The Surprising Power of Belief Propagation

Elchanan Mossel

June 12, 2015

Why do you want to know about BP

- It's a popular algorithm.
- We will talk abut its analysis.
- Many open problems.
- Connections to:
 - Random graphs.
 - Recursions of Random Variables.
 - The Cavity and Replica Methods from Physics.
 - Random Matrices.

<u>ا ...</u>

Graphical Models and Belief Propagation

- Graphical Models or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.
- Encoding based on conditional independence statements.
- Based on a probabilistic model on graph / graphical model.

Graphical Models and Belief Propagation

- Graphical Models or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.
- Encoding based on conditional independence statements.
- Based on a probabilistic model on graph / graphical model.
- ► (Pairwise) Graphical model is based on a graph G = (V, E) and a distribution

$$p((x_{\boldsymbol{v}}:\boldsymbol{v}\in\boldsymbol{V}))=Z^{-1}\prod_{(\boldsymbol{u},\boldsymbol{v})\in\boldsymbol{E}}\psi_{(\boldsymbol{u},\boldsymbol{v})}(x_{\boldsymbol{u}},x_{\boldsymbol{v}}),\quad\boldsymbol{x}\in\boldsymbol{A}^{\boldsymbol{V}}$$

Graphical Models and Belief Propagation

- Graphical Models or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.
- Encoding based on conditional independence statements.
- Based on a probabilistic model on graph / graphical model.
- ► (Pairwise) Graphical model is based on a graph G = (V, E) and a distribution

$$p((x_{\boldsymbol{v}}:\boldsymbol{v}\in\boldsymbol{V}))=Z^{-1}\prod_{(\boldsymbol{u},\boldsymbol{v})\in\boldsymbol{E}}\psi_{(\boldsymbol{u},\boldsymbol{v})}(x_{\boldsymbol{u}},x_{\boldsymbol{v}}),\quad \boldsymbol{x}\in\boldsymbol{A}^{\boldsymbol{V}}$$

Goal of Belief Propagation: Compute marginals:

$$p(x_v = a)??$$

- Random graph G = (V, E) on *n* nodes.
- Half blue / half red.

- Random graph G = (V, E) on *n* nodes.
- Half blue / half red.
- ► Two nodes of the same color are connected with probability *a*/*n*.
- Two nodes with different colors are connected with probability b/n.

- Random graph G = (V, E) on *n* nodes.
- Half blue / half red.
- ► Two nodes of the same color are connected with probability *a*/*n*.
- Two nodes with different colors are connected with probability b/n.
- Inference: find which nodes are red and which are blue ?

- Random graph G = (V, E) on *n* nodes.
- Half blue / half red.
- ► Two nodes of the same color are connected with probability *a*/*n*.
- Two nodes with different colors are connected with probability b/n.
- Inference: find which nodes are red and which are blue ?
- Given colors of neighbors?

- Random graph G = (V, E) on *n* nodes.
- Half blue / half red.
- ► Two nodes of the same color are connected with probability *a*/*n*.
- Two nodes with different colors are connected with probability b/n.
- Inference: find which nodes are red and which are blue ?
- Given colors of neighbors?
- Given colors of neighbors of neighbors? etc.?

• On trees: $O(n^2)$ time to get all marginals using recursion.

- On trees: $O(n^2)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programing is done in O(n × diameter). "Belief Propagation".

- On trees: $O(n^2)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programing is done in O(n × diameter). "Belief Propagation".
- ▶ Belief Propagation Variables: $(\eta_{v \to u}^a : (v, u) \in E, a \in A)$.

- On trees: $O(n^2)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programing is done in O(n × diameter). "Belief Propagation".
- ▶ Belief Propagation Variables: $(\eta_{v \to u}^a : (v, u) \in E, a \in A)$.

Updates:

$$\eta_{\nu \to u}^{\boldsymbol{a}}(t+1) := Z^{-1} \prod_{\boldsymbol{w} \neq u, (\boldsymbol{w}, \nu) \in E} \sum_{\boldsymbol{b}} \eta_{\boldsymbol{w} \to \nu}^{\boldsymbol{b}}(t) \psi_{(\nu, u)}(\boldsymbol{b}, \boldsymbol{a})$$

- On trees: $O(n^2)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programing is done in O(n × diameter). "Belief Propagation".
- ▶ Belief Propagation Variables: $(\eta_{v \to u}^a : (v, u) \in E, a \in A)$.

