Abstract

We show that $\mathfrak{b} = \mathfrak{c} = \omega_3$ is consistent with the existence of a Δ^1_3-definable wellorder of the reals and a Π^1_2-definable ω-mad subfamily of $[\omega]^{\omega}$ (resp. ω^ω).

Keywords: coding, projective wellorders, projective mad families, large continuum

2000 MSC: 03E15, 03E20, 03E35, 03E45

1. Introduction

The existence of a projective, in fact Δ^1_3-definable wellorder of the reals in the presence of large continuum, i.e. $\mathfrak{c} \geq \omega_3$, was established by Harrington in [8]. In the present paper, we develop an iteration technique which allows one not only to obtain the consistency of the existence of a Δ^1_3-definable wellorder of the reals with large continuum (see Theorem 1), but in addition the existence of a Π^1_2-definable ω-mad family with $\mathfrak{b} = \mathfrak{c} = \omega_3$ (see Theorem 2). The method is a natural generalization to models with large continuum of the iteration technique developed in [5]. We expect that an application of Jensen’s coding techniques will lead to the same result with essentially arbitrary values for \mathfrak{c}.

For a more detailed introduction to the subject of projective wellorders of the reals and projective mad families, see [5] and [7]. Recall that a family \mathcal{A} of infinite subsets of ω is almost disjoint if any two of its elements have finite intersection. An infinite almost disjoint family \mathcal{A} is maximal (abbreviated mad family), if for every infinite subset b of ω, there is an element $a \in \mathcal{A}$ such that $|a \cap b| = \omega$. If \mathcal{A} is an almost disjoint family, let $\mathcal{L}(\mathcal{A}) = \{b \in [\omega]^\omega : b$ is not covered by finitely many elements of $\mathcal{A}\}$. A mad family \mathcal{A}
is \(\omega \)-mad if for every \(B \in [\mathcal{L}(\mathcal{A})]^{\omega} \), there is \(a \in \mathcal{A} \) such that \(|a \cap b| = \omega \) for all \(b \in B \). For the definition of \(b \), as well as an introduction to the subject of cardinal characteristics of the continuum we refer the reader to [1].

In section 2 we introduce a model in which \(b = \epsilon = \omega_3 \) and there is a \(\Delta^1_2 \)-definable wellorder of the reals. In section 3 we show how to modify the argument to obtain in addition the existence of a \(\Pi^1_2 \)-definable \(\omega \)-mad family. We begin by fixing an appropriate sequence \(\bar{S} = \langle S_\alpha : 1 < \alpha < \omega_3 \rangle \) of stationary subsets of \(\omega_3 \) and explicitly destroying the stationarity of each \(S_\alpha \) by adding a closed unbounded subset of \(\omega_3 \) disjoint from it. The wellorder is produced by introducing reals (see Steps 1 through 3 in section 2) which code this stationary kill for certain stationary sets from \(\bar{S} \). For this purpose, we use almost disjoint coding as well as a modified version of the method of localization (see [4] and [5, Definition 1]).

2. Projective Wellorders with Large Continuum

Throughout the paper we work over the constructible universe \(L \), thus unless otherwise specified \(V = L \). Let \(\langle G_\xi : \xi \in \omega_2 \cap \text{cof}(\omega_1) \rangle \) be a \(\Diamond_{\omega_2}(\text{cof}(\omega_1)) \) sequence which is \(\Sigma_1 \) definable over \(L_{\omega_2} \). For every \(\alpha < \omega_3 \), let \(W_\alpha \) be the \(L \)-least subset of \(\omega_2 \) coding the ordinal \(\alpha \). Let \(\bar{S}' = \langle S_\alpha : 1 < \alpha < \omega_3 \rangle \) be the sequence of stationary subsets of \(\omega_2 \) defined as follows: \(S_\alpha = \{ \xi \in \omega_2 \cap \text{cof}(\omega_1) : G_\xi = W_\alpha \cap \xi \neq \emptyset \} \). In particular, the sets \(S_\alpha \) are stationary subsets of \(\text{cof}(\omega_1) \cap \omega_2 \) which are mutually almost disjoint (that is, for all \(1 < \alpha, \beta < \omega_3, \alpha \neq \beta \), we have that \(S_\alpha \cap S_\beta \) is bounded). Let \(S_{-1} = \{ \xi \in \omega_2 \cap \text{cof}(\omega_1) : G_\xi = 0 \} \). Note that \(S_{-1} \) is a stationary subset of \(\omega_2 \cap \text{cof}(\omega_1) \) disjoint from all \(S_\alpha \)'s.

