Uniform Sampling of Subshifts of Finite Type

Irène Marcovici

With the support of the European INTEGER project

Institut Élie Cartan de Lorraine, Université de Lorraine, Nancy, France

AofA'15, Strobl Monday 8 June 2015

Irène Marcovici Uniform Sampling of Subshifts of Finite Type

Questions

What do typical configurations look like?

Questions

What do *typical* configurations look like? How to define "the uniform distribution" on infinite allowed colorings?

Questions

What do *typical* configurations look like? How to define "the uniform distribution" on infinite allowed colorings? How to sample configurations *uniformly*?

Questions

What do *typical* configurations look like? How to define "the uniform distribution" on infinite allowed colorings? How to sample configurations *uniformly*?

Given the set A of colors and the (finite) list of constraints, the set Σ of allowed configurations is called a:

subshift of finite type (SFT).

Questions

What do *typical* configurations look like? How to define "the uniform distribution" on infinite allowed colorings? How to sample configurations *uniformly*?

Given the set A of colors and the (finite) list of constraints, the set Σ of allowed configurations is called a:

subshift of finite type (SFT).

It is a subset of $\mathcal{A}^{\mathbb{Z}^d}$, which is shift-invariant.

伺 ト イヨト イヨト

Fibonacci / golden mean / hard-core (or hard-square) subshift

Set of configurations without two consecutive black squares.

< ∃ >

Fibonacci / golden mean / hard-core (or hard-square) subshift

Set of configurations without two consecutive black squares.

A two-dimensional configuration

Fibonacci / golden mean / hard-core (or hard-square) subshift

Set of configurations without two consecutive black squares.

A one-dimensional configuration

-∢ ≣ ≯

A two-dimensional configuration

Fibonacci / golden mean / hard-core (or hard-square) subshift

Set of configurations without two consecutive black squares.

A two-dimensional configuration

A one-dimensional configuration

Graph of allowed transitions in one-dimension

・ 同 ト ・ 三 ト ・

Let \mathcal{A} be an alphabet with *n* letters, and let $A \in \mathcal{M}_n(\{0,1\})$.

Let \mathcal{A} be an alphabet with *n* letters, and let $A \in \mathcal{M}_n(\{0,1\})$.

One-dimensional subshift of finite type

The **subshift of finite type** associated to A is the set Σ_A of words $w \in \mathcal{A}^{\mathbb{Z}}$ such that if $A_{i,j} = 0$, w does not contain the pattern ij.

 $A_{i,j} = \begin{cases} 1 \text{ if } ij \text{ is an allowed pattern,} \\ 0 \text{ if } ij \text{ is a forbidden pattern.} \end{cases}$

$$\Sigma_{\mathcal{A}} = \{ w \in \mathcal{A}^{\mathbb{Z}}; \forall k \in \mathbb{Z}, A_{w_k, w_{k+1}} = 1 \}.$$

Let \mathcal{A} be an alphabet with *n* letters, and let $A \in \mathcal{M}_n(\{0,1\})$.

One-dimensional subshift of finite type

The **subshift of finite type** associated to A is the set Σ_A of words $w \in \mathcal{A}^{\mathbb{Z}}$ such that if $A_{i,j} = 0$, w does not contain the pattern ij.

$$A_{i,j} = \begin{cases} 1 \text{ if } ij \text{ is an allowed pattern,} \\ 0 \text{ if } ij \text{ is a forbidden pattern.} \end{cases}$$

$$\Sigma_{\mathcal{A}} = \{ w \in \mathcal{A}^{\mathbb{Z}}; \forall k \in \mathbb{Z}, A_{w_k, w_{k+1}} = 1 \}.$$

In what follows, we assume that the matrix A is irreducible and aperiodic.

The Parry measure

From Perron-Frobenius theory, the matrix A has a real **eigenvalue** $\lambda > 0$ such that $|\mu| \le \lambda$ for any other eigenvalue μ . Furthermore, there is a unique choice of $r_1, \ldots, r_n \ge 0$ such that $\sum_{i=1}^n r_i = 1$ and

$$A\begin{pmatrix}r_1\\\vdots\\r_n\end{pmatrix}=\lambda\begin{pmatrix}r_1\\\vdots\\r_n\end{pmatrix}.$$

