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Subshifts of finite type

Let us color the vertices of the lattice Zd using a finite number
of colors, with the constraint that some pairs of colors are not
allowed for adjacent sites.

Questions

What do typical configurations look like?
How to define “the uniform distribution” on infinite allowed
colorings?
How to sample configurations uniformly?

Given the set A of colors and the (finite) list of constraints,
the set Σ of allowed configurations is called a:

subshift of finite type (SFT).

It is a subset of AZd
, which is shift-invariant.
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Example

Fibonacci / golden mean / hard-core (or hard-square) subshift

Set of configurations without two consecutive black squares.

A two-dimensional
configuration

A one-dimensional
configuration

0 1

Graph of allowed transitions
in one-dimension
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One-dimensional SFT

Let A be an alphabet with n letters, and let A ∈Mn({0, 1}).

One-dimensional subshift of finite type

The subshift of finite type associated to A is the set ΣA of words
w ∈ AZ such that if Ai ,j = 0, w does not contain the pattern ij .

Ai ,j =

{
1 if ij is an allowed pattern,
0 if ij is a forbidden pattern.

ΣA = {w ∈ AZ;∀k ∈ Z,Awk ,wk+1
= 1}.

In what follows, we assume that the matrix A is irreducible and
aperiodic.
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The Parry measure

From Perron-Frobenius theory, the matrix A has a real eigenvalue
λ > 0 such that |µ| ≤ λ for any other eigenvalue µ.
Furthermore, there is a unique choice of r1, . . . , rn ≥ 0 such that∑n

i=1 ri = 1 and

A

r1
...
rn

 = λ

r1
...
rn

 .

Definition of the Parry measure

The Parry measure is the (shift-invariant) Markov measure π on
AZ of transition matrix P defined, for any i , j ∈ A, by

Pi ,j = Ai ,j
rj
λri

.

For a word a1 . . . ak ∈ Ak , π(a1 . . . ak) = π(a1)Pa1,a2 . . .Pak−1,ak .
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The Parry measure

The Parry measure π is “the uniform distribution” on ΣA.

Proposition

Let µk be the uniform measure on allowed patterns of length
2k + 1, centered at position 0.
The sequence µk converges (weakly) to π on AZ .
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Markov-uniform property

Proposition

The Parry measure is Markov-uniform: for given k ≥ 1 and
a, b ∈ A, the value

π(awb)

does not depend on the word w ∈ Ak such that awb is allowed.

Proof. By definition, Pi ,j = Ai ,j
rj
λri
. If awb is allowed, then:

π(awb) = πaPa,w1Pw1,w2 . . .Pwk−1,wk
Pwk ,b

= πa
rw1

λra

rw2

λrw1

· · · rwk

λrwk−1

rb
λrwk

=
πarb
λk+1ra

.
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Measure of maximal entropy

Theorem

Let MΣA
be the set of translation invariant measures on the SFT

ΣA, and let π ∈MΣA
. The following properties are equivalent.

(i) π is the Parry measure associated to ΣA,

(ii) π is a Markov-uniform measure on ΣA,

(iii) π is the measure of maximal entropy of ΣA,

(iv) the entropy of π is equal to the topological entropy h(ΣA).

On Zd , the equivalence between (ii), (iii), and (iv) can be
extended to a class of multi-dimensional SFT.
But there can be several measures satisfying these
properties...
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One-dimensional Fibonacci SFT

Let A = {0, 1}. The one-dimensional Fibonacci SFT is the set
of words that do not contain two consecutive 1’s. It is given by:

A =

(
1 1
1 0

)
.

Its topological entropy is equal to logϕ, where ϕ = 1+
√

5
2 .

The Parry measure is the Markov measure given by

0 1
1
ϕ

1
ϕ2

1

with π0 = ϕ2

1+ϕ2 and π1 = 1
1+ϕ2 .

Irène Marcovici Uniform Sampling of Subshifts of Finite Type



First rejection sampling

The Parry measure of the Fibonacci SFT can be generated by:

choosing independently to write a 0 with probability r0 = 1
ϕ

and a 1 with probability r1 = 1
ϕ2 ,

rejecting the 1’s creating forbidden patterns.

Lemma

For any SFT, the Parry measure can be generated by independent
draws of letters with probability (ri )i∈A, with reject of a letter if it
creates a forbidden pattern.

Proof.

