The Surprising Power of Belief Propagation

Elchanan Mossel

June 12, 2015

Why do you want to know about BP

- It's a popular algorithm.
- We will talk abut its analysis.
- Many open problems.
- Connections to:
- Random graphs.
- Recursions of Random Variables.
- The Cavity and Replica Methods from Physics.
- Random Matrices.
- ...

Graphical Models and Belief Propagation

- Graphical Models or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.
- Encoding based on conditional independence statements.
- Based on a probabilistic model on graph / graphical model.

Graphical Models and Belief Propagation

- Graphical Models or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.
- Encoding based on conditional independence statements.
- Based on a probabilistic model on graph / graphical model.
- (Pairwise) Graphical model is based on a graph $G=(V, E)$ and a distribution

$$
p\left(\left(x_{v}: v \in V\right)\right)=Z^{-1} \prod_{(u, v) \in E} \psi_{(u, v)}\left(x_{u}, x_{v}\right), \quad x \in A^{V}
$$

Graphical Models and Belief Propagation

- Graphical Models or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.
- Encoding based on conditional independence statements.
- Based on a probabilistic model on graph / graphical model.
- (Pairwise) Graphical model is based on a graph $G=(V, E)$ and a distribution

$$
p\left(\left(x_{v}: v \in V\right)\right)=Z^{-1} \prod_{(u, v) \in E} \psi_{(u, v)}\left(x_{u}, x_{v}\right), \quad x \in A^{V}
$$

- Goal of Belief Propagation: Compute marginals:

$$
p\left(x_{V}=a\right) ? ?
$$

The Block Model

- Random graph $G=(V, E)$ on n nodes.
- Half blue / half red.

The Block Model

- Random graph $G=(V, E)$ on n nodes.
- Half blue / half red.
- Two nodes of the same color are connected with probability a / n.
- Two nodes with different colors are connected with probability b / n.

The Block Model

- Random graph $G=(V, E)$ on n nodes.
- Half blue / half red.
- Two nodes of the same color are connected with probability a / n.
- Two nodes with different colors are connected with probability b / n.
- Inference: find which nodes are red and which are blue ?

The Block Model

- Random graph $G=(V, E)$ on n nodes.
- Half blue / half red.
- Two nodes of the same color are connected with probability a / n.
- Two nodes with different colors are connected with probability b / n.
- Inference: find which nodes are red and which are blue ?
- Given colors of neighbors?

The Block Model

- Random graph $G=(V, E)$ on n nodes.
- Half blue / half red.
- Two nodes of the same color are connected with probability a / n.
- Two nodes with different colors are connected with probability b / n.
- Inference: find which nodes are red and which are blue ?
- Given colors of neighbors?
- Given colors of neighbors of neighbors? etc.?

Belief Propagation on Trees

- On trees: $O\left(n^{2}\right)$ time to get all marginals using recursion.

Belief Propagation on Trees

- On trees: $O\left(n^{2}\right)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programing is done in O($n \times$ diameter). "Belief Propagation".

Belief Propagation on Trees

- On trees: $O\left(n^{2}\right)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programing is done in $O(n \times$ diameter $)$. "Belief Propagation".
- Belief Propagation Variables: $\left(\eta_{v \rightarrow u}^{a}:(v, u) \in E, a \in A\right)$.

Belief Propagation on Trees

- On trees: $O\left(n^{2}\right)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programing is done in O($n \times$ diameter). "Belief Propagation".
- Belief Propagation Variables: $\left(\eta_{v \rightarrow u}^{a}:(v, u) \in E, a \in A\right)$.
- Updates:

$$
\eta_{v \rightarrow u}^{a}(t+1):=Z^{-1} \prod_{w \neq u,(w, v) \in E} \sum_{b} \eta_{w \rightarrow v}^{b}(t) \psi(v, u)(b, a)
$$

Belief Propagation on Trees

- On trees: $O\left(n^{2}\right)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programing is done in $O(n \times$ diameter $)$. "Belief Propagation".
- Belief Propagation Variables: $\left(\eta_{v \rightarrow u}^{a}:(v, u) \in E, a \in A\right)$.
- Updates:

$$
\eta_{v \rightarrow u}^{a}(t+1):=Z^{-1} \prod_{w \neq u,(w, v) \in E} \sum_{b} \eta_{w \rightarrow v}^{b}(t) \psi(v, u)(b, a)
$$