Say that a transitive \(\text{ZF}^- \) model \(M \) is suitable if \(\omega_3^M \) exists and \(\omega_3^M = \omega_3^L \). From this it follows, of course, that \(\omega_1^M = \omega_1^L \) and \(\omega_2^M = \omega_2^L \).

Step 0. For every \(\alpha : \omega_2 \leq \alpha < \omega_3 \) shoot a closed unbounded set \(C_\alpha \) disjoint from \(S_\alpha \) via a poset \(\mathbb{P}_0^\alpha \). The poset \(\mathbb{P}_0^\alpha \) consists of all bounded, closed subsets of \(\omega_2 \), which are disjoint from \(S_\alpha \). The extension relation is end-extension. Note that \(\mathbb{P}_0^\alpha \) is countably closed and \(\text{N}_2 \)-distributive (see [3]). For every \(\alpha \in \omega_2 \) let \(\mathbb{P}_0^\alpha \) be the trivial poset.

Let \(\mathbb{P}^0 = \prod_{\alpha < \omega_3} \mathbb{P}_0^\alpha \) be the direct product of the \(\mathbb{P}_0^\alpha \)'s with supports of size \(\omega_1 \). Then \(\mathbb{P}^0 \) is countably closed and by the \(\Delta \)-system Lemma, also \(\omega_3 \)-c.c. Its \(\omega_2 \)-distributivity is easily established using the stationary set \(S_{-1} \subseteq \omega_2 \cap \text{cof}(\omega_1) \).

Step 1. We begin by fixing some notation. Let \(X \) be a set of ordinals. Denote by \(0(X) \), \(I(X) \), and \(II(X) \) the sets \(\{ \eta : 3\eta \in X \} \), \(\{ \eta : 3\eta + 1 \in X \} \) and \(\{ \eta : 3\eta + 2 \in X \} \), respectively. Let \(\text{Even}(X) \) be the set of even ordinals in \(X \) and \(\text{Odd}(X) \) be the set of odd ordinals in \(X \).
In the following we treat 0 as a limit ordinal. For every $\alpha : \omega_2 \leq \alpha < \omega_3$ let $D_\alpha \subset \omega_2$ be a set coding the tuple $\langle C_\alpha, W_\alpha, W_\gamma \rangle$, where γ is the largest limit ordinal $\leq \alpha$. More precisely D_α is such that $0(D_\alpha)$, $I(D_\alpha)$, and $II(D_\alpha)$ equal C_α, W_α, and W_γ, respectively. Now let E_α be the club in ω_2 of intersections with ω_2 of elementary submodels of $L_{\alpha + \omega_2 + 1}[D_\alpha]$ which contain $\omega_1 \cup \{D_\alpha\}$ as a subset. (These elementary submodels form an ω_2-chain.) Now choose Z_α to be a subset of ω_2 such that $Even(Z_\alpha) = D_\alpha$, and if $\beta < \omega_2$ is ω_2^M for some suitable model M such that $Z_\alpha \cap \beta \in M$, then β belongs to E_α. (This is easily done by placing in Z_α a code for a bijection $\phi : \beta_1 \to \omega_1$ on the interval $(\beta_0, \beta_0 + \omega_1)$ for each adjacent pair $\beta_0 < \beta_1$ from E_α.) Then we have:

\[\text{(*)_a: If } \beta < \omega_2 \text{ and } M \text{ is any suitable model such that } \omega_1 \subset M, \omega_2^M = \beta, \text{ and } Z_\alpha \cap \beta \in M, \text{ then } M \models \psi(\omega_2, Z_\alpha \cap \beta), \text{ where } \psi(\omega_2, X) \text{ is the formula } " \text{Even}(X) \text{ codes a tuple } \langle \tilde{C}, \tilde{W}, \tilde{W} \rangle, \text{ where } \tilde{W} \text{ and } \tilde{W} \text{ are the L-least codes of ordinals } \tilde{\alpha}, \tilde{\alpha} < \omega_2 \text{ such that } \tilde{\alpha} \text{ is the largest limit ordinal not exceeding } \alpha, \text{ and } \tilde{C} \text{ is a club in } \omega_2 \text{ disjoint from } S_{\tilde{\alpha}}."\]