The Parry measure

From Perron-Frobenius theory, the matrix A has a real **eigenvalue** $\lambda > 0$ such that $|\mu| \le \lambda$ for any other eigenvalue μ . Furthermore, there is a unique choice of $r_1, \ldots, r_n \ge 0$ such that $\sum_{i=1}^n r_i = 1$ and

$$A\begin{pmatrix}r_1\\\vdots\\r_n\end{pmatrix}=\lambda\begin{pmatrix}r_1\\\vdots\\r_n\end{pmatrix}.$$

Definition of the Parry measure

The **Parry measure** is the (shift-invariant) Markov measure π on $\mathcal{A}^{\mathbb{Z}}$ of transition matrix P defined, for any $i, j \in \mathcal{A}$, by

$$P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}.$$

The Parry measure

From Perron-Frobenius theory, the matrix A has a real **eigenvalue** $\lambda > 0$ such that $|\mu| \le \lambda$ for any other eigenvalue μ . Furthermore, there is a unique choice of $r_1, \ldots, r_n \ge 0$ such that $\sum_{i=1}^n r_i = 1$ and

$$A\begin{pmatrix}r_1\\\vdots\\r_n\end{pmatrix}=\lambda\begin{pmatrix}r_1\\\vdots\\r_n\end{pmatrix}.$$

Definition of the Parry measure

The **Parry measure** is the (shift-invariant) Markov measure π on $\mathcal{A}^{\mathbb{Z}}$ of transition matrix P defined, for any $i, j \in \mathcal{A}$, by

$$P_{i,j}=A_{i,j}\frac{r_j}{\lambda r_i}.$$

For a word $a_1 \ldots a_k \in \mathcal{A}^k$, $\pi(a_1 \ldots a_k) = \pi(a_1)P_{a_1,a_2} \ldots P_{a_{k-1},a_k}$.

< ∃ >

The Parry measure π is "the uniform distribution" on Σ_A .

The Parry measure π is "the uniform distribution" on Σ_A .

Proposition

Let μ_k be the uniform measure on allowed patterns of length 2k + 1, centered at position 0. The sequence μ_k converges (weakly) to π on $\mathcal{A}^{\mathbb{Z}}$.

The Parry measure is **Markov-uniform**: for given $k \ge 1$ and $a, b \in A$, the value

 $\pi(awb)$

does not depend on the word $w \in \mathcal{A}^k$ such that awb is allowed.

The Parry measure is **Markov-uniform**: for given $k \ge 1$ and $a, b \in A$, the value

 $\pi(awb)$

does not depend on the word $w \in \mathcal{A}^k$ such that awb is allowed.

Proof. By definition, $P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}$. If *awb* is allowed, then:

 $\pi(awb) = \pi_a P_{a,w_1} P_{w_1,w_2} \dots P_{w_{k-1},w_k} P_{w_k,b}$

The Parry measure is **Markov-uniform**: for given $k \ge 1$ and $a, b \in A$, the value

 $\pi(awb)$

does not depend on the word $w \in \mathcal{A}^k$ such that awb is allowed.

Proof. By definition, $P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}$. If *awb* is allowed, then:

 $\pi(awb) = \pi_a P_{a,w_1} P_{w_1,w_2} \dots P_{w_{k-1},w_k} P_{w_k,b}$

$$=\pi_a \frac{r_{w_1}}{\lambda r_a} \frac{r_{w_2}}{\lambda r_{w_1}} \cdots \frac{r_{w_k}}{\lambda r_{w_{k-1}}} \frac{r_b}{\lambda r_{w_k}}$$

The Parry measure is **Markov-uniform**: for given $k \ge 1$ and $a, b \in A$, the value

 $\pi(awb)$

does not depend on the word $w \in \mathcal{A}^k$ such that awb is allowed.

Proof. By definition, $P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}$. If *awb* is allowed, then:

$$\pi(\mathsf{awb}) = \pi_{\mathsf{a}} P_{\mathsf{a},\mathsf{w}_1} P_{\mathsf{w}_1,\mathsf{w}_2} \dots P_{\mathsf{w}_{k-1},\mathsf{w}_k} P_{\mathsf{w}_k,\mathsf{b}}$$

$$= \pi_a \frac{r_{w_1}}{\lambda r_a} \frac{r_{w_2}}{\lambda r_{w_1}} \cdots \frac{r_{w_k}}{\lambda r_{w_{k-1}}} \frac{r_b}{\lambda r_{w_k}}$$
$$= \frac{\pi_a r_b}{\lambda^{k+1} r_a}.$$

Theorem

Let \mathcal{M}_{Σ_A} be the set of translation invariant measures on the SFT Σ_A , and let $\pi \in \mathcal{M}_{\Sigma_A}$. The following properties are equivalent.