- Marginal of x_{u} is approximated by

$$
p\left(x_{u}=a\right):=Z^{-1} \prod_{(v, u) \in E} \eta_{v \rightarrow u}^{a}(\infty)
$$

Belief Propagation on Trees

- On trees: $O\left(n^{2}\right)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programing is done in O($n \times$ diameter). "Belief Propagation".
- Belief Propagation Variables: $\left(\eta_{v \rightarrow u}^{a}:(v, u) \in E, a \in A\right)$.
- Updates:

$$
\eta_{v \rightarrow u}^{a}(t+1):=Z^{-1} \prod_{w \neq u,(w, v) \in E} \sum_{b} \eta_{w \rightarrow v}^{b}(t) \psi(v, u)(b, a)
$$

- Marginal of x_{u} is approximated by

$$
p\left(x_{u}=a\right):=Z^{-1} \prod_{(v, u) \in E} \eta_{v \rightarrow u}^{a}(\infty)
$$

- Example of Block model $(\theta=(a-b) / a+b)$.

$$
\eta_{v \rightarrow u}:=\frac{\prod_{w \neq u,(w, v) \in E}\left(1+\theta \eta_{w \rightarrow v}\right)-\prod_{w \neq u,(w, v) \in E}\left(1-\theta \eta_{w \rightarrow v}\right)}{\prod_{w \neq u,(w, v) \in E}\left(1+\theta \eta_{w \rightarrow v}\right)+\prod_{w \neq u,(w, v) \in E}\left(1-\theta \eta_{w \rightarrow v}\right)}
$$

Broadcasting on trees and Belief Propagation

Locally, graph = GW tree and the coloring process can be defined as follows: Let $\epsilon=\frac{b}{a+b} \in(0,1)$.

Broadcasting on trees and Belief Propagation

Locally, graph $=$ GW tree and the coloring process can be defined as follows: Let
$\epsilon=\frac{b}{a+b} \in(0,1)$.
Color the root randomly.

Broadcasting on trees and Belief Propagation

Locally, graph = GW tree and the coloring process can be defined as follows: Let
$\epsilon=\frac{b}{a+b} \in(0,1)$.
Color the root randomly.
For each child, copy the color with probability $1-\epsilon$.
Otherwise, flip the color

Broadcasting on trees and Belief Propagation

Locally, graph = GW tree and the coloring process can be defined as follows: Let
$\epsilon=\frac{b}{a+b} \in(0,1)$.
Color the root randomly.
For each child, copy the color with probability $1-\epsilon$.
Otherwise, flip the color

Broadcasting on trees and Belief Propagation

Locally, graph $=$ GW tree and the coloring process can be defined as follows: Let
$\epsilon=\frac{b}{a+b} \in(0,1)$.
Color the root randomly.
For each child, copy the color
 with probability $1-\epsilon$.
Otherwise, flip the color

Broadcasting on trees and Belief Propagation

Locally, graph = GW tree and the coloring process can be defined as follows: Let
$\epsilon=\frac{b}{a+b} \in(0,1)$.
Color the root randomly.
For each child, copy the color
 with probability $1-\epsilon$.
Otherwise, flip the color

Question: given leaves, can we guess the color of the root?

Broadcasting on trees and Belief Propagation

Locally, graph = GW tree and the coloring process can be defined as follows: Let
$\epsilon=\frac{b}{a+b} \in(0,1)$.
Color the root randomly.
For each child, copy the color with probability $1-\epsilon$.
Otherwise, flip the color

Question: given leaves, can we guess the color of the root? Note: BP computes the posterior exactly.

Broadcasting on trees and Belief Propagation

Locally, graph = GW tree and the coloring process can be defined as follows: Let
$\epsilon=\frac{b}{a+b} \in(0,1)$.
Color the root randomly.
For each child, copy the color
 with probability $1-\epsilon$.
Otherwise, flip the color

Question: given leaves, can we guess the color of the root? Note: BP computes the posterior exactly.
Question: Is the posterior close to $(0.5,0.5)$ as $r \rightarrow \infty$?.

Broadcasting on trees and Belief Propagation

Question: given leaves, can we guess the color of the root?

Broadcasting on trees and Belief Propagation

Question: given leaves, can we guess the color of the root? Note: BP computes the posterior exactly.

