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Node Profile of (Rooted) Trees

Bn,k = number of external nodes at level k;

In,k = number of internal nodes at level k.

Example:

B5,0 = 0, I5,0 = 1;

B5,1 = 0, I5,1 = 2;

B5,2 = 2, I5,2 = 2;

B5,3 = 4, I5,3 = 0.
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Relations to Other Shape Parameters

Many shape parameters can by analyzed through the profile.

Depth: P (Dn = k) = Bn,k/(n+ 1);

Width: max{Bn,k : k ≥ 0};

Total Path Length:
∑

k kBn,k;

Height: max{k : Bn,k > 0};

Shortest Path: min{k : Bn,k > 0};

Fill-up Level: max{k : In,k = 2k};

Etc.
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Profile of Random Trees

√
n-Trees:

Aldous (1991); Drmota and Gittenberger (1997); Kersting (1998);
Pitman (1999); etc.

log n-Trees:

Binary Search Trees: Chauvin, Drmota, Jabbour-Hattab (2001);
Drmota and Hwang (2005); F., Hwang, Neininger (2006).

Recursive Trees: Drmota and Hwang (2005); F., Hwang, Neininger
(2006).

Plane-oriented Recursive Trees: Hwang (2007).

m-ary Seach Trees: Drmota, Janson, Neininger (2008).
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Tries

René de la Briandais (1959)

Name from data retrieval (suggested by Fredkin).

Example:

0

1

0 1

1

0 1

0

1

0 1

0

011011
010101
101110
010000
101010
001100
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René de la Briandais (1959)

Name from data retrieval (suggested by Fredkin).

Example:

0

1

0 1

1

0 1

0

1

0 1

0

011011
010101
101110
010000
101010
001100

Michael Fuchs (NCTU) Node Profile of DSTs June 8th, 2015 5 / 28



Tries
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Digital Search Trees (DSTs)

Edward G. Coffman & James Eve (1970)

Closely related to Lempel-Ziv compression scheme.

Example:

0 1

0 1 0 1

0 1 0 1 0 1

011011
010101
101110
010000
101010
001100
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Random Model

Bits generated by iid Bernoulli random variables with mean p

−→ Bernoulli model

Two types:

p = 1/2: symmetric digital trees;

p 6= 1/2: asymmetric digital trees.

Question: What can be said about the profile?

In this talk, we are interested in mean, variance and limit laws of the
profile for symmetric DSTs.
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Profile of Digital Trees

Tries:

Mean, variance, limit laws: Hwang, Nicodéme, Park and Szpankowski
(2009).

PATRICIA tries:

Mean: Magner, Knessl, Szpankowski (2014); Variance & limit laws:
Szpankowkski & Magner (→ Thursday).

Asymmetric DSTs:

Mean: Drmota and Szpankowski (2011); Variance: Kazemi and
Vahidi-Asl (2011); so far no limit laws.

Symmetric DSTs:

Variance & limit laws: Drmota, F., Hwang, Neininger (→ this talk).
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Profile of Tries

Hwang, Nicodéme, Park, Szpankowski (2009)
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Plot of Mean Profile of Symmetric Tries

Hwang, Nicodéme, Park, Szpankowski (2009):
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Symmetric Tries: Mean

We have,

µn,k := E(Bn,k) ∼

{
n(1− 2−k)n−1, if 2−kn→∞;

M̃k,1(n), if 4−kn→ 0,

where
M̃k,1(z) = z(e−z/2

k − e−z/2k−1
).

In particular,

M̃k,1(n) ∼


ne−n/2

k
, if 2−kn→∞;

Θ(n), if 2−kn = Θ(1);

2−kn2, if 2−kn→ 0.

Thus, the profile has maximum of order n (asymmetric tries: n/
√

log n)
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Symmetric Tries: Variance

We have,

σ2n,k := Var(Bn,k) ∼

{
n(1− 2−k)n−1, if 2−kn→∞;

Ṽk(n), if 4−kn→ 0,

where

Ṽk(z) = z(e−z/2
k − e−z/2k−1

) + 2−kz2e−z/2
k−1

− 21−kz2(e−z/2
k − e−z/2k−1

)2.

