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Introduction Classical Pólya’s urns

The “classical” Pólya urn model
Two parameters:

the replacement matrix

R = (a b
c d)

and the initial composition

U0 = (U0,1
U0,2

)

Same for d-colours!

Questions:
How does Un behave when n is large?
How does this asymptotic behaviour depend on R and U0?
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Introduction Classical Pólya’s urns

Asymptotic theorems

Perron-Frobenius: If R is irreducible, then its spectral radius λ1 is
positive, and a simple eigenvalue of R. And there exists an
eigenvector u1 with positive coordinates such that tRu1 = λ1u1.

λ2 is the eigenvalue of R with the second largest real part, and
σ = Reλ2/λ1.

Theorem (see, e.g. [Athreya & Karlin ’68] [Janson ’04]):

Assume that R is irreducible and ∑d
i=1 U0,i > 0, then,

Un/n → u1 (n →∞) almost surely;

furthermore, when n →∞,
▸ if σ < 1/2, then n−1/2(Un − nu1) → N(0,Σ2) in distribution;

▸ if σ = 1/2, then (n log n)−1/2(Un − nu1) → N(0,Θ2) in distribution;

▸ if σ > 1/2, then n−σ(Un − nu1) cv. a.s. to a finite random variable.
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A few remarks:
Both Σ and Θ don’t depend on the initial composition.

It actually applies to a largest class of urns: R can be reducible as
long as there is a Perron-Frobenius-like eigenvalue.
The non-Perron-Frobenius-like cases are much less understood
(see, e.g. [Janson ’05]).
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Introduction Multi-drawing Pólya urns

Multi-drawing d-colour Pólya urns
Three parameters: an integer m ≥ 1, the initial composition U0, and
the replacement rule R ∶ Σ(d)m → Nd , where

Σ(d)m = {v ∈ Nd ∶v1 + . . . + vd = m}.

Start with U0,i balls of colour i in the urn (∀1 ≤ i ≤ d). At step n,
pick m balls in the urn (with or without replacement), denote by
ξn+1 ∈ Σ(d)m the composition of the set drawn;
then set Un+1 = Un +R(ξn+1).

Zn,i = proportion of balls of colour i in the urn at time n;
Tn = total number of balls in the urn at time n.

With replacement:

For all v ∈ Σ(d)m ,
Pn(ξn+1 = v) = ( m

v1...vd
)∏d

i=1 Z vi
n,i .
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m)
−1
∏d

i=1 (Un,i
vi
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Introduction Stochastic approximation

The method

Embed the urn into continuous-time onto
a multi-type branching processes.
[Athreya & Karlin ’68, Janson ’04]

Restrict to the “affine” case and use
martingales.
[Kuba & Mahmoud ’17, Kuba & Sulzbach ’16]
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Introduction Stochastic approximation

Stochastic approximations

A sequence (Zn)n≥0 is a stochastic approximation if it satisfies

Zn+1 = Zn +
1
γn

(h(Zn) +∆Mn+1 + rn+1),

where
h is a Lipschitz function,
∆Mn+1 is a martingale increment, i.e. En[∆Mn+1] = 0,
rn → 0 a.s. is a remainder term,
(γn)n≥0 satisfies ∑ 1

γn
= +∞ and ∑ 1

γ2
n
< +∞.

[Robbins-Monro ’51]
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The heuristic behind the proofs A stochastic approximation

Our urn is a stochastic approximation

Notations:
Un,i = number of balls of colour i in the urn at time n
Zn,i = proportion of balls of colour i in the urn at time n
Tn = total number of balls in the urn at time n
ξn+1 = (random) sample of balls drawn at random at time n
R = replacement function of the urn scheme

We have Un+1 = Un +R(ξn+1), implying that

Zn+1 =
Un+1

Tn+1
= Tn

Tn+1
Zn +

R(ξn+1)
Tn+1

= Tn+1 − R̄(ξn+1)
Tn+1

Zn +
R(ξn+1)

Tn+1
,

R̄(v) = ∑d
i=1 Ri(v) = total # of balls added when the sample drawn is v .

Zn+1 = Zn +
1

Tn+1
(R(ξn+1) − R̄(ξn+1)Zn)
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Yn+1
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The heuristic behind the proofs A stochastic approximation

Let Yn+1 = R(ξn+1) − R̄(ξn+1)Zn, then

Zn+1 = Zn +
1

Tn+1
Yn+1 = Zn +

1
Tn+1

(EnYn+1 + Yn+1 − EnYn+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

martingale increment

)

EnYn+1 = ∑
v∈Σ(d)m

Pn(ξn+1 = v) (R(v) − R̄(v)Zn)

= ∑
v∈Σ(d)m

( m
v1, . . . ,vd

)(
d
∏
i=1

Z vi
n,i)(R(v) − R̄(v)Zn) =∶ h(Zn)

A stochastic approximation!