Broadcasting on trees and Belief Propagation

Question: given leaves, can we guess the color of the root? Note: BP computes the posterior exactly. Question: Is the posterior close to $(0.5,0.5)$ as $r \rightarrow \infty$?

Broadcasting on trees and Belief Propagation

Question: given leaves, can we guess the color of the root?
Note: BP computes the posterior exactly.
Question: Is the posterior close to $(0.5,0.5)$ as $r \rightarrow \infty$?
Answer: posterior $\rightarrow(0.5,0.5)$ iff $(1-2 \epsilon)^{2} d \leq 1$
($d:=$ is the branching number \sim average degree of the tree)
(... Evans, Kenyon, Peres, Schulman, 2000 ...)

Broadcasting on trees and Belief Propagation

Question: given leaves, can we guess the color of the root?
Note: BP computes the posterior exactly.
Question: Is the posterior close to $(0.5,0.5)$ as $r \rightarrow \infty$?
Answer: posterior $\rightarrow(0.5,0.5)$ iff $(1-2 \epsilon)^{2} d \leq 1$
($d:=$ is the branching number ~ average degree of the tree)
(... Evans, Kenyon, Peres, Schulman, 2000 ...)

Nice tools: recursions of random variables, information inequalities etc.

What we proved in pictures

Learning from far away

Theorem (Mossel-Neeman-Sly-12)

Given $G \backslash B(v, r)$ it is possible to guess the status of v better than random as $r \rightarrow \infty$ iff $(a-b)^{2}>2(a+b)$

Q: Why is this a Theorem?
A: Not obvious that non-neighbors provide diminishing information.
Note: The proof further shows that for any values of a, b, Belief Propagation maximizes the probability of guessing the color of r.

Belief Propagation on Trees

Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.

Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!

Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:

Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:
- Given a graph G, let $T(G)$ be the universal cover of G.
- $T(G)$ is the tree of non-backtracking walks on G.

Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:
- Given a graph G, let $T(G)$ be the universal cover of G.
- $T(G)$ is the tree of non-backtracking walks on G.
- To compute marginal x_{v} at G, compute x_{v} at $T(G)$.

Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:
- Given a graph G, let $T(G)$ be the universal cover of G.
- $T(G)$ is the tree of non-backtracking walks on G.
- To compute marginal x_{v} at G, compute x_{v} at $T(G)$.
- If G is not a forest then $T(G)$ is infinite ...

BP on tree-like graphs and local information

Treelike graphs, local information and LDPC

- Beautiful Work in Coding Theory - LDPC

Treelike graphs, local information and LDPC

- Beautiful Work in Coding Theory - LDPC
- If $G=(V, E)$

1. locally tree-like and
2. can initialize $\eta_{u \rightarrow v}$ so that they are correlated to x_{v} Then BP converges to correct values!

Treelike graphs, local information and LDPC

- Beautiful Work in Coding Theory - LDPC
- If $G=(V, E)$

1. locally tree-like and
2. can initialize $\eta_{u \rightarrow v}$ so that they are correlated to x_{v} Then BP converges to correct values!

- Luby-Mitzenmacher-Shokrollahi-88
- Spielman-00,Richardson-Shokrollahi-Urbanke-01.
- Recent breakthrough: spatially coupled codes - achieve capacity efficiently - Kudekar-Richardson Urnabke.

Example: Block Models with Noisy information

- When can one estimate the color of v given $S(v, r)$ better than random as $r \rightarrow \infty$ given noisy information.

Example: Block Models with Noisy information

- When can one estimate the color of v given $S(v, r)$ better than random as $r \rightarrow \infty$ given noisy information.
- Noisy " = " e.g. flip each color in $S(v, r)$ with probability $0.5-\epsilon$.

Example: Block Models with Noisy information

- When can one estimate the color of v given $S(v, r)$ better than random as $r \rightarrow \infty$ given noisy information.
- Noisy " = " e.g. flip each color in $S(v, r)$ with probability $0.5-\epsilon$.

Theorem (Mossel-Peres-04)

For every $\epsilon>0$ can do better than random iff
$(a-b)^{2}>2(a+b)$.

Example: Block Models with Noisy information

- When can one estimate the color of v given $S(v, r)$ better than random as $r \rightarrow \infty$ given noisy information.
- Noisy " = " e.g. flip each color in $S(v, r)$ with probability $0.5-\epsilon$.