Updates:

$$\eta_{\boldsymbol{v}\to\boldsymbol{u}}^{\boldsymbol{a}}(t+1) := Z^{-1} \prod_{\boldsymbol{w}\neq\boldsymbol{u},(\boldsymbol{w},\boldsymbol{v})\in E} \sum_{\boldsymbol{b}} \eta_{\boldsymbol{w}\to\boldsymbol{v}}^{\boldsymbol{b}}(t) \psi_{(\boldsymbol{v},\boldsymbol{u})}(\boldsymbol{b},\boldsymbol{a})$$

Marginal of x_u is approximated by

$$p(x_u = a) := Z^{-1} \prod_{(v,u) \in E} \eta^a_{v \to u}(\infty)$$

- On trees: $O(n^2)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programing is done in O(n × diameter). "Belief Propagation".
- ▶ Belief Propagation Variables: $(\eta_{v \to u}^a : (v, u) \in E, a \in A)$.
- Updates:

$$\eta_{\nu \to u}^{\boldsymbol{a}}(t+1) := Z^{-1} \prod_{\boldsymbol{w} \neq u, (\boldsymbol{w}, \nu) \in E} \sum_{\boldsymbol{b}} \eta_{\boldsymbol{w} \to \nu}^{\boldsymbol{b}}(t) \psi_{(\nu, u)}(\boldsymbol{b}, \boldsymbol{a})$$

Marginal of x_u is approximated by

$$p(x_u = a) := Z^{-1} \prod_{(v,u) \in E} \eta^a_{v \to u}(\infty)$$

• Example of Block model ($\theta = (a - b)/a + b$).

$$\eta_{\mathbf{v}\to\mathbf{u}} := \frac{\prod_{\mathbf{w}\neq\mathbf{u},(\mathbf{w},\mathbf{v})\in \mathbf{E}}(1+\theta\eta_{\mathbf{w}\to\mathbf{v}})-\prod_{\mathbf{w}\neq\mathbf{u},(\mathbf{w},\mathbf{v})\in \mathbf{E}}(1-\theta\eta_{\mathbf{w}\to\mathbf{v}})}{\prod_{\mathbf{w}\neq\mathbf{u},(\mathbf{w},\mathbf{v})\in \mathbf{E}}(1+\theta\eta_{\mathbf{w}\to\mathbf{v}})+\prod_{\mathbf{w}\neq\mathbf{u},(\mathbf{w},\mathbf{v})\in \mathbf{E}}(1-\theta\eta_{\mathbf{w}\to\mathbf{v}})}$$

Locally, graph = GW tree and the coloring process can be defined as follows: Let $\epsilon = \frac{b}{a+b} \in (0, 1).$

Locally, graph = GW tree and the coloring process can be defined as follows: Let $\epsilon = \frac{b}{a+b} \in (0, 1).$

Color the root randomly.

Locally, graph = GW tree and the coloring process can be defined as follows: Let $\epsilon = \frac{b}{a+b} \in (0, 1).$

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color

Locally, graph = GW tree and the coloring process can be defined as follows: Let $\epsilon = \frac{b}{a+b} \in (0, 1).$

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color

Locally, graph = GW tree and the coloring process can be defined as follows: Let $\epsilon = \frac{b}{a+b} \in (0, 1).$

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color

Locally, graph = GW tree and the coloring process can be defined as follows: Let $\epsilon = \frac{b}{a+b} \in (0, 1).$

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color

Question: given leaves, can we guess the color of the root?

Locally, graph = GW tree and the coloring process can be defined as follows: Let $\epsilon = \frac{b}{a+b} \in (0, 1).$

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color

Question: given leaves, can we guess the color of the root? **Note**: BP computes the posterior exactly.

Locally, graph = GW tree and the coloring process can be defined as follows: Let $\epsilon = \frac{b}{a+b} \in (0, 1).$

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color

Question: given leaves, can we guess the color of the root? **Note**: BP computes the posterior exactly. **Question:** Is the posterior close to (0.5, 0.5) as $r \to \infty$?.

Question: given leaves, can we guess the color of the root?

.

Question: given leaves, can we guess the color of the root? **Note**: BP computes the posterior exactly.