In particular,

Ṽk(n) ∼


ne−n/2

k ∼ M̃k(n), if 2−kn→∞;

Θ(n), if 2−kn = Θ(1);

21−kn2 ∼ 2M̃k(n), if 2−kn→ 0.
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Poissonization and Depoissonization

Poisson Model: Build digital tree from Poisson-distributed number of
records.

Poisson moments:

M̃k,`(z) = E(B`
Pois(z),k) = e−z

∑
n≥0

E(B`
n,k)

zn

n!
.

Poisson Heuristic:

M̃k,`(z) sufficiently smooth =⇒ E(B`
n,k) ≈ M̃k,`(n).

Poisson heuristic made precise by the Theory of Analytic
Depoissonization (Jacquet & Szpankowski; 1998).
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Poisson Variance

Correct choice is crucial!

Asymmetric Digital Trees:

Ṽk(z) = M̃k,2(z)− M̃k,1(z)
2.

Symmetric Digital Trees:

Ṽk(z) = M̃k,2(z)− M̃k,1(z)
2 − zM̃ ′k,1(z)2.

With this choice:
Var(Bn,k) ∼ Ṽk(n)

when 4−kn→ 0.
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when 4−kn→ 0.

Michael Fuchs (NCTU) Node Profile of DSTs June 8th, 2015 14 / 28



Poisson Variance

Correct choice is crucial!

Asymmetric Digital Trees:
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Symmetric DSTs: Mean

Let

Q(z) =

∞∏
`=1

(
1− z2−`

)
, Qn =

n∏
`=1

(
1− 2−`

)
=
Q(2−n)

Q(1)
.

Theorem

We have,

µn,k

∼
2k

Qk

(
1− 2−k

)n
, if 2−kn→∞;

= 2kF (n/2k) +O(1), if 4−kn→ 0,

where F (x) is the positive function

F (x) =
∑
j≥0

(−1)j2−(j2)

QjQ(1)
e−2

jx.
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F (x) (i)

As x→∞,

F (x) =
e−x

Q(1)
+O(e−2x)

and as x→ 0,

F (x) ∼ X1/ log 2

√
2πx

exp

−(logX logX)2

log 2
−
∑
j∈Z

cj(X logX)−χj

 ,

where X = 1/(x log 2), χj = 2jπi/ log 2,

c0 =
log 2

12
+

π2

6 log 2

and

cj =
1

2j sinh(2jπ/ log 2)
, (j 6= 0).
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F (x) (ii)
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Some Details of the Proof (i)

We have,
M̃k,1(z) + M̃ ′k,1(z) = 2M̃k−1,1(z/2).

By Laplace transform and its inverse,

M̃k,1(z) = 2k
∑

0≤j≤k

(−1)j2−(j2)

QjQk−j
e−z/2

k−j
.

From this,

µn,k = 2k
∑

0≤j≤k

(−1)j2−(j2)

QjQk−j

(
1− 2j−k

)n
.

This formula was first derived by Louchard (1987).

This is useful if n2−k →∞.
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Some Details of the Proof (ii)

If 4−kn→ 0, Poisson heuristic holds.

Lemma

We have,

M̃k,1(z) = 2k
∑
r≥0

2−(r+1
2 )−kr

Qr
F (r)

( z
2k

)
.

This gives,

M̃k,1(z) = 2kF
( z

2k

)
+O(1).

Result follows from depoissonization.
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Symmetric DSTs: Variance

Theorem (Drmota, F., Hwang, Neininger)

We have,

σ2n,k

∼
2k

Qk

(
1− 2−k

)n
, if 2−kn→∞;

= 2kH(n/2k) +O(1), if 4−kn→ 0,

where H(x) is a function with

H(x) =
e−x

Q(1)
+O(xe−2x), (x→∞)

and
H(x) ∼ 2F (x), (x→ 0).
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H(x) (i)

We have,

H(x) =

∞∑
j,r=0

∑
0≤h,`≤j

2−j(−1)r+h+`2−(r2)−(h2)−(`
2)+2h+2`

QrQ(1)QhQj−hQ`Qj−`
ϕ(2r+j , 2h+2`;x),

where

ϕ(u, v;x) =


e−ux − ((v − u)x+ 1)e−vx

(v − u)2
, if u 6= v;

x2e−ux/2, if u = v.

