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Why do you want to know about BP

I It’s a popular algorithm.
I We will talk abut its analysis.
I Many open problems.
I Connections to:

I Random graphs.
I Recursions of Random Variables.
I The Cavity and Replica Methods from Physics.
I Random Matrices.
I ...



Graphical Models and Belief Propagation

I Graphical Models or Markov Random Fields are one of the
most popular ways to prescribe high dimensional
distributions.

I Encoding based on conditional independence statements.
I Based on a probabilistic model on graph / graphical model.

I (Pairwise) Graphical model is based on a graph
G = (V ,E) and a distribution

p((xv : v ∈ V )) = Z−1
∏

(u,v)∈E

ψ(u,v)(xu, xv ), x ∈ AV

I Goal of Belief Propagation: Compute marginals:

p(xv = a)??
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The Block Model

I Random graph G = (V ,E) on n nodes.
I Half blue / half red.

I Two nodes of the same color are connected with
probability a/n.

I Two nodes with different colors are connected with
probability b/n.

I Inference: find which nodes are red and which are blue ?
I Given colors of neighbors?
I Given colors of neighbors of neighbors? etc.?
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Belief Propagation on Trees

I On trees: O(n2) time to get all marginals using recursion.

I More sophisticated Dynamic Programing is done in
O(n × diameter). ”Belief Propagation”.

I Belief Propagation Variables: (ηa
v→u : (v ,u) ∈ E , a ∈ A).

I Updates:

ηa
v→u(t + 1) := Z−1

∏
w 6=u,(w ,v)∈E

∑
b

ηb
w→v (t)ψ(v ,u)(b,a)

I Marginal of xu is approximated by

p(xu = a) := Z−1
∏

(v ,u)∈E

ηa
v→u(∞)

I Example of Block model (θ = (a− b)/a + b).

ηv→u :=

∏
w 6=u,(w ,v)∈E(1 + θηw→v )−

∏
w 6=u,(w ,v)∈E(1− θηw→v )∏

w 6=u,(w ,v)∈E(1 + θηw→v ) +
∏

w 6=u,(w ,v)∈E(1− θηw→v )
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Broadcasting on trees and Belief Propagation

Locally, graph = GW tree and
the coloring process can be
defined as follows: Let
ε = b

a+b ∈ (0,1).

Color the root randomly.

For each child, copy the color
with probability 1− ε.
Otherwise, flip the color

Question: given leaves, can we guess the color of the root?
Note: BP computes the posterior exactly

.

Question: Is the posterior close to (0.5,0.5) as r →∞?

.
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Broadcasting on trees and Belief Propagation

Question: given leaves, can we guess the color of the root?

Note: BP computes the posterior exactly

.

Question: Is the posterior close to (0.5,0.5) as r →∞?
Answer: posterior→ (0.5,0.5) iff (1− 2ε)2d ≤ 1
(d := is the branching number ∼ average degree of the tree)
(... Evans, Kenyon, Peres, Schulman, 2000 ... )
Nice tools: recursions of random variables, information
inequalities etc.
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What we proved in pictures



Learning from far away

Theorem (Mossel-Neeman-Sly-12)
Given G \ B(v , r) it is possible to guess the status of v better
than random as r →∞ iff (a− b)2 > 2(a + b)

Q: Why is this a Theorem?
A: Not obvious that non-neighbors provide diminishing
information.
Note: The proof further shows that for any values of a,b, Belief
Propagation maximizes the probability of guessing the color of
r .



Belief Propagation on Trees



Belief Propagation on (tree-like) graphs

I BP is very extensively applied to general graphs.

I Not clear what it gives!
I Mathematical formulation:
I Given a graph G, let T (G) be the universal cover of G.
I T (G) is the tree of non-backtracking walks on G.
I To compute marginal xv at G, compute xv at T (G).
I If G is not a forest then T (G) is infinite ...
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BP on tree-like graphs and local information



Treelike graphs, local information and LDPC

I Beautiful Work in Coding Theory - LDPC

I If G = (V ,E)

1. locally tree-like and
2. can initialize ηu→v so that they are correlated to xv

Then BP converges to correct values!
I Luby-Mitzenmacher-Shokrollahi-88
I Spielman-00,Richardson-Shokrollahi-Urbanke-01.
I Recent breakthrough: spatially coupled codes - achieve

capacity efficiently - Kudekar-Richardson Urnabke.
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Example: Block Models with Noisy information

I When can one estimate the color of v given S(v , r) better
than random as r →∞ given noisy information.