Question: given leaves, can we guess the color of the root? **Note**: BP computes the posterior exactly. **Question:** Is the posterior close to (0.5, 0.5) as $r \to \infty$? **Question**: given leaves, can we guess the color of the root? **Note**: BP computes the posterior exactly. **Question:** Is the posterior close to (0.5, 0.5) as $r \to \infty$? **Answer**: posterior $\to (0.5, 0.5)$ iff $(1 - 2\epsilon)^2 d \le 1$ (d := is the *branching number* \sim *average degree* of the tree) (... Evans, Kenyon, Peres, Schulman, 2000 ...) **Question**: given leaves, can we guess the color of the root? **Note**: BP computes the posterior exactly. **Question**: Is the posterior close to (0.5, 0.5) as $r \to \infty$? **Answer**: posterior $\to (0.5, 0.5)$ iff $(1 - 2\epsilon)^2 d \le 1$ (d := is the *branching number* \sim *average degree* of the tree) (... Evans, Kenyon, Peres, Schulman, 2000 ...) Nice tools: recursions of random variables, information inequalities etc.

What we proved in pictures

Learning from far away

Theorem (Mossel-Neeman-Sly-12)

Given $G \setminus B(v, r)$ it is possible to guess the status of v better than random as $r \to \infty$ iff $(a - b)^2 > 2(a + b)$

Q: Why is this a Theorem?

A: Not obvious that non-neighbors provide diminishing information.

Note: The proof further shows that for *any* values of a, b, Belief Propagation maximizes the probability of guessing the color of r.

BP is very extensively applied to general graphs.

- BP is very extensively applied to general graphs.
- Not clear what it gives!

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:
- Given a graph G, let T(G) be the universal cover of G.
- ► *T*(*G*) is the tree of non-backtracking walks on *G*.

Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:
- Given a graph G, let T(G) be the universal cover of G.
- ► *T*(*G*) is the tree of non-backtracking walks on *G*.
- To compute marginal x_v at G, compute x_v at T(G).

Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:
- Given a graph G, let T(G) be the universal cover of G.
- T(G) is the tree of non-backtracking walks on G.
- To compute marginal x_v at G, compute x_v at T(G).
- If G is not a forest then T(G) is infinite ...

BP on tree-like graphs and local information

Treelike graphs, local information and LDPC

Beautiful Work in Coding Theory - LDPC

Treelike graphs, local information and LDPC

- Beautiful Work in Coding Theory LDPC
- ▶ If *G* = (*V*, *E*)
 - 1. locally tree-like and
 - 2. can initialize $\eta_{u \to v}$ so that they are correlated to x_v

Then BP converges to correct values!

Treelike graphs, local information and LDPC

Beautiful Work in Coding Theory - LDPC

- ▶ If *G* = (*V*, *E*)
 - 1. locally tree-like and
 - 2. can initialize $\eta_{u \to v}$ so that they are correlated to x_v Then BP converges to correct values!
- Luby-Mitzenmacher-Shokrollahi-88
- Spielman-00, Richardson-Shokrollahi-Urbanke-01.
- Recent breakthrough: spatially coupled codes achieve capacity efficiently - Kudekar-Richardson Urnabke.

When can one estimate the color of v given S(v, r) better than random as r → ∞ given noisy information.

- When can one estimate the color of v given S(v, r) better than random as r → ∞ given noisy information.
- Noisy " = " e.g. flip each color in S(v, r) with probability 0.5 − ε.

- When can one estimate the color of v given S(v, r) better than random as r → ∞ given noisy information.
- Noisy " = " e.g. flip each color in S(v, r) with probability 0.5 − ε.

Theorem (Mossel-Peres-04)

For every $\epsilon > 0$ can do better than random iff $(a-b)^2 > 2(a+b)$.

- When can one estimate the color of v given S(v, r) better than random as r → ∞ given noisy information.
- Noisy " = " e.g. flip each color in S(v, r) with probability 0.5 − ε.

Theorem (Mossel-Peres-04)

For every $\epsilon > 0$ can do better than random iff $(a-b)^2 > 2(a+b)$.

Theorem (Mossel-Neeman-Sly-14)

If $(a - b)^2 > 100(a + b)$ then for every $\epsilon > 0$, the posterior of the color of v correctly is the same with and without noise

- When can one estimate the color of v given S(v, r) better than random as r → ∞ given noisy information.
- Noisy " = " e.g. flip each color in S(v, r) with probability 0.5 − ε.

Theorem (Mossel-Peres-04)

For every $\epsilon > 0$ can do better than random iff $(a-b)^2 > 2(a+b)$.

Theorem (Mossel-Neeman-Sly-14)

If $(a - b)^2 > 100(a + b)$ then for every $\epsilon > 0$, the posterior of the color of v correctly is the same with and without noise

It's all about knowing your random variables recursions!