Theorem (Mossel-Peres-04)

For every $\epsilon>0$ can do better than random iff

$$
(a-b)^{2}>2(a+b)
$$

Theorem (Mossel-Neeman-Sly-14)

If $(a-b)^{2}>100(a+b)$ then for every $\epsilon>0$, the posterior of the color of v correctly is the same with and without noise

Example: Block Models with Noisy information

- When can one estimate the color of v given $S(v, r)$ better than random as $r \rightarrow \infty$ given noisy information.
- Noisy " = " e.g. flip each color in $S(v, r)$ with probability $0.5-\epsilon$.

Theorem (Mossel-Peres-04)

For every $\epsilon>0$ can do better than random iff

$$
(a-b)^{2}>2(a+b)
$$

Theorem (Mossel-Neeman-Sly-14)

If $(a-b)^{2}>100(a+b)$ then for every $\epsilon>0$, the posterior of the color of v correctly is the same with and without noise

It's all about knowing your random variables recursions!

Example: Block Models with Noisy information

- When can one estimate the color of v given $S(v, r)$ better than random as $r \rightarrow \infty$ given noisy information.
- Noisy " = " e.g. flip each color in $S(v, r)$ with probability $0.5-\epsilon$.

Theorem (Mossel-Peres-04)

For every $\epsilon>0$ can do better than random iff

$$
(a-b)^{2}>2(a+b)
$$

Theorem (Mossel-Neeman-Sly-14)

If $(a-b)^{2}>100(a+b)$ then for every $\epsilon>0$, the posterior of the color of v correctly is the same with and without noise

It's all about knowing your random variables recursions!
Conjecture - this is true for all a and b

Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process

Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.
For each child, copy the color with probability $1-\epsilon$. Otherwise, flip the color

Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.
For each child, copy the color with probability $1-\epsilon$. Otherwise, flip the color

Flip the leaves with probability $\delta<1 / 2$

Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.
For each child, copy the color with probability $1-\epsilon$. Otherwise, flip the color

Flip the leaves with probability $\delta<1 / 2$

Theorem (MNS-14)

If $(1-2 \epsilon)^{2} d \geq C$ then as $n \rightarrow \infty$, the extra noise doesn't hurt the reconstruction probability.

Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.
For each child, copy the color with probability $1-\epsilon$. Otherwise, flip the color

Flip the leaves with probability $\delta<1 / 2$

Theorem (MNS-14)

If $(1-2 \epsilon)^{2} d \geq C$ then as $n \rightarrow \infty$, the extra noise doesn't hurt the reconstruction probability.

Strong property of a non-linear dynamical system (stronger than non-ergodicity, "robust reconstruction" etc. (Janson-M-04).

BP on tree-like graphs without local information

???

The Block Model

- Random graph $G=(V, E)$ on n nodes. Half blue / half red.
- Two nodes of the same color are connected with probability a / n.
- Two nodes with different colors are connected with probability b / n.
- Inference: find which nodes are red and which are blue ?
- Note: no prior information on any node.
- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- and ... possible to do better than random iff $(a-b)^{2}>2(a+b)$.

The Block Model Conjecture

- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.

The Block Model Conjecture

- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.

The Block Model Conjecture

- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.
- Other algorithms we know do not work as well. In particular, completely fail when $(a-b)^{2} \sim 2(a+b)$.

The Block Model Conjecture

- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.
- Other algorithms we know do not work as well. In particular, completely fail when $(a-b)^{2} \sim 2(a+b)$.
- Note: can only solve up to global flip.

The Block Model Conjecture

- Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.
- Other algorithms we know do not work as well. In particular, completely fail when $(a-b)^{2} \sim 2(a+b)$.
- Note: can only solve up to global flip.
- Note: graph is very sparse - cannot hope to recover clusters exactly.

BP on tree-like graphs without local information

BP on tree-like graphs without local information

- Note: initializing correctly $(1 / 2,1 / 2)$ is a fixed point.

BP on tree-like graphs without local information

- Note: initializing correctly $(1 / 2,1 / 2)$ is a fixed point.
- Instead initialize randomly ??
- A Randomized Algorithm.

BP on tree-like graphs

- Note: initializing correctly $(1 / 2,1 / 2)$ is a fixed point.
- Instead initialize randomly ??
- A Randomized Algorithm.
- Is randomization needed?

The Block Model in pictures

A sample from the model

The Block Model in pictures

The data (one sample!)