Proposition (Drmota, F., Hwang, Neininger)

H(x) is a positive function on (0,∞).
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H(x) (ii)
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Some Details of the Proof (i)

We have,
Ṽk(z) + Ṽ ′k(z) = 2Ṽk−1(z/2) + zM̃ ′′k,2(z)

2.

By Laplace transform and its inverse,

Ṽk(z) =
∑

(j,r,h,`)∈V

2k−j(−1)r+h+`2−(r2)−(h2)−(`
2)+2h+2`

QrQk−j−rQhQj−hQ`Qj−`
ϕ
(

2r+j , 2h + 2`,
z

2k

)
with

V = {(j, r, h, `) : 0 ≤ j ≤ k, 0 ≤ r ≤ k − j, 0 ≤ h, ` ≤ j}

and

ϕ(u, v;x) =


e−ux − ((v − u)x+ 1)e−vx

(v − u)2
, if u 6= v;

x2e−ux/2, if u = v.
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Ṽk(z) + Ṽ ′k(z) = 2Ṽk−1(z/2) + zM̃ ′′k,2(z)

2.

By Laplace transform and its inverse,
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Some Details of the Proof (ii)

Lemma

We have,

Ṽk(z) = 2k
∑
m≥0

2−(m+1
2 )−km

Qm
H(m)

( z
2k

)
.

The Laplace transform of H(z):

L [H(z); s] =
∑
j≥0

4−j
g̃∗j (2

−js)

Q(−21−js)

where

g̃∗j (s) =
∑

0≤k,`≤j

(−1)h+`2−(h2)−(`
2)+2h+2`

QkQj−kQ`Qj−`

1

(2js+ 2h + 2`)2
.
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Some Details of the Proof (iii)

Lemma

We have, as s→∞,

g̃∗0(s)

Q(−2s)
∼ 1

s2Q(−2s)
, 4−1

g̃∗1(2−1s)

Q(−s)
∼ 9

sQ(−2s)

and, for j ≥ 2,

4−j
g̃∗j (2

−js)

Q(−21−js)
∼ (2j − 3)!

((j − 2)!)2
2(j2)

sj−2Q(−2s)
.

Thus,

L [H(z); s] ∼ 2

Q(−2s)

and hence, H(x) ∼ 2F (x) as x→ 0.
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Symmetric DSTs: Limit Laws

Corollary (Drmota, F., Hwang, Neininger)

We have,
µn,k −→∞ iff σ2n,k −→∞.

Theorem (Drmota, F., Hwang, Neininger)

Assume that µn,k −→∞. Then,

Bn,k − µn,k
σn,k

d−→ N(0, 1),

where N(0, 1) denotes a standard normal distribution.
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Application to the Height

Hn =height of a symmetric DST of size n.

Theorem (Drmota, F., Hwang, Neininger)

Set
kn = min{k ≥ log2 n : 2kF (n/2k) ≤ 1}.

Then,

kn = log2 n+
√

2 log2 n− log2

(√
log2 n

)
+O(1).

Moreover,
P (Hn = kn − 2 or Hn = kn − 1)→ 1.

This solves an open problem of Aldous & Shields.
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Summary of Results for Symmetric DSTs

Mean profile tends to infinity when k is roughly in the range

log2 n− log2 log n ≤ k ≤ log2 n+
√

2 log2 n;

otherwise it is bounded.

Maximum of mean profile is of linear order.

Variance has same order as the mean. Thus, it tends to infinity iff
mean tends to infinity.

If mean tends to infinity, a central limit theorem holds.

Our results have many applications, e.g., they allow us to solve a
problem of Aldous & Shields.
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