Indeed, given a suitable model M with $\omega_2^M = \beta$ and $Z_\alpha \cap \beta \in M$, note that $\beta \in E_\alpha$ by the construction of Z_α and also that $D_\alpha \cap \beta \in M$. Let N be an elementary submodel of $L_{\alpha + \omega_2 + 1}[D_\alpha]$ such that $\omega_1 \cup \{D_\alpha\} \subset N$ and $N \cap \omega_2 = \beta$. Denote by \tilde{N} the transitive collapse of N. Then $N = L_\xi[D_\alpha]$ for some $\omega_2 > \xi > \beta$ and $\omega_2^N = \omega_2^M = \beta$. Therefore $\tilde{N} \subset M$. Let $Z_\alpha' \subset \omega_2$ be such that Even(Z_α') = Odd(Z_α') = D_α. By the definition of D_α, $L_{\alpha + \omega_2 + 1}[D_\alpha] \models \psi(\omega_2, Z_\alpha')$. By elementarity, $\tilde{N} \models \psi(\omega_2, Z_\alpha' \cap \beta)$. Since the formula ψ is Σ_1, $\omega_2^\tilde{N} = \omega_2^M$, we conclude that $M \models \psi(\omega_2, Z_\alpha' \cap \beta)$. Since $Z_\alpha \cap \beta \in M$ and $Even(Z_\alpha') = Even(Z_\alpha)$, we have $M \models \psi(\omega_2, Z_\alpha \cap \beta)$, which finishes the proof of (*)$_a$.

Now similarly to S_ξ we can define a sequence $\tilde{\alpha} = \langle \alpha_\xi : \xi < \omega_2 \rangle$ of stationary subsets of ω_1 using the “standard” \diamondsuit-sequence. Then in particular this sequence is nicely definable over L_{ω_1} and almost disjoint. Now we code Z_α by a subset X_α of ω_1 with the forcing P_α consisting of all tuples $\langle s_0, s_1 \rangle \in [\omega_1]^{|\omega_1|} \times [Z_\alpha]^{|\omega_1|}$ where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ iff s_0 is an initial segment of t_0, $s_1 \subseteq t_1$ and $t_0 \cap s_0 \cap A_\xi = \emptyset$ for all $\xi \in s_1$. Then X_α obviously satisfies the following condition:

\[\text{(**)$_a$: If } \omega_1 < \beta < \omega_2 \text{ and } M \text{ is a suitable model such that } \omega_2^M = \beta \text{ and } \{X_\alpha\} \cup \omega_1 \subset M, \text{ then } M \models \phi(\omega_1, \omega_2, X_\alpha), \text{ where } \phi(\omega_1, \omega_2, X) \text{ is the formula } " \text{Using the sequence } \tilde{\alpha}, X \text{ almost disjointly codes a subset } \tilde{Z} \text{ of } \omega_2, \text{ whose even part } Even(\tilde{Z}) \text{ codes a tuple } \langle \tilde{C}, \tilde{W}, \tilde{W} \rangle, \text{ where } \tilde{W} \text{ and } \tilde{W} \text{ are the L-least codes of ordinals } \tilde{\alpha}, \tilde{\alpha} < \omega_3 \text{ such that } \tilde{\alpha} \text{ is the largest limit ordinal not exceeding } \alpha, \text{ and } \tilde{C} \text{ is a club in } \omega_2 \text{ disjoint from } S_{\tilde{\alpha}}."\]
Let $\mathbb{P}^1 = \prod_{\alpha<\omega_1} \mathbb{P}^1_\alpha$, where \mathbb{P}^1_α is the trivial poset for $\alpha \in \omega_2$, be the product of the \mathbb{P}^1_α's with countable support. The poset \mathbb{P}^1 is easily seen to be countably closed. Moreover, it has the ω_2-c.c. by a standard Δ-system argument.

Step 2. Now we shall force a localization of the X_α’s. Fix ϕ as in $(**)_\alpha$.