Zn+1 = Zn +
1

Tn+1
(h(Zn) +∆Mn+1)
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The heuristic behind the proofs A stochastic approximation

Stochastic approximation: the heuristic
Let Zn = Un/Tn renormalised composition vector.
Zn ∈ Σ(d) = {(x1, . . . ,xd) ∈ [0,1]d ∶∑d

i=1 xi = 1}.

A stochastic approximation!

Zn+1 = Zn +
1

Tn+1
(h(Zn) +∆Mn+1)

where ∆Mn+1 is a martingale increment, and

h(x) = ∑
v∈Σ(d)m

( m
v1, . . . ,vd

)(
d
∏
i=1

xvi
i )(R(v) − R̄(v)x) , with R̄(v) =

d
∑
i=1

Ri(v).

NB: h ∶ Σ(d) → {(y1, . . . ,yd)∶∑d
i=1 yi = 0}

Theorem [Benaim ’99]:
If Tn = Θ(n), then, the linear interpolation of the trajectory (Zn)n≥1
“asymptotically follows the flow of ẏ = h(y)” in Σ(d).
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Main results “Law of large numbers”

Main result: the “law of large numbers”

Balance assumption: R̄(v) = S for all v ∈ Σ(d)m .

Theorem: Diagonal balanced case
If h ≡ 0, then (Zn)n≥0 is a positive martingale and thus Zn → Z∞ a.s.

Limit set of (Zn)n≥0 ∶= ⋂n≥0⋃m≥n Zm.

Theorem [LMS++]:
For all d-colour m-drawing balanced Pólya urn scheme,

the limit set of (Zn)n≥0 is almost surely a compact connected set of
Σ(d) stable by the flow of the differential equation ẋ = h(x);
if there exists θ ∈ Σ(d) such that h(θ) = 0 and, for all n ≥ 0,
⟨h(Zn),Zn − θ⟩ < 0, then Zn converges almost surely to θ.
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Main results “Law of large numbers”

A bit disappointing?

Favourable case: h has only one zero θ on Σ(d), and
⟨h(x),x − θ⟩ < 0 for all x in Σ(d) (true on “most” examples).
Such a θ must verify that all eigenvalues of Dh(θ) are
non-positive.

The m = 1 Perron-Frobenius-like cases are favourable: the only
zero of h(x) = (tR −SId)x (R =replacement matrix) on Σ(d) is the
left eigenvector u1 associated to S. #AthreyaKarlin

Non-favourable cases⇔ (m = 1)-non-Perron-Frobenius-like
cases. Not surprising that they are much harder to analyse (see
[Janson ’05])

“Affine” case of Kuba and Mahmoud⇔ h(x) = Ax + b.

h has polynomial components of degree at most m. Thus, given a
replacement rule, one can easily check if it is a favourable case,
using MapleSage, for example.
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Main results “Central limit theorem”

The good news...
θ is a stable zero of h iff all eigenvalues of Dh(θ) are negative.

Theorem [LMS++]: For all balanced d-colour, m-drawing urn:
Assume that there exists a stable zero θ of h such that Zn → θ a.s. Let
Λ be the eigenvalue of −Dh(θ) with the smallest real part. Then,

if Re(Λ) > S/2, then
√

n(Zn − θ) ⇒ N(0,Σ) when n →∞.
Assume additionally that all Jordan blocks of Dh(θ) associated to Λ are
of size 1. Then,

if Re(Λ) = S/2, then
√

n/log n(Zn − θ) ⇒ N(0,Θ) when n →∞.

if Re(Λ) < S/2, then nRe(Λ)/S(Zn − θ) converges almost surely to a
finite random variable. see [Zhang ’17]

We have explicit formulas for Σ and Θ, they don’t depend on the
initial condition.
Generalisation of the m = 1 case and the “affine” case.
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Main results Examples

Two-colour examples
The replacement rule can be expressed by a matrix:

R =
⎛
⎜⎜⎜
⎝

a0 b0
a1 b1
⋮ ⋮

am bm

⎞
⎟⎟⎟
⎠

If the set we drew at random contains k red balls, we
add am−k red balls and bm−k black balls in the urn.
[Kuba Mahmoud ’16]

We have h(x ,1 − x) = ( h1(x ,1 − x)
−h1(x ,1 − x)). Let g(x) ∶= h1(x ,1 − x):

Corollary [LMS++]:

Let g(x) = ∑m
k=0 (m

k )xk(1 − x)kam−k −Sx , then
either g ≡ 0 and then Zn → Z∞ a.s. (diagonal case),
or g has isolated zeros, and Zn → (θ,1 − θ) where g(θ) = 0, and
g′(θ) ≤ 0.