Pi ,j = Ai ,j
rj
λri

= Ai ,j
rj∑

k∈A Ai ,k rk
= Ai ,j

rj∑
k∈S(i) rk

.

where S(i) = {j ∈ A;Ai ,j = 1} is the set of succesors of i .

Irène Marcovici Uniform Sampling of Subshifts of Finite Type



First rejection sampling

The Parry measure of the Fibonacci SFT can be generated by:

choosing independently to write a 0 with probability r0 = 1
ϕ

and a 1 with probability r1 = 1
ϕ2 ,

rejecting the 1’s creating forbidden patterns.

Lemma

For any SFT, the Parry measure can be generated by independent
draws of letters with probability (ri )i∈A, with reject of a letter if it
creates a forbidden pattern.

Proof.

Pi ,j = Ai ,j
rj
λri

= Ai ,j
rj∑

k∈A Ai ,k rk
= Ai ,j

rj∑
k∈S(i) rk

.

where S(i) = {j ∈ A;Ai ,j = 1} is the set of succesors of i .

Irène Marcovici Uniform Sampling of Subshifts of Finite Type



First rejection sampling

The Parry measure of the Fibonacci SFT can be generated by:

choosing independently to write a 0 with probability r0 = 1
ϕ

and a 1 with probability r1 = 1
ϕ2 ,

rejecting the 1’s creating forbidden patterns.

Lemma

For any SFT, the Parry measure can be generated by independent
draws of letters with probability (ri )i∈A, with reject of a letter if it
creates a forbidden pattern.

Proof.

Pi ,j = Ai ,j
rj
λri

= Ai ,j
rj∑

k∈A Ai ,k rk
= Ai ,j

rj∑
k∈S(i) rk

.

where S(i) = {j ∈ A;Ai ,j = 1} is the set of succesors of i .

Irène Marcovici Uniform Sampling of Subshifts of Finite Type



Second rejection sampling

The Parry measure of the Fibonacci SFT can be generated by:

choosing independently to write a 0 with probability r̃0 = 1
ϕ2

and a 1 with probability r̃1 = 1
ϕ ,

deleting pairs of consecutive 1’s.

Confluent SFT

A SFT is confluent if for any i , j , k ∈ A such that both ij and jk
are forbidden, then i = k .

Proposition [J. Mairesse - I. Marcovici]

For confluent SFT, the Parry measure can be generated by
independent draws of letters and deletion of forbidden patterns.
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Coloring trees...
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SFT defined on trees

Let A be a (symmetric) matrix defining allowed and forbidden
patterns, and consider the corresponding SFT Σd

A on the infinite
regular tree of degree d + 1.

Question: how to construct Markov-uniform measures on Σd
A?

Irène Marcovici Uniform Sampling of Subshifts of Finite Type



SFT defined on trees

Let A be a (symmetric) matrix defining allowed and forbidden
patterns, and consider the corresponding SFT Σd

A on the infinite
regular tree of degree d + 1.

Question: how to construct Markov-uniform measures on Σd
A?

d = 2

Irène Marcovici Uniform Sampling of Subshifts of Finite Type



SFT defined on trees

Let A be a (symmetric) matrix defining allowed and forbidden
patterns, and consider the corresponding SFT Σd

A on the infinite
regular tree of degree d + 1.

Question: how to construct Markov-uniform measures on Σd
A?

d = 2

Irène Marcovici Uniform Sampling of Subshifts of Finite Type



SFT defined on trees

Idea 1: consider a (reversible) Markov chain P on the alphabet A,
of stationary distribution π.
Choose the letter at one given vertice according to π and then
label the other vertices using P.

Example:

i

j

k

l

Probability of this pattern:
π(i)Pi ,jPj ,kPj ,l

= π(j)Pj ,iPj ,kPj ,l

= . . .

For given i , k, l , we want this value to be independent of the letter
j such that the pattern is allowed.
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SFT defined on trees

Idea 2: like for the Parry measure, choose P under the form:

Pi ,j = Ai ,j
rj∑

s∈A Ai ,srs
= Ai ,j

rj∑
s∈S(i) rs

,

for some probability vector (ri )i∈A.