I Noisy ” = ” e.g. flip each color in S(v , r) with probability
0.5− ε.

Theorem (Mossel-Peres-04)
For every ε > 0 can do better than random iff
(a− b)2 > 2(a + b).

Theorem (Mossel-Neeman-Sly-14)

If (a− b)2 > 100(a + b) then for every ε > 0, the posterior of
the color of v correctly is the same with and without noise

It’s all about knowing your random variables recursions!
Conjecture - this is true for all a and b
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Robust tree reconstruction

To Analyze BP with good initial messages, we need to
understand the following process

Take a tree and color the root randomly.

For each child, copy the color with
probability 1− ε. Otherwise, flip the color

Flip the leaves with probability δ < 1/2

Theorem (MNS-14)

If (1− 2ε)2d ≥ C then as n→∞, the extra noise doesn’t hurt
the reconstruction probability.

Strong property of a non-linear dynamical system (stronger
than non-ergodicity, ”robust reconstruction” etc. (Janson-M-04)

.
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BP on tree-like graphs without local information

???



The Block Model

I Random graph G = (V ,E) on n nodes. Half blue / half red.
I Two nodes of the same color are connected with

probability a/n.
I Two nodes with different colors are connected with

probability b/n.
I Inference: find which nodes are red and which are blue ?
I Note: no prior information on any node.
I Conjecture (Decelle, Krzakala, Moore and Zdeborova):

”Belief-Propagation” is the optimal algorithm.
I and ... possible to do better than random iff

(a− b)2 > 2(a + b).
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The data (one sample!)



The Block Model in pictures
What we want to Infer



The Conjecture is Correct - Part 1

I Thm 1 (M-Neeman-Sly 12): If (a− b)2 ≤ 2(a + b) then
impossible to infer better than random.

I Pf Idea: Show that even given the colors of all vertices at
distance r →∞ cannot do better than random.

I Thm 2 (M-Neeman-Sly, Massoulie 14): If
(a− b)2 > 2(a + b) then possible to detect (infer better
than random).

I More later.



The Conjecture is Correct - Part 1

I Thm 1 (M-Neeman-Sly 12): If (a− b)2 ≤ 2(a + b) then
impossible to infer better than random.

I Pf Idea: Show that even given the colors of all vertices at
distance r →∞ cannot do better than random.

I Thm 2 (M-Neeman-Sly, Massoulie 14): If
(a− b)2 > 2(a + b) then possible to detect (infer better
than random).

I More later.



The Conjecture is Correct - Part 1

I Thm 1 (M-Neeman-Sly 12): If (a− b)2 ≤ 2(a + b) then
impossible to infer better than random.

I Pf Idea: Show that even given the colors of all vertices at
distance r →∞ cannot do better than random.

I Thm 2 (M-Neeman-Sly, Massoulie 14): If
(a− b)2 > 2(a + b) then possible to detect (infer better
than random).

I More later.



The Conjecture is Correct - Part 1

I Thm 1 (M-Neeman-Sly 12): If (a− b)2 ≤ 2(a + b) then
impossible to infer better than random.

I Pf Idea: Show that even given the colors of all vertices at
distance r →∞ cannot do better than random.

I Thm 2 (M-Neeman-Sly, Massoulie 14): If
(a− b)2 > 2(a + b) then possible to detect (infer better
than random).

I More later.



Pf of Thm 1 in Pictures



Pf of Thm 1 in Pictures



Pf of Thm 1 in Pictures



Pf of Thm 1 in Pictures



Pf of Thm 1 in Pictures



The Conjecture is Correct - Part 2

I Thm 3 (M-Neeman-Sly, 14): (a− b)2 ≥ 100(a + b) then
combining any good algorithm with BP yields optimal
detection probability.

I Pf Sketch: Tree robust reconstruction result.
I Thm 4 (M-Neeman-Sly, 14): It’s possible to recover all the

nodes in the graph if and only if w.h.p. for all nodes v , the
majority of the neighbors of v are in the same cluster as v .

I Note: Thm 4 improves on a very long line of research in
computer science and statistics including Boppana (87)
Dyer and Freeze (89), Jerrum and Sorkin (89), Carson and
Impagliazzo (01) and Condon and Karp (01).
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BP and a New Type of Random Matrix

I Thm 2 If (a− b)2 > 2(a + b) then possible to detect.

I Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If
A is the adjacency matrix, then w.h.p the second
eigenvector of

N =

(
0 D − I
−I A

)
, D = diag(dv1 , . . . ,dvn),

is correlated with the partition.
I No orthogonal structure! N is not symmetric or normal.

Singular vector of N are useless.
I KMMNSZZ established connections between N and Belief

Propagation
I Note: conjectured linear algebra algorithm is deterministic.
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I Both M-Neeman-Sly, Massoulie 14 use algorithms based
on this matrix.

I Not quite the second eigenvector ...

I Bordenave-Lelarge-Massoulie 15: 2nd eigenvector works!
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From BP to linear Algebra

I Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local
information linearize it.

I Linearization gives (n2 − n)× (n2 − n) matrix.
I KMMNSZZ via Hashimoto 89 - get small matrix

N =

(
0 D − I
−I A

)
, D = diag(dv1 , . . . ,dvn),

I Study it and conjecture it’s optimality.



From BP to linear Algebra

I Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local
information linearize it.

I Linearization gives (n2 − n)× (n2 − n) matrix.

I KMMNSZZ via Hashimoto 89 - get small matrix

N =

(
0 D − I
−I A

)
, D = diag(dv1 , . . . ,dvn),

I Study it and conjecture it’s optimality.



From BP to linear Algebra

I Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local
information linearize it.

I Linearization gives (n2 − n)× (n2 − n) matrix.
I KMMNSZZ via Hashimoto 89 - get small matrix

N =

(
0 D − I
−I A

)
, D = diag(dv1 , . . . ,dvn),

I Study it and conjecture it’s optimality.



From BP to linear Algebra

I Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local
information linearize it.

I Linearization gives (n2 − n)× (n2 − n) matrix.
I KMMNSZZ via Hashimoto 89 - get small matrix

N =

(
0 D − I
−I A

)
, D = diag(dv1 , . . . ,dvn),

I Study it and conjecture it’s optimality.



Zeta functions on graphs

1. Hashimoto-89: Introduced a graph analogue of Zeta
functions of p-adic algebraic varieties:

Z (u, f ) = exp
( ∞∑

`=1

∑
C∈X`

f (C)

`
u`
)
,

where X` = set of closed non backtracking loops of length
` and f (C) =

∏
e∈C f (e).

2. Proved that Z (f ,u) is a rational function of u.
3. Asked: how much Z (f ,u) is revealing about the graph ...



The Eigenvalues of N

a + b
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The spectrum on real networks
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Alon Conjecture for non-regular graphs

I Let A be the adjacency matrix of a random d regular graph.

I Alon Conjecture: second eigenvalue bounded by
2
√

d − 1 + o(1).
I ”Optimal expander”.
I BLM-15: For random graphs with edge probability d/n

second eigenvalue of non-backtracking matrix is√
d + o(1).

I Optimal ”non-backtracking” expansion.
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Performance on Real Networks

I R = N .
I L = normalized laplacian (random walk matrix).

network name BP overlap sign of vector 2 k-means sign of vector 2 k-means
of R of R of Lsym of Lsym

words * 0.9107 0.875 0.5625 0.5714
political blogs 0.5167 0.9313 0.6383 0.9542 0.9476
karate club 0.5588 1 1 0.9706 1

dophin 0.9838 0.8710 0.96774 0.9677 0.9839
brsmall * 0.6548 0.69345 0.6235 0.6687
brcorp * 0.6993 0.72631 0.7332 0.6993

adjnoun 0.5625 0.8125 0.8214 0.5446 0.5357



Two proofs avoiding the spectral conjecture

I Thm 2 (M-Neeman-Sly, Massoulie 14): If
(a− b)2 > 2(a + b) then possible to detect.

I MNS: Let X `(u, v) =
∑

Γ

∏
e∈G(1((u, v) ∈ G)− a+b

2 ) where
the sum is over all non backtracking walks of length
` = C log n.

I Show that X `(u, v) is (typically) larger if u and v are in
same cluster.

I Massoulie: Define a symmetric matrix Au,v = number of
self-avoiding walks from u to v of length ε log n and show
second eigenvector is correlated with partition.

I Massoulie gets symmetric matrix. MNS - almost linear
time.
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Future Research

I Other planted models: more than two clusters, unequal
size etc for locked SAT problem.

I Typically expect computational threshold to be different
than information threshold.

I For example: hidden clique.
I More challenging: BP and Survey Propagation for

satisfiability problems.
I How to let linear algebra algorithms utilize local

information?
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