- (i) π is the **Parry measure** associated to Σ_A ,
- (ii) π is a **Markov-uniform** measure on Σ_A ,
- (iii) π is the measure of **maximal entropy** of Σ_A ,
- (iv) the entropy of π is equal to the **topological entropy** $h(\Sigma_A)$.

Theorem

Let \mathcal{M}_{Σ_A} be the set of translation invariant measures on the SFT Σ_A , and let $\pi \in \mathcal{M}_{\Sigma_A}$. The following properties are equivalent.

(i) π is the **Parry measure** associated to Σ_A ,

(ii) π is a **Markov-uniform** measure on Σ_A ,

(iii) π is the measure of **maximal entropy** of Σ_A ,

(iv) the entropy of π is equal to the **topological entropy** $h(\Sigma_A)$.

On \mathbb{Z}^d , the equivalence between (*ii*), (*iii*), and (*iv*) can be extended to a class of multi-dimensional SFT.

Theorem

Let \mathcal{M}_{Σ_A} be the set of translation invariant measures on the SFT Σ_A , and let $\pi \in \mathcal{M}_{\Sigma_A}$. The following properties are equivalent.

- (i) π is the **Parry measure** associated to Σ_A ,
- (ii) π is a Markov-uniform measure on Σ_A ,
- (iii) π is the measure of **maximal entropy** of Σ_A ,
- (iv) the entropy of π is equal to the **topological entropy** $h(\Sigma_A)$.

On \mathbb{Z}^d , the equivalence between (*ii*), (*iii*), and (*iv*) can be extended to a class of multi-dimensional SFT.

But there can be several measures satisfying these properties...

Let $\mathcal{A} = \{0, 1\}$. The **one-dimensional Fibonacci SFT** is the set of words that do not contain two consecutive 1's. It is given by:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 .

Its topological entropy is equal to log φ , where $\varphi = \frac{1+\sqrt{5}}{2}$. The Parry measure is the Markov measure given by

with
$$\pi_0 = rac{arphi^2}{1+arphi^2}$$
 and $\pi_1 = rac{1}{1+arphi^2}$.

- choosing independently to write a 0 with probability $r_0 = \frac{1}{\varphi}$ and a 1 with probability $r_1 = \frac{1}{\varphi^2}$,
- rejecting the 1's creating forbidden patterns.

- choosing independently to write a 0 with probability $r_0 = \frac{1}{\varphi}$ and a 1 with probability $r_1 = \frac{1}{\omega^2}$,
- rejecting the 1's creating forbidden patterns.

Lemma

For any SFT, the Parry measure can be generated by independent draws of letters with probability $(r_i)_{i \in A}$, with reject of a letter if it creates a forbidden pattern.

- choosing independently to write a 0 with probability $r_0 = \frac{1}{\varphi}$ and a 1 with probability $r_1 = \frac{1}{\omega^2}$,
- rejecting the 1's creating forbidden patterns.

Lemma

For any SFT, the Parry measure can be generated by independent draws of letters with probability $(r_i)_{i \in A}$, with reject of a letter if it creates a forbidden pattern.

Proof.

$$P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i} = A_{i,j} \frac{r_j}{\sum_{k \in \mathcal{A}} A_{i,k} r_k} = A_{i,j} \frac{r_j}{\sum_{k \in \mathcal{S}(i)} r_k}$$

where $\mathcal{S}(i) = \{j \in \mathcal{A}; A_{i,j} = 1\}$ is the set of succesors of *i*.

- choosing independently to write a 0 with probability $\tilde{r}_0 = \frac{1}{\varphi^2}$ and a 1 with probability $\tilde{r}_1 = \frac{1}{\omega}$,
- deleting pairs of consecutive 1's.

- choosing independently to write a 0 with probability $\tilde{r}_0 = \frac{1}{\varphi^2}$ and a 1 with probability $\tilde{r}_1 = \frac{1}{\omega}$,
- deleting pairs of consecutive 1's.

Confluent SFT

A SFT is **confluent** if for any $i, j, k \in A$ such that both ij and jk are forbidden, then i = k.

- choosing independently to write a 0 with probability $\tilde{r}_0 = \frac{1}{\varphi^2}$ and a 1 with probability $\tilde{r}_1 = \frac{1}{\omega}$,
- deleting pairs of consecutive 1's.