The Block Model in pictures

What we want to Infer

The Conjecture is Correct - Part 1

- Thm 1 (M-Neeman-Sly 12): If $(a-b)^{2} \leq 2(a+b)$ then impossible to infer better than random.

The Conjecture is Correct - Part 1

- Thm 1 (M-Neeman-Sly 12): If $(a-b)^{2} \leq 2(a+b)$ then impossible to infer better than random.
- Pf Idea: Show that even given the colors of all vertices at distance $r \rightarrow \infty$ cannot do better than random.

The Conjecture is Correct - Part 1

- Thm 1 (M-Neeman-Sly 12): If $(a-b)^{2} \leq 2(a+b)$ then impossible to infer better than random.
- Pf Idea: Show that even given the colors of all vertices at distance $r \rightarrow \infty$ cannot do better than random.
- Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^{2}>2(a+b)$ then possible to detect (infer better than random).

The Conjecture is Correct - Part 1

- Thm 1 (M-Neeman-Sly 12): If $(a-b)^{2} \leq 2(a+b)$ then impossible to infer better than random.
- Pf Idea: Show that even given the colors of all vertices at distance $r \rightarrow \infty$ cannot do better than random.
- Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^{2}>2(a+b)$ then possible to detect (infer better than random).
- More later.

Pf of Thm 1 in Pictures

The Conjecture is Correct - Part 2

- Thm 3 (M-Neeman-Sly, 14): $(a-b)^{2} \geq 100(a+b)$ then combining any good algorithm with BP yields optimal detection probability.

The Conjecture is Correct - Part 2

- Thm 3 (M-Neeman-Sly, 14): $(a-b)^{2} \geq 100(a+b)$ then combining any good algorithm with BP yields optimal detection probability.
- Pf Sketch: Tree robust reconstruction result.

The Conjecture is Correct - Part 2

- Thm 3 (M-Neeman-Sly, 14): $(a-b)^{2} \geq 100(a+b)$ then combining any good algorithm with BP yields optimal detection probability.
- Pf Sketch: Tree robust reconstruction result.
- Thm 4 (M-Neeman-Sly, 14): It's possible to recover all the nodes in the graph if and only if w.h.p. for all nodes v, the majority of the neighbors of v are in the same cluster as v.

The Conjecture is Correct - Part 2

- Thm 3 (M-Neeman-Sly, 14): $(a-b)^{2} \geq 100(a+b)$ then combining any good algorithm with BP yields optimal detection probability.
- Pf Sketch: Tree robust reconstruction result.
- Thm 4 (M-Neeman-Sly, 14): It's possible to recover all the nodes in the graph if and only if w.h.p. for all nodes v, the majority of the neighbors of v are in the same cluster as v.
- Note: Thm 4 improves on a very long line of research in computer science and statistics including Boppana (87) Dyer and Freeze (89), Jerrum and Sorkin (89), Carson and Impagliazzo (01) and Condon and Karp (01).

BP and a New Type of Random Matrix

- Thm 2 If $(a-b)^{2}>2(a+b)$ then possible to detect.

BP and a New Type of Random Matrix

- Thm 2 If $(a-b)^{2}>2(a+b)$ then possible to detect.
- Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If A is the adjacency matrix, then w.h.p the second eigenvector of

$$
N=\left(\begin{array}{cc}
0 & D-I \\
-I & A
\end{array}\right), \quad D=\operatorname{diag}\left(d_{v_{1}}, \ldots, d_{v_{n}}\right)
$$

is correlated with the partition.

BP and a New Type of Random Matrix

- Thm 2 If $(a-b)^{2}>2(a+b)$ then possible to detect.
- Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If A is the adjacency matrix, then w.h.p the second eigenvector of

$$
N=\left(\begin{array}{cc}
0 & D-I \\
-I & A
\end{array}\right), \quad D=\operatorname{diag}\left(d_{v_{1}}, \ldots, d_{v_{n}}\right)
$$

is correlated with the partition.

- No orthogonal structure! N is not symmetric or normal. Singular vector of N are useless.

BP and a New Type of Random Matrix

- Thm 2 If $(a-b)^{2}>2(a+b)$ then possible to detect.
- Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If A is the adjacency matrix, then w.h.p the second eigenvector of

$$
N=\left(\begin{array}{cc}
0 & D-I \\
-I & A
\end{array}\right), \quad D=\operatorname{diag}\left(d_{v_{1}}, \ldots, d_{v_{n}}\right)
$$

is correlated with the partition.