- When can one estimate the color of v given S(v, r) better than random as r → ∞ given noisy information.
- Noisy " = " e.g. flip each color in S(v, r) with probability 0.5 − ε.

Theorem (Mossel-Peres-04)

For every $\epsilon > 0$ can do better than random iff $(a-b)^2 > 2(a+b)$.

Theorem (Mossel-Neeman-Sly-14)

If $(a - b)^2 > 100(a + b)$ then for every $\epsilon > 0$, the posterior of the color of v correctly is the same with and without noise

It's all about knowing your random variables recursions! Conjecture - this is true for all *a* and *b*

To Analyze BP with good initial messages, we need to understand the following process

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color

Flip the leaves with probability $\delta < 1/2$

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color

Flip the leaves with probability $\delta < 1/2$

Theorem (MNS-14)

If $(1 - 2\epsilon)^2 d \ge C$ then as $n \to \infty$, the extra noise doesn't hurt the reconstruction probability.

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color

Flip the leaves with probability $\delta < 1/2$

Theorem (MNS-14)

If $(1 - 2\epsilon)^2 d \ge C$ then as $n \to \infty$, the extra noise doesn't hurt the reconstruction probability.

Strong property of a non-linear dynamical system (stronger than non-ergodicity, "robust reconstruction" etc. (Janson-M-04).

???

The Block Model

- ▶ Random graph G = (V, E) on *n* nodes. Half blue / half red.
- ► Two nodes of the same color are connected with probability *a*/*n*.
- Two nodes with different colors are connected with probability b/n.
- Inference: find which nodes are red and which are blue ?
- Note: no prior information on any node.
- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- ► and ... possible to do better than random iff $(a-b)^2 > 2(a+b)$.

The Block Model Conjecture

 Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.

The Block Model Conjecture

- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.

- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.
- ► Other algorithms we know do not work as well. In particular, completely fail when (a b)² ~ 2(a + b).

- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.
- ► Other algorithms we know do not work as well. In particular, completely fail when (a b)² ~ 2(a + b).
- Note: can only solve up to global flip.

- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.
- ► Other algorithms we know do not work as well. In particular, completely fail when (a b)² ~ 2(a + b).
- Note: can only solve up to global flip.
- Note: graph is very sparse cannot hope to recover clusters exactly.

Note: initializing correctly (1/2, 1/2) is a fixed point.

- ▶ Note: initializing correctly (1/2, 1/2) is a fixed point.
- Instead initialize randomly ??
- A Randomized Algorithm.

- Note: initializing correctly (1/2, 1/2) is a fixed point.
- Instead initialize randomly ??
- A Randomized Algorithm.
- Is randomization needed?

The Block Model in pictures

A sample from the model

The Block Model in pictures

The data (one sample!)

The Block Model in pictures

What we want to Infer

► Thm 1 (M-Neeman-Sly 12): If (a - b)² ≤ 2(a + b) then impossible to infer better than random.

- ► Thm 1 (M-Neeman-Sly 12): If (a b)² ≤ 2(a + b) then impossible to infer better than random.
- Pf Idea: Show that even given the colors of all vertices at distance r → ∞ cannot do better than random.

- ► Thm 1 (M-Neeman-Sly 12): If (a b)² ≤ 2(a + b) then impossible to infer better than random.
- ► Pf Idea: Show that even given the colors of all vertices at distance r → ∞ cannot do better than random.
- ▶ Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^2 > 2(a+b)$ then possible to detect (infer better than random).

- ▶ Thm 1 (M-Neeman-Sly 12): If $(a b)^2 \le 2(a + b)$ then impossible to infer better than random.
- ► Pf Idea: Show that even given the colors of all vertices at distance r → ∞ cannot do better than random.
- ▶ Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^2 > 2(a+b)$ then possible to detect (infer better than random).
- More later.

Pf of Thm 1 in Pictures

► Thm 3 (M-Neeman-Sly, 14): (a - b)² ≥ 100(a + b) then combining any good algorithm with BP yields optimal detection probability.

- ► Thm 3 (M-Neeman-Sly, 14): (a b)² ≥ 100(a + b) then combining any good algorithm with BP yields optimal detection probability.
- Pf Sketch: Tree robust reconstruction result.