Confluent SFT

A SFT is **confluent** if for any $i, j, k \in A$ such that both ij and jk are forbidden, then i = k.

Proposition [J. Mairesse - I. Marcovici]

For **confluent** SFT, the Parry measure can be generated by independent draws of letters and deletion of forbidden patterns.

Coloring trees...

<□> < 注> < 注> < 注>

æ

Let A be a (symmetric) matrix defining allowed and forbidden patterns, and consider the corresponding SFT Σ_A^d on the infinite regular tree of degree d + 1.

Let A be a (symmetric) matrix defining allowed and forbidden patterns, and consider the corresponding SFT Σ_A^d on the infinite regular tree of degree d + 1.

Question: how to construct Markov-uniform measures on Σ_A^d ?

Let A be a (symmetric) matrix defining allowed and forbidden patterns, and consider the corresponding SFT Σ_A^d on the infinite regular tree of degree d + 1.

Question: how to construct Markov-uniform measures on Σ_A^d ?

Idea 1: consider a (reversible) Markov chain P on the alphabet A, of stationary distribution π .

Choose the letter at one given vertice according to π and then label the other vertices using *P*.

Idea 1: consider a (reversible) Markov chain P on the alphabet A, of stationary distribution π .

Choose the letter at one given vertice according to π and then label the other vertices using *P*.

Example:

Probability of this pattern: $\pi(i)P_{i,j}P_{j,k}P_{j,l}$

Idea 1: consider a (reversible) Markov chain P on the alphabet A, of stationary distribution π .

Choose the letter at one given vertice according to π and then label the other vertices using *P*.

Example:

Probability of this pattern: $\pi(i)P_{i,j}P_{j,k}P_{j,l}$ $= \pi(j)P_{j,i}P_{j,k}P_{j,l}$ $= \dots$

Idea 1: consider a (reversible) Markov chain P on the alphabet A, of stationary distribution π .

Choose the letter at one given vertice according to π and then label the other vertices using *P*.

Example:

Probability of this pattern: $\pi(i)P_{i,j}P_{j,k}P_{j,l}$ $= \pi(j)P_{j,i}P_{j,k}P_{j,l}$ $= \dots$

For given i, k, l, we want this value to be independent of the letter j such that the pattern is allowed.

Idea 2: like for the Parry measure, choose P under the form:

$$P_{i,j} = A_{i,j} \frac{r_j}{\sum_{s \in \mathcal{A}} A_{i,s} r_s} = A_{i,j} \frac{r_j}{\sum_{s \in \mathcal{S}(i)} r_s},$$

for some probability vector $(r_i)_{i \in A}$.

Idea 2: like for the Parry measure, choose P under the form:

$$P_{i,j} = A_{i,j} \frac{r_j}{\sum_{s \in \mathcal{A}} A_{i,s} r_s} = A_{i,j} \frac{r_j}{\sum_{s \in \mathcal{S}(i)} r_s},$$

for some probability vector $(r_i)_{i \in \mathcal{A}}$. Then,

$$\pi(i)P_{i,j}P_{j,k}P_{j,l} = \pi(i)\frac{r_j}{\sum_{s\in\mathcal{A}}A_{i,s}r_s}\frac{r_k}{\sum_{s\in\mathcal{A}}A_{j,s}r_s}\frac{r_l}{\sum_{s\in\mathcal{A}}A_{j,s}r_s}$$

Idea 2: like for the Parry measure, choose P under the form:

$$P_{i,j} = A_{i,j} \frac{r_j}{\sum_{s \in \mathcal{A}} A_{i,s} r_s} = A_{i,j} \frac{r_j}{\sum_{s \in \mathcal{S}(i)} r_s},$$

for some probability vector $(r_i)_{i \in \mathcal{A}}$. Then,

$$\pi(i)P_{i,j}P_{j,k}P_{j,l} = \pi(i)\frac{r_j}{\sum_{s\in\mathcal{A}}A_{i,s}r_s}\frac{r_k}{\sum_{s\in\mathcal{A}}A_{j,s}r_s}\frac{r_l}{\sum_{s\in\mathcal{A}}A_{j,s}r_s}$$
Let us try to choose $(r_i)_{i\in\mathcal{A}}$ such that:

$$\sum_{s\in\mathcal{A}}A_{j,s}r_s = \lambda r_j^{1/2},$$
for any $j \in \mathcal{A}$!

