1, T2, . . . , Tk respectively. Then we have

ρ(T ) =

k∏
j=1

ρ(Tj) and σ(T ) =

k∏
j=1

ρ(Tj)

k∑
j=1

σ(Tj)

ρ(Tj)
.

T1

T2
T3

. . .

. . .

. . .
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Extremal values

The maximum and the minimum number of spanning trees of a 2-tree
consisting of n triangles can be determined quite easily from this lemma.

The minimum is obtained for the “star”: n triangles that share a
common edge; this 2-tree has (n+ 2)2n−1 spanning trees.

The maximum is obtained for any “path”, where every further
triangle is attached to one of the two edges added in the previous
step (remarkably, it does not matter which). The number of spanning
trees of such a 2-tree is the Fibonacci number F2n+2 (F0 = 0,
F1 = 1, Fn+1 = Fn + Fn−1).
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Extremal values
If edges cannot be part of more than one triangle, the “complete binary”
2-tree becomes minimal (in the asymptotic sense): the number of
spanning trees of any such 2-tree with n triangles is Ω(αn), where

α = 4

∞∏
k=1

(1− 2−k)2
−k ≈ 2.5747573641 . . . ,

and this is attained in the limit by complete binary 2-trees. The figure
shows the complete binary 2-tree of level 3. Starting with a single triangle,
we attach a triangle to each of the outer edges at each step.
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Translation to generating functions

As an example for the generating functions approach, we consider
uniformly random 2-trees (with the triangles labelled). It is useful to
consider edge-rooted 2-trees where the root edge is only part of one
triangle as an auxiliary structure. We also consider the sides and vertices
of every triangle as distinguishable (to facilitate counting).

The generating function Y for counting such 2-trees satisfies

Y (x) = xe2Y (x),

from which one easily deduces n![xn]Y (x) = (2n)n−1 by means of
Lagrange inversion.
Furthermore, 2-trees with labelled triangles rooted at a triangle have
generating function

Y (x) = xe3Y (x),

and n![xn]Y (x) = (3n)(2n+ 1)n−2.

Spanning trees of 2-trees S. Wagner, Stellenbosch University 13 / 24



Translation to generating functions

As an example for the generating functions approach, we consider
uniformly random 2-trees (with the triangles labelled). It is useful to
consider edge-rooted 2-trees where the root edge is only part of one
triangle as an auxiliary structure. We also consider the sides and vertices
of every triangle as distinguishable (to facilitate counting).
The generating function Y for counting such 2-trees satisfies

Y (x) = xe2Y (x),

from which one easily deduces n![xn]Y (x) = (2n)n−1 by means of
Lagrange inversion.

Furthermore, 2-trees with labelled triangles rooted at a triangle have
generating function

Y (x) = xe3Y (x),

and n![xn]Y (x) = (3n)(2n+ 1)n−2.

Spanning trees of 2-trees S. Wagner, Stellenbosch University 13 / 24



Translation to generating functions

As an example for the generating functions approach, we consider
uniformly random 2-trees (with the triangles labelled). It is useful to
consider edge-rooted 2-trees where the root edge is only part of one
triangle as an auxiliary structure. We also consider the sides and vertices
of every triangle as distinguishable (to facilitate counting).
The generating function Y for counting such 2-trees satisfies

Y (x) = xe2Y (x),

from which one easily deduces n![xn]Y (x) = (2n)n−1 by means of
Lagrange inversion.
Furthermore, 2-trees with labelled triangles rooted at a triangle have
generating function

Y (x) = xe3Y (x),

and n![xn]Y (x) = (3n)(2n+ 1)n−2.

Spanning trees of 2-trees S. Wagner, Stellenbosch University 13 / 24



Translation to generating functions

Next we incorporate τ , ρ and σ. The generating functions that count
2-trees weighted by τ , ρ and σ are denoted by T , R and S respectively.

Clearly, T (x) = R(x) + S(x), and we also have

R(x) = 2x(S(x) + 1)e2R(x) and S(x) = x(S(x) + 1)2e2R(x).

Similar systems of functional or differential equations can be found for all
six models.
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Combinatorial surprises

In the uniform binary case, this approach surprisingly even leads to an
explicit formula:

Proposition

The total number of spanning trees in all binary 2-trees consisting of n
triangles and rooted at one of the triangles is 6·4n

n+2

(
3n/2
n+1

)
, and there are

3
n+2

(
2n
n+1

)
such 2-trees, so the average number of spanning trees in

uniformly random binary 2-trees is

22n+1 · (3n/2)!(n− 1)!

(n/2− 1)!(2n)!
.

There is also a bijective correspondence to certain classes of connected
noncrossing graphs.
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Combinatorial surprises

Proposition

Let T be a 2-tree consisting of n triangles. If a triangle is attached to an
edge of T that is selected uniformly at random to obtain a new 2-tree T ′,
then

E(τ(T ′)) =
5n+ 3

2n+ 1
τ(T ).

Corollary

If a sequence T1, T2, . . . of 2-trees is constructed according to the uniform
random attachment model, then

Xn =

n∏
j=1

2j − 1

5j − 2
τ(Tn)

is a martingale. In particular, E(τ(Tn)) =
∏n

j=1
5j−2
2j−1 .
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Combinatorial surprises

Proof

A spanning tree of T ′ is either

a spanning tree of T with one of the two new edges added (which
gives 2τ(T )), or

obtained from a spanning tree of T that contains the edge where the
new triangle was attached, namely by replacing this edge with the two
new edges. Any given spanning tree of T contains n+ 1 of the
2n+ 1 edges, so we get an additional expected value of n+1

2n+1τ(T ).
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Application of singularity analysis

For our other models, we have to rely on singularity analysis of generating
functions to obtain the asymptotic behaviour. Let us return to the
functional equations that we obtained in the case of uniform labelled
2-trees:

R(x) = 2x(S(x) + 1)e2R(x) and S(x) = x(S(x) + 1)2e2R(x).