- ► Thm 3 (M-Neeman-Sly, 14): (a b)² ≥ 100(a + b) then combining any good algorithm with BP yields optimal detection probability.
- ► Pf Sketch: Tree robust reconstruction result.
- Thm 4 (M-Neeman-Sly, 14): It's possible to recover all the nodes in the graph if and only if w.h.p. for all nodes v, the majority of the neighbors of v are in the same cluster as v.

- ► Thm 3 (M-Neeman-Sly, 14): (a b)² ≥ 100(a + b) then combining any good algorithm with BP yields optimal detection probability.
- Pf Sketch: Tree robust reconstruction result.
- Thm 4 (M-Neeman-Sly, 14): It's possible to recover all the nodes in the graph if and only if w.h.p. for all nodes v, the majority of the neighbors of v are in the same cluster as v.
- Note: Thm 4 improves on a very long line of research in computer science and statistics including Boppana (87)
 Dyer and Freeze (89), Jerrum and Sorkin (89), Carson and Impagliazzo (01) and Condon and Karp (01).

• Thm 2 If $(a - b)^2 > 2(a + b)$ then possible to detect.

- Thm 2 If $(a b)^2 > 2(a + b)$ then possible to detect.
- Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If A is the adjacency matrix, then w.h.p the second eigenvector of

$$N = \begin{pmatrix} 0 & D-I \\ -I & A \end{pmatrix}, \quad D = diag(d_{v_1}, \ldots, d_{v_n}),$$

is correlated with the partition.

- Thm 2 If $(a b)^2 > 2(a + b)$ then possible to detect.
- Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If A is the adjacency matrix, then w.h.p the second eigenvector of

$$N = \begin{pmatrix} 0 & D-I \\ -I & A \end{pmatrix}, \quad D = diag(d_{v_1}, \ldots, d_{v_n}),$$

is correlated with the partition.

► No orthogonal structure! *N* is not symmetric or normal. Singular vector of *N* are useless.

- Thm 2 If $(a b)^2 > 2(a + b)$ then possible to detect.
- Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If A is the adjacency matrix, then w.h.p the second eigenvector of

$$N = \begin{pmatrix} 0 & D-I \\ -I & A \end{pmatrix}, \quad D = diag(d_{v_1}, \ldots, d_{v_n}),$$

is correlated with the partition.

- ► No orthogonal structure! *N* is not symmetric or normal. Singular vector of *N* are useless.
- KMMNSZZ established connections between N and Belief Propagation

- Thm 2 If $(a b)^2 > 2(a + b)$ then possible to detect.
- Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If A is the adjacency matrix, then w.h.p the second eigenvector of

$$N = \begin{pmatrix} 0 & D-I \\ -I & A \end{pmatrix}, \quad D = diag(d_{v_1}, \ldots, d_{v_n}),$$

is correlated with the partition.

- ► No orthogonal structure! *N* is not symmetric or normal. Singular vector of *N* are useless.
- KMMNSZZ established connections between N and Belief Propagation
- ► Note: conjectured linear algebra algorithm is deterministic.

- Both M-Neeman-Sly, Massoulie 14 use algorithms based on this matrix.
- Not quite the second eigenvector ...

- Both M-Neeman-Sly, Massoulie 14 use algorithms based on this matrix.
- Not quite the second eigenvector ...
- Bordenave-Lelarge-Massoulie 15: 2nd eigenvector works!

 Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.

- Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.
- Linearization gives $(n^2 n) \times (n^2 n)$ matrix.

- Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.
- Linearization gives $(n^2 n) \times (n^2 n)$ matrix.
- KMMNSZZ via Hashimoto 89 get small matrix

$$N = \begin{pmatrix} 0 & D-l \\ -l & A \end{pmatrix}, \quad D = diag(d_{v_1}, \ldots, d_{v_n}),$$

- Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.
- Linearization gives $(n^2 n) \times (n^2 n)$ matrix.
- KMMNSZZ via Hashimoto 89 get small matrix

$$N = \begin{pmatrix} 0 & D-I \\ -I & A \end{pmatrix}, \quad D = diag(d_{v_1}, \ldots, d_{v_n}),$$

Study it and conjecture it's optimality.

Zeta functions on graphs

1. Hashimoto-89: Introduced a graph analogue of Zeta functions of *p*-adic algebraic varieties:

$$Z(u, f) = \exp\Big(\sum_{\ell=1}^{\infty}\sum_{C\in X_{\ell}}\frac{f(C)}{\ell}u^{\ell}\Big),$$

where X_{ℓ} = set of closed non backtracking loops of length ℓ and $f(C) = \prod_{e \in C} f(e)$.