For a tree of degree d + 1, the problem is to find a probability distribution $(r_i)_{i \in A}$ such that for some $\lambda > 0$,

$$A\begin{pmatrix} r_1\\ \vdots\\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d}\\ \vdots\\ r_n^{1/d} \end{pmatrix}$$

For a tree of degree d + 1, the problem is to find a probability distribution $(r_i)_{i \in A}$ such that for some $\lambda > 0$,

$$A\begin{pmatrix} r_1\\ \vdots\\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d}\\ \vdots\\ r_n^{1/d} \end{pmatrix}$$

Proposition

Let A be an irreducible non-negative matrix, and let $d \ge 1$. There exist $\lambda > 0$ and $r_1, \ldots, r_n > 0$ satisfying $\sum_{i=1}^n r_i = 1$ and:

$$A\begin{pmatrix} r_1\\ \vdots\\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d}\\ \vdots\\ r_n^{1/d} \end{pmatrix}$$

For a tree of degree d + 1, the problem is to find a probability distribution $(r_i)_{i \in A}$ such that for some $\lambda > 0$,

$$A\begin{pmatrix} r_1\\ \vdots\\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d}\\ \vdots\\ r_n^{1/d} \end{pmatrix}$$

Proposition

Let A be an irreducible non-negative matrix, and let $d \ge 1$. There exist $\lambda > 0$ and $r_1, \ldots, r_n > 0$ satisfying $\sum_{i=1}^n r_i = 1$ and:

$$A\begin{pmatrix} r_1\\ \vdots\\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d}\\ \vdots\\ r_n^{1/d} \end{pmatrix}$$

Proof. Fixed point theorem.

For a tree of degree d + 1, the problem is to find a probability distribution $(r_i)_{i \in A}$ such that for some $\lambda > 0$,

$$A\begin{pmatrix} r_1\\ \vdots\\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d}\\ \vdots\\ r_n^{1/d} \end{pmatrix}$$

Proposition

Let A be an irreducible non-negative matrix, and let $d \ge 1$. There exist $\lambda > 0$ and $r_1, \ldots, r_n > 0$ satisfying $\sum_{i=1}^n r_i = 1$ and:

$$A\begin{pmatrix}r_1\\\vdots\\r_n\end{pmatrix}=\lambda\begin{pmatrix}r_1^{1/d}\\\vdots\\r_n^{1/d}\end{pmatrix}$$

Proof. Fixed point theorem. *Remark.* λ and $(r_i)_{i \in \mathcal{A}}$ may not be unique.

Proposition

If the distribution of probability $(r_i)_{i \in A}$ satisfies

$$A\begin{pmatrix} r_1\\ \vdots\\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d}\\ \vdots\\ r_n^{1/d} \end{pmatrix}$$

for some $\lambda > 0$, then the Markov chain given by:

$$P_{i,j} = A_{i,j} \frac{r_j}{\sum_{s \in \mathcal{A}} A_{i,s} r_s} = A_{i,j} \frac{r_j}{\lambda r_i^{1/d}},$$

defines a **Markov-uniform** measure on the SFT Σ_A .

We search
$$P = \begin{pmatrix} \alpha & 1-\alpha \\ 1 & 0 \end{pmatrix}$$
, such that
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ 1-\alpha \end{pmatrix} = \lambda \begin{pmatrix} \alpha^{1/d} \\ (1-\alpha)^{1/d} \end{pmatrix}$$

For any $d \ge 1$, there exists a unique solution, given by $r_0 = \alpha$ and $r_1 = 1 - \alpha$, where α is the unique positive solution of the equation

$$\alpha^{d+1} = 1 - \alpha.$$

For d = 1, we recover $r_0 = \frac{1}{\varphi}$ and $r_1 = \frac{1}{\varphi^2}$.

We search
$$P = \begin{pmatrix} \alpha & 1-\alpha \\ 1 & 0 \end{pmatrix}$$
, such that
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ 1-\alpha \end{pmatrix} = \lambda \begin{pmatrix} \alpha^{1/d} \\ (1-\alpha)^1 \end{pmatrix}$$

For any $d \ge 1$, there exists a unique solution, given by $r_0 = \alpha$ and $r_1 = 1 - \alpha$, where α is the unique positive solution of the equation

$$\alpha^{d+1} = 1 - \alpha.$$

For d = 1, we recover $r_0 = \frac{1}{\varphi}$ and $r_1 = \frac{1}{\varphi^2}$.

But we also have examples of SFT for which there are several Markov-uniform measures...