- No orthogonal structure! N is not symmetric or normal. Singular vector of N are useless.
- KMMNSZZ established connections between N and Belief Propagation

BP and a New Type of Random Matrix

- Thm 2 If $(a-b)^{2}>2(a+b)$ then possible to detect.
- Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If A is the adjacency matrix, then w.h.p the second eigenvector of

$$
N=\left(\begin{array}{cc}
0 & D-I \\
-I & A
\end{array}\right), \quad D=\operatorname{diag}\left(d_{v_{1}}, \ldots, d_{v_{n}}\right)
$$

is correlated with the partition.

- No orthogonal structure! N is not symmetric or normal. Singular vector of N are useless.
- KMMNSZZ established connections between N and Belief Propagation
- Note: conjectured linear algebra algorithm is deterministic.

BP and a New Type of Random Matrix

- Both M-Neeman-Sly, Massoulie 14 use algorithms based on this matrix.
- Not quite the second eigenvector ...

BP and a New Type of Random Matrix

- Both M-Neeman-Sly, Massoulie 14 use algorithms based on this matrix.
- Not quite the second eigenvector ...
- Bordenave-Lelarge-Massoulie 15: 2nd eigenvector works!

From BP to linear Algebra

- Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.

From BP to linear Algebra

- Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.
- Linearization gives $\left(n^{2}-n\right) \times\left(n^{2}-n\right)$ matrix.

From BP to linear Algebra

- Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.
- Linearization gives $\left(n^{2}-n\right) \times\left(n^{2}-n\right)$ matrix.
- KMMNSZZ via Hashimoto 89 - get small matrix

$$
N=\left(\begin{array}{cc}
0 & D-l \\
-I & A
\end{array}\right), \quad D=\operatorname{diag}\left(d_{v_{1}}, \ldots, d_{v_{n}}\right)
$$

From BP to linear Algebra

- Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.
- Linearization gives $\left(n^{2}-n\right) \times\left(n^{2}-n\right)$ matrix.
- KMMNSZZ via Hashimoto 89 - get small matrix

$$
N=\left(\begin{array}{cc}
0 & D-I \\
-I & A
\end{array}\right), \quad D=\operatorname{diag}\left(d_{v_{1}}, \ldots, d_{v_{n}}\right)
$$

- Study it and conjecture it's optimality.

Zeta functions on graphs

1. Hashimoto-89: Introduced a graph analogue of Zeta functions of p-adic algebraic varieties:

$$
Z(u, f)=\exp \left(\sum_{\ell=1}^{\infty} \sum_{C \in X_{\ell}} \frac{f(C)}{\ell} u^{\ell}\right)
$$

where $X_{\ell}=$ set of closed non backtracking loops of length ℓ and $f(C)=\prod_{e \in C} f(e)$.
2. Proved that $Z(f, u)$ is a rational function of u.
3. Asked: how much $Z(f, u)$ is revealing about the graph ...

The Eigenvalues of N

$$
\frac{a+b}{2}=3, \quad \frac{a-b}{2}=2, \quad \sqrt{\frac{a+b}{2}}=1.732 \ldots
$$

The spectrum on real networks

Alon Conjecture for non-regular graphs

- Let A be the adjacency matrix of a random d regular graph.

Alon Conjecture for non-regular graphs

- Let A be the adjacency matrix of a random d regular graph.
- Alon Conjecture: second eigenvalue bounded by $2 \sqrt{d-1}+o(1)$.

Alon Conjecture for non-regular graphs

- Let A be the adjacency matrix of a random d regular graph.
- Alon Conjecture: second eigenvalue bounded by $2 \sqrt{d-1}+o(1)$.
- "Optimal expander".

Alon Conjecture for non-regular graphs

- Let A be the adjacency matrix of a random d regular graph.
- Alon Conjecture: second eigenvalue bounded by $2 \sqrt{d-1}+o(1)$.
- "Optimal expander".
- BLM-15: For random graphs with edge probability d / n second eigenvalue of non-backtracking matrix is $\sqrt{d}+o(1)$.

Alon Conjecture for non-regular graphs

- Let A be the adjacency matrix of a random d regular graph.
- Alon Conjecture: second eigenvalue bounded by $2 \sqrt{d-1}+o(1)$.
- "Optimal expander".
- BLM-15: For random graphs with edge probability d / n second eigenvalue of non-backtracking matrix is $\sqrt{d}+o(1)$.
- Optimal "non-backtracking" expansion.