- 2. Proved that Z(f, u) is a rational function of u.
- 3. Asked: how much Z(f, u) is revealing about the graph ...

The Eigenvalues of N

The spectrum on real networks

Let *A* be the adjacency matrix of a random *d* regular graph.

- Let *A* be the adjacency matrix of a random *d* regular graph.
- Alon Conjecture: second eigenvalue bounded by $2\sqrt{d-1} + o(1)$.

- Let *A* be the adjacency matrix of a random *d* regular graph.
- Alon Conjecture: second eigenvalue bounded by $2\sqrt{d-1} + o(1)$.
- "Optimal expander".

- Let *A* be the adjacency matrix of a random *d* regular graph.
- Alon Conjecture: second eigenvalue bounded by $2\sqrt{d-1} + o(1)$.
- "Optimal expander".
- ► BLM-15: For random graphs with edge probability d/n second eigenvalue of non-backtracking matrix is $\sqrt{d} + o(1)$.

- Let *A* be the adjacency matrix of a random *d* regular graph.
- Alon Conjecture: second eigenvalue bounded by $2\sqrt{d-1} + o(1)$.
- "Optimal expander".
- ► BLM-15: For random graphs with edge probability d/n second eigenvalue of non-backtracking matrix is $\sqrt{d} + o(1)$.
- Optimal "non-backtracking" expansion.

Performance on Real Networks

\triangleright R = N.

• L = normalized laplacian (random walk matrix).

network name	BP overlap	sign of vector 2	k-means	sign of vector 2	k-means
		of R	of R	of L _{sym}	of L _{sym}
words	*	0.9107	0.875	0.5625	0.5714
political blogs	0.5167	0.9313	0.6383	0.9542	0.9476
karate club	0.5588	1	1	0.9706	1
dophin	0.9838	0.8710	0.96774	0.9677	0.9839
brsmall	*	0.6548	0.69345	0.6235	0.6687
brcorp	*	0.6993	0.72631	0.7332	0.6993
adjnoun	0.5625	0.8125	0.8214	0.5446	0.5357

► Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^2 > 2(a+b)$ then possible to detect.

- ► Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^2 > 2(a+b)$ then possible to detect.
- MNS: Let X^ℓ(u, v) = ∑_Γ ∏_{e∈G}(1((u, v) ∈ G) a+b/2) where the sum is over all non backtracking walks of length ℓ = C log n.

- ► Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^2 > 2(a+b)$ then possible to detect.
- ► MNS: Let X^ℓ(u, v) = ∑_Γ ∏_{e∈G}(1((u, v) ∈ G) a+b/2) where the sum is over all non backtracking walks of length ℓ = C log n.
- Show that X^ℓ(u, v) is (typically) larger if u and v are in same cluster.

- ► Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^2 > 2(a+b)$ then possible to detect.
- ► MNS: Let X^ℓ(u, v) = ∑_Γ ∏_{e∈G}(1((u, v) ∈ G) a+b/2) where the sum is over all non backtracking walks of length ℓ = C log n.
- Show that X^ℓ(u, v) is (typically) larger if u and v are in same cluster.
- Massoulie: Define a symmetric matrix A_{u,v} = number of self-avoiding walks from u to v of length ε log n and show second eigenvector is correlated with partition.

- ► Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^2 > 2(a+b)$ then possible to detect.
- ► MNS: Let X^ℓ(u, v) = ∑_Γ ∏_{e∈G}(1((u, v) ∈ G) a+b/2) where the sum is over all non backtracking walks of length ℓ = C log n.
- Show that X^ℓ(u, v) is (typically) larger if u and v are in same cluster.
- Massoulie: Define a symmetric matrix A_{u,v} = number of self-avoiding walks from u to v of length ε log n and show second eigenvector is correlated with partition.
- Massoulie gets symmetric matrix. MNS almost linear time.

 Other planted models: more than two clusters, unequal size etc for locked SAT problem.

- Other planted models: more than two clusters, unequal size etc for locked SAT problem.
- Typically expect computational threshold to be different than information threshold.

- Other planted models: more than two clusters, unequal size etc for locked SAT problem.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.

- Other planted models: more than two clusters, unequal size etc for locked SAT problem.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.
- More challenging: BP and Survey Propagation for satisfiability problems.

- Other planted models: more than two clusters, unequal size etc for locked SAT problem.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.
- More challenging: BP and Survey Propagation for satisfiability problems.
- How to let linear algebra algorithms utilize local information?