We immediately obtain S(x)/R(x) = (S(x) + 1)/2, thus
R(x) = 2S(x)/(S(x) + 1). This is plugged back in:

S(x) = x(S(x) + 1)2e4S(x)/(S(x)+1).

The dominant singularity is easily established as the solution of the
simultaneous equations s = x(s+ 1)2e4s/(s+1) and
1 = x d

ds(s+ 1)2e4s/(s+1), which is given by s =
√

5− 2 and

x = (
√

5− 1)e
√
5−3/8.
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Application of singularity analysis

From the asymptotic expansion of S(x) at the dominant singularity, one
also obtains the behaviour of all other generating functions. The final
result reads as follows:

Proposition

The average number of spanning trees in uniform labelled 2-trees is

asymptotically equal to 2e1−
√
5/2
√

1− 1√
5
·
(
(1 +

√
5)e2−

√
5
)n

.
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Application of singularity analysis

Other random models are treated in a similar way. The following growth
constants are obtained:

Uniform labelled: (1 +
√

5)e2−
√
5 ≈ 2.55561

Uniform binary: 3
√

3/2 ≈ 2.59808

Uniform plane: 8(7
√

7− 10)/27 ≈ 2.52452

Uniform attachment: 5/2 = 2.5

Uniform restricted attachment: 1/(log 4− 1) ≈ 2.58870

Preferential attachment: 8/(log 27) ≈ 2.42730
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Additive functionals

We would also like to say more about the distribution of the number of
spanning trees. Consider binary 2-trees and their decomposition:

T1 T2

ρ(T ) = τ(T1)ρ(T2) + ρ(T1)τ(T2) and σ(T ) = τ(T1)τ(T2)

and thus

τ(T ) = τ(T1)τ(T2) + τ(T1)ρ(T2) + ρ(T1)τ(T2).
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Additive functionals

τ(T ) = τ(T1)τ(T2) + τ(T1)ρ(T2) + ρ(T1)τ(T2)

can also be written as

log τ(T ) = log τ(T1) + log τ(T2) + κ(T ),

with κ(T ) = log(1 + ρ(T1)/τ(T1) + ρ(T2)/τ(T2)). We can thus regard τ
as an additive functional with toll function κ. This function is easily seen
to be bounded, which allows us to invoke a theorem of Janson on additive
functionals of Galton-Watson trees:

Theorem

Let Tn denote a uniformly random binary 2-tree consisting of n triangles.
The normalised logarithm of τ(Tn) converges in probability to a constant:

log(τ(Tn))

n

p→ C ≈ 0.95.
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Random weak limits

Suppose that G1, G2, . . . is a sequence of (possibly random) finite graphs.
A probability mearure ρ on rooted infinite graphs is called the random
weak limit of this sequence if the probability that the ball of radius R
around a randomly chosen vertex of Gn is a fixed finite rooted graph H
converges to the probability given by ρ as n→∞ for any fixed R and H.

A famous theorem of Lyons states that log(τ(Gn))/|Gn| (the tree
entropy) converges in probability to a constant depending only on ρ if the
sequence of graphs Gn has a random weak limit with bounded expected
average degree.

Making use of Lyons’s results, we find that the tree entropy of random
2-trees converges to a constant depending on the specific model. However,
this does not imply a central limit theorem.

Spanning trees of 2-trees S. Wagner, Stellenbosch University 23 / 24



Random weak limits

Suppose that G1, G2, . . . is a sequence of (possibly random) finite graphs.
A probability mearure ρ on rooted infinite graphs is called the random
weak limit of this sequence if the probability that the ball of radius R
around a randomly chosen vertex of Gn is a fixed finite rooted graph H
converges to the probability given by ρ as n→∞ for any fixed R and H.

A famous theorem of Lyons states that log(τ(Gn))/|Gn| (the tree
entropy) converges in probability to a constant depending only on ρ if the
sequence of graphs Gn has a random weak limit with bounded expected
average degree.

Making use of Lyons’s results, we find that the tree entropy of random
2-trees converges to a constant depending on the specific model. However,
this does not imply a central limit theorem.

Spanning trees of 2-trees S. Wagner, Stellenbosch University 23 / 24



Random weak limits

Suppose that G1, G2, . . . is a sequence of (possibly random) finite graphs.
A probability mearure ρ on rooted infinite graphs is called the random
weak limit of this sequence if the probability that the ball of radius R
around a randomly chosen vertex of Gn is a fixed finite rooted graph H
converges to the probability given by ρ as n→∞ for any fixed R and H.

A famous theorem of Lyons states that log(τ(Gn))/|Gn| (the tree
entropy) converges in probability to a constant depending only on ρ if the
sequence of graphs Gn has a random weak limit with bounded expected
average degree.

Making use of Lyons’s results, we find that the tree entropy of random
2-trees converges to a constant depending on the specific model. However,
this does not imply a central limit theorem.

Spanning trees of 2-trees S. Wagner, Stellenbosch University 23 / 24



Further work

Prove a central limit theorem in some or all of the models

Generalise to k-trees

Prove limit laws for other types of graphs, e.g. subcritical graph
classes (which include for instance cacti, outerplanar graphs,
series-parallel graphs, . . . ).
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