Then,

π(i)Pi ,jPj ,kPj ,l = π(i)
rj∑

s∈A Ai ,srs

rk∑
s∈A Aj ,srs

rl∑
s∈A Aj ,srs

Let us try to choose (ri )i∈A such that:∑
s∈A

Aj ,srs = λrj
1/2,

for any j ∈ A !

i

j

k

l
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SFT defined on trees

For a tree of degree d + 1, the problem is to find a probability
distribution (ri )i∈A such that for some λ > 0,

A

r1
...
rn

 = λ

r
1/d
1
...

r
1/d
n

 .

Proposition

Let A be an irreducible non-negative matrix, and let d ≥ 1. There
exist λ > 0 and r1, . . . , rn > 0 satisfying

∑n
i=1 ri = 1 and:

A

r1
...
rn

 = λ

r
1/d
1
...

r
1/d
n

 .

Proof. Fixed point theorem.
Remark. λ and (ri )i∈A may not be unique.
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SFT defined on trees

Proposition

If the distribution of probability (ri )i∈A satisfies

A

r1
...
rn

 = λ

r
1/d
1
...

r
1/d
n


for some λ > 0, then the Markov chain given by:

Pi ,j = Ai ,j
rj∑

s∈A Ai ,srs
= Ai ,j

rj

λr
1/d
i

,

defines a Markov-uniform measure on the SFT ΣA.
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Fibonacci SFT on trees

We search P =

(
α 1− α
1 0

)
, such that

(
1 1
1 0

)(
α

1− α

)
= λ

(
α1/d

(1− α)1/d

)
.

For any d ≥ 1, there exists a unique solution, given by r0 = α and
r1 = 1− α, where α is the unique positive solution of the equation

αd+1 = 1− α.

For d = 1, we recover r0 = 1
ϕ and r1 = 1

ϕ2 .

But we also have examples of SFT for which there are several
Markov-uniform measures...
Interpretation of these measures in terms of entropy?
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Sampling using probabilistic cellular automata
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One-dimensional Fibonacci SFT

Consider a configuration distributed according to the Parry
measure π of the Fibonacci SFT.

By the Markov-uniform property, the new sequence is still
distributed according to π.
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One-dimensional Fibonacci SFT

X−2

X−1

X0

X1

X2

X3

X4

X5

X6

FAFA

π2

π2

π
X−2 X−1 X0 X1 X2 X3 X4 X5 X6

For all i ∈ Z, if X2i = X2i+2 = 0, we flip the value of X2i+1 with
probability 1/2.

X−2

X−1

X0

X1

X2

X3

X4

X5

X6

FAFA

π2

π2

π
X−2 X−1 X0 X1 X2 X3 X4 X5 X6
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One-dimensional Fibonacci SFT

0 0 0

1

1

1

0

1

0 with probability 1/2

1 with probability 1/2

0 (with probability 1)

X−2

X−1

X0

X1

X2

X3

X4

X5

X6

FAFA

π2

π2

π
X−2 X−1 X0 X1 X2 X3 X4 X5 X6

Proposition

The projection π2 of the Parry measure on odd (resp. even) sites is
an invariant measure of the probabilistic cellular automaton.
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General one-dimensional SFT

For a general one-dimensional SFT ΣA, we consider the PCA FA
defined by:

k with proba 1/|{s ∈ A ; isj ∈ W3}| if ikj ∈ W3

(and with proba 0 otherwise)

i j

Generalisation to Zd , d ≥ 2 and to infinite trees (bipartite
graphs).

When the measure of maximal entropy is unique, if the PCA
dynamics is ergodic (convergence to the measure of maximal
entropy of the SFT from any initial configuration), we can use it
for sampling.

Monte Carlo method

Perfect sampling via coupling from the past
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PCA family of the Fibonacci SFT

0 0 0

1

1

1

0

1

0 with probability 1/2

1 with probability 1/2

0 (with probability 1)

Proposition [J. Martin - I. Marcovici]

For any p ∈ (0, 1), the PCA above is ergodic.

Furthermore, its envelope PCA is ergodic, meaning that we can
sample its unique invariant measure perfectly by coupling from the
past.

General criterion ensuring the ergodicity of the PCA
associated to a SFT?
And how to be sure that the coupling from the past
algorithm will stop in finite time?
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Conclusion

Different descriptions of the measures of maximal entropy
using i.i.d. random variables

New results for confluent one-dimensional SFT
Exploratory works for multi-dimensional SFT

Introduction of a PCA dynamics
When is the PCA ergodic?
In that case, can we always sample its invariant measure by
coupling from the past?
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