We search
$$P = \begin{pmatrix} \alpha & 1-\alpha \\ 1 & 0 \end{pmatrix}$$
, such that
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ 1-\alpha \end{pmatrix} = \lambda \begin{pmatrix} \alpha^{1/d} \\ (1-\alpha)^{1/d} \end{pmatrix}.$$

For any $d \ge 1$, there exists a unique solution, given by $r_0 = \alpha$ and $r_1 = 1 - \alpha$, where α is the unique positive solution of the equation

$$\alpha^{d+1} = 1 - \alpha.$$

For d = 1, we recover $r_0 = \frac{1}{\varphi}$ and $r_1 = \frac{1}{\varphi^2}$.

But we also have examples of SFT for which there are several Markov-uniform measures...

Interpretation of these measures in terms of entropy?

Sampling using probabilistic cellular automata

э

By the **Markov-uniform** property, the new sequence is still distributed according to π .

Irène Marcovici Uniform Sampling of Subshifts of Finite Type

3

For all $i \in \mathbb{Z}$, if $X_{2i} = X_{2i+2} = 0$, we flip the value of X_{2i+1} with probability 1/2.

For all $i \in \mathbb{Z}$, if $X_{2i} = X_{2i+2} = 0$, we flip the value of X_{2i+1} with probability 1/2.

One-dimensional Fibonacci SFT

Proposition

The projection π_2 of the Parry measure on odd (resp. even) sites is an invariant measure of the probabilistic cellular automaton.

For a general one-dimensional SFT Σ_A , we consider the PCA F_A defined by:

For a general one-dimensional SFT Σ_A , we consider the PCA F_A defined by:

Generalisation to \mathbb{Z}^d , $d \ge 2$ and to infinite trees (bipartite graphs).

For a general one-dimensional SFT Σ_A , we consider the PCA F_A defined by:

Generalisation to \mathbb{Z}^d , $d \ge 2$ and to infinite trees (bipartite graphs).

When the measure of maximal entropy is unique, if the PCA dynamics is **ergodic** (convergence to the measure of maximal entropy of the SFT from any initial configuration), we can use it for sampling.

For a general one-dimensional SFT Σ_A , we consider the PCA F_A defined by:

Generalisation to \mathbb{Z}^d , $d \ge 2$ and to infinite trees (bipartite graphs).

When the measure of maximal entropy is unique, if the PCA dynamics is **ergodic** (convergence to the measure of maximal entropy of the SFT from any initial configuration), we can use it for sampling.

- Monte Carlo method
- Perfect sampling via coupling from the past

э

PCA family of the Fibonacci SFT

< □ > < 同 > < 回 >

PCA family of the Fibonacci SFT

э

< □ > < 同 > < 回 >

For any $p \in (0, 1)$, the PCA above is ergodic.

▲ 同 ▶ → 三 ▶

For any $p \in (0, 1)$, the PCA above is ergodic.

Furthermore, its *envelope PCA* is ergodic, meaning that we can sample its unique invariant measure perfectly by coupling from the past.

For any $p \in (0, 1)$, the PCA above is ergodic.

Furthermore, its *envelope PCA* is ergodic, meaning that we can sample its unique invariant measure perfectly by coupling from the past.

General criterion ensuring the ergodicity of the PCA associated to a SFT?

For any $p \in (0, 1)$, the PCA above is ergodic.

Furthermore, its *envelope PCA* is ergodic, meaning that we can sample its unique invariant measure perfectly by coupling from the past.

General criterion ensuring the ergodicity of the PCA associated to a SFT? And how to be sure that the coupling from the past algorithm will stop in finite time?

Conclusion

- Different descriptions of the measures of maximal entropy using **i.i.d. random variables**
 - New results for **confluent** one-dimensional SFT
 - Exploratory works for multi-dimensional SFT
Conclusion

- Different descriptions of the measures of maximal entropy using **i.i.d. random variables**
 - New results for **confluent** one-dimensional SFT
 - Exploratory works for multi-dimensional SFT
- Introduction of a PCA dynamics
 - When is the PCA ergodic?
 - In that case, can we always sample its invariant measure by coupling from the past?

Conclusion

- Different descriptions of the measures of maximal entropy using **i.i.d. random variables**
 - New results for **confluent** one-dimensional SFT
 - Exploratory works for multi-dimensional SFT
- Introduction of a PCA dynamics
 - When is the PCA ergodic?
 - In that case, can we always sample its invariant measure by coupling from the past?