Second order depending on the relative order of −g′(θ)/S and 1/2 (if
g′(θ) < 0).
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Main results Examples

Two-colour examples
The replacement rule can be expressed by a matrix:

R =
⎛
⎜⎜⎜
⎝

a0 b0
a1 b1
⋮ ⋮

am bm

⎞
⎟⎟⎟
⎠

If the set we drew at random contains k red balls, we
add am−k red balls and bm−k black balls in the urn.
[Kuba Mahmoud ’16]

g(x) =
m
∑
k=0

(m
k
)xk(1 − x)kam−k −Sx

Example 1:

R =
⎛
⎜
⎝

4 0
1 3
1 3

⎞
⎟
⎠

g(x) = (1 − x)(1 − 3x), g′(1) = 2, g′(1/3) = −2
thus Zn → (1/3, 2/3) a.s.;
−g′(1/3)/S = 1/2, and thus:

√
n/log n(Zn,1 − 1/3) ⇒ N(0, 1/18)

NB: the urn is not “affine” since g has degree 2.
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Main results Examples

If m = 2, there is at most one stable zero, but when m ≥ 3:

Example 2:

R =
⎛
⎜⎜⎜
⎝

82 9
91 0
0 91
9 82

⎞
⎟⎟⎟
⎠

g(x) = −200(x − 1/10)(x − 1/2)(x − 9/10)
g′(1/2) > 0, g′(1/10) = g′(9/10) = −64
−64/91 > 1/2, thus

Zn,1 → X∞ ∈ {1/10, 9/10} and
√

n(Zn,1 −X∞) ⇒ N(0, 4131/67340).

We have simulated 100 trajectories
(200 steps each) of this urn
starting at (2/5, 3/5):
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Main results Examples

Some three-colour examples (m = 2)

R ∶ (2,0,0) ↦ (2,0,0)

(0,2,0) ↦ (1,0,1)

(0,0,2) ↦ (1,1,0)

(1,1,0) ↦ (0,0,2)

(1,0,1) ↦ (0,2,0)

(0,1,1) ↦ (0,1,1)

We have simulated two
200-step trajectories starting
from (6,3,3) and (2,6,20):

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

(1/5, 2/5, 2/5)

vector field of h

√
n(Zn − (1/5, 2/5, 2/5)) ⇒ N(0,Σ)

Σ = 1
25

⎛
⎜
⎝

2 −1 −1
−1 19/13 −6/13

−1 −6/13 19/13

⎞
⎟
⎠

NB: Σ ⋅ (1,1,1)t = (0,0,0)t .
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Main results Examples

A non-favourable case: “rock, scissor, paper”

R ∶ (2,0,0) ↦ (1,0,0)

(0,2,0) ↦ (0,1,0)

(0,0,2) ↦ (0,0,1)

(1,1,0) ↦ (1,0,0)

(1,0,1) ↦ (0,0,1)

(0,1,1) ↦ (0,1,0)

h has four zeros: (1,0,0), (0,1,0),
(0,0,1) and (1/3, 1/3, 1/3), but all of
them are “repulsive”.

Theorem [Laslier & Laslier ++]:
The trajectory of Zn accumulates on a cycle stable by the
flow of ẏ = h(y).
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Conclusion

In a nutshell

We have
a theorem that gives, in the “favourable” cases, convergence
almost sure to some θ (h(θ) = 0);
conditionally on Zn → θ, an easy-to-apply theorem that gives the
speed of convergence in terms of a “central limit theorem”.

Flaws:
there seems to be no “easy criterion” that says which replacement
rule R leads to a favourable case (other than calculating h);
the second order results only apply if all eigenvalues of Dh(θ) on
Σ(d) are negative.

I believe that this is the best we can do in full generality.
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Conclusion

Future work

Remove the balance assumption.

for 2-colour urns, we can prove Zn → θ where h(θ) = 0 a.s., and
partial result for the central limit theorem;

but there is a lack of stochastic approximation results for
d-dimensional, with random increment 1/Tn: [Renlund ’16]

Zn+1 = Zn +
1

Tn+1
(h(Zn) +∆Mn+1).

Thank you!!
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