Performance on Real Networks

- $R=N$.
- $L=$ normalized laplacian (random walk matrix).

network name	BP overlap	sign of vector 2 of \mathbf{R}	k-means of \mathbf{R}	sign of vector 2 of $\mathbf{L}_{\text {sym }}$	\mathbf{k}-means of $\mathbf{L}_{\text {sym }}$
words	$*$	$\mathbf{0 . 9 1 0 7}$	0.875	0.5625	0.5714
political blogs	0.5167	0.9313	0.6383	$\mathbf{0 . 9 5 4 2}$	0.9476
karate club	0.5588	$\mathbf{1}$	$\mathbf{1}$	0.9706	$\mathbf{1}$
dophin	$\mathbf{0 . 9 8 3 8}$	0.8710	0.96774	0.9677	$\mathbf{0 . 9 8 3 9}$
brsmall	$*$	0.6548	$\mathbf{0 . 6 9 3 4 5}$	0.6235	0.6687
brcorp	$*$	0.6993	0.72631	$\mathbf{0 . 7 3 3 2}$	0.6993
adjnoun	0.5625	0.8125	$\mathbf{0 . 8 2 1 4}$	0.5446	0.5357

Two proofs avoiding the spectral conjecture

- Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^{2}>2(a+b)$ then possible to detect.

Two proofs avoiding the spectral conjecture

- Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^{2}>2(a+b)$ then possible to detect.
- MNS: Let $X^{\ell}(u, v)=\sum_{\Gamma} \prod_{e \in G}\left(1((u, v) \in G)-\frac{a+b}{2}\right)$ where the sum is over all non backtracking walks of length $\ell=C \log n$.

Two proofs avoiding the spectral conjecture

- Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^{2}>2(a+b)$ then possible to detect.
- MNS: Let $X^{\ell}(u, v)=\sum_{\Gamma} \prod_{e \in G}\left(1((u, v) \in G)-\frac{a+b}{2}\right)$ where the sum is over all non backtracking walks of length $\ell=C \log n$.
- Show that $X^{\ell}(u, v)$ is (typically) larger if u and v are in same cluster.

Two proofs avoiding the spectral conjecture

- Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^{2}>2(a+b)$ then possible to detect.
- MNS: Let $X^{\ell}(u, v)=\sum_{\Gamma} \prod_{e \in G}\left(1((u, v) \in G)-\frac{a+b}{2}\right)$ where the sum is over all non backtracking walks of length $\ell=C \log n$.
- Show that $X^{\ell}(u, v)$ is (typically) larger if u and v are in same cluster.
- Massoulie: Define a symmetric matrix $A_{u, v}=$ number of self-avoiding walks from u to v of length $\varepsilon \log n$ and show second eigenvector is correlated with partition.

Two proofs avoiding the spectral conjecture

- Thm 2 (M-Neeman-Sly, Massoulie 14): If $(a-b)^{2}>2(a+b)$ then possible to detect.
- MNS: Let $X^{\ell}(u, v)=\sum_{\Gamma} \prod_{e \in G}\left(1((u, v) \in G)-\frac{a+b}{2}\right)$ where the sum is over all non backtracking walks of length $\ell=C \log n$.
- Show that $X^{\ell}(u, v)$ is (typically) larger if u and v are in same cluster.
- Massoulie: Define a symmetric matrix $A_{u, v}=$ number of self-avoiding walks from u to v of length $\varepsilon \log n$ and show second eigenvector is correlated with partition.
- Massoulie gets symmetric matrix. MNS - almost linear time.

Future Research

- Other planted models: more than two clusters, unequal size etc for locked SAT problem.

Future Research

- Other planted models: more than two clusters, unequal size etc for locked SAT problem.
- Typically expect computational threshold to be different than information threshold.

Future Research

- Other planted models: more than two clusters, unequal size etc for locked SAT problem.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.

Future Research

- Other planted models: more than two clusters, unequal size etc for locked SAT problem.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.
- More challenging: BP and Survey Propagation for satisfiability problems.

Future Research

- Other planted models: more than two clusters, unequal size etc for locked SAT problem.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.
- More challenging: BP and Survey Propagation for satisfiability problems.
- How to let linear algebra algorithms utilize local information?