Definition 1. Let $X, X' \subset \omega_1$ be such that $\phi(\omega_1, \omega_2, X)$ and $\phi(\omega_1, \omega_2, X')$ hold in any suitable model M with $\omega_1^M = \omega_1^1$ containing X and X', respectively. We denote by $L(X, X')$ the poset of all functions $r : |r| \to 2$, where the domain $|r|$ of r is a countable limit ordinal such that:

1. if $\gamma < |r|$ then $\gamma \in X$ iff $r(3\gamma) = 1$
2. if $\gamma < |r|$ then $\gamma \in X'$ iff $r(3\gamma + 1) = 1$
3. if $\gamma \leq |r|$, M is a countable suitable model containing $r \upharpoonright \gamma$ as an element and $\gamma = \omega_1^M$, then $M \models \phi(\omega_1, \omega_2, X \cap \gamma) \land \phi(\omega_1, \omega_2, X' \cap \gamma)$.

The extension relation is end-extension.

Set $\mathbb{P}^2_{\alpha+m} = L(X_{\alpha+m}, X_\alpha)$ for every $\alpha \in Lim(\omega_3) \setminus \omega_2$ and $m \in \omega$. Let $\mathbb{P}^2_{\alpha+m}$ be the trivial poset for every $\alpha \in Lim(\omega_2)$ and $m \in \omega$. Let

$$\mathbb{P}^2 = \prod_{\alpha \in Lim(\omega_3)} \prod_{m \in \omega} \mathbb{P}^2_{\alpha+m}$$

with countable supports. By the Δ-system Lemma in $L^{\mathbb{P}^0 \ast \mathbb{P}^1}$ the poset \mathbb{P}^2 has the ω_2-c.c.

Observe that the poset $\mathbb{P}^2_{\alpha+m}$, where $\alpha > 0$, produces a generic function from ω_1 (of $L^{\mathbb{P}^0 \ast \mathbb{P}^1}$) into 2, which is the characteristic function of a subset $Y_{\alpha+m}$ of ω_1 with the following property:

$(**)_\alpha$: For every $\beta < \omega_1$ and any suitable M such that $\omega_1^M = \beta$ and $Y_{\alpha+m} \cap \beta$ belongs to M, we have $M \models \phi(\omega_1, \omega_2, X_{\alpha+m} \cap \beta) \land \phi(\omega_1, \omega_2, X_\alpha \cap \beta)$.

Lemma 1. The poset $\mathbb{P}_0 := \mathbb{P}^0 \ast \mathbb{P}^1 \ast \mathbb{P}^2$ is ω-distributive.

Proof. Given a condition $p_0 \in \mathbb{P}_0$ and a collection $\{O_n\}_{n \in \omega}$ of open dense subsets of \mathbb{P}_0, choose the least countable elementary submodel \mathcal{N} of some large L_θ (θ regular) such that $\{p_0\} \cup \{\mathbb{P}_0\} \cup \{O_n\}_{n \in \omega} \subset \mathcal{N}$. Build a subfilter g of $\mathbb{P}_0 \cap \mathcal{N}$, below p_0, which hits all dense subsets of \mathbb{P}_0 which belong to \mathcal{N}. Write g as $g(0) \ast g(1) \ast g(2)$. Now $g(0) \ast g(1)$ has a greatest lower bound $p(0) \ast p(1)$ because the forcing $\mathbb{P}^0 \ast \mathbb{P}^1$ is ω-closed. The condition $(p(0), p(1))$ is obviously $(\mathcal{N}, \mathbb{P}^0 \ast \mathbb{P}^1)$-generic.
On each component $\alpha + m \in \mathcal{N} \cap \omega_3$, where $\alpha \in \text{Lim}(\omega_3)$, $m \in \omega$, define $p(2)(\alpha + m) = \bigcup g(2)(\alpha + m)$. It suffices to verify that $p(2)(\alpha + m)$ is a condition in $\mathbb{P}_\alpha^{\omega_m} \ast \mathbb{P}_\alpha^{1 \omega_m} \ast \mathbb{P}_\alpha^{1 \omega_m}$, for this will give us a condition $p(2)$ so that $p(0) \ast p(1) = p(2)$ meets each of the O_α’s.

As $(p(0)(\alpha), p(0)(\alpha + m), p(1)(\alpha), p(1)(\alpha + m))$ is a $(\mathcal{N}, \mathbb{P}_\alpha^{0 \omega_m} \ast \mathbb{P}_\alpha^{0 \omega_m} \ast \mathbb{P}_\alpha^{1 \omega_m} \ast \mathbb{P}_\alpha^{1 \omega_m})$-generic condition, if

$$G := G(0)(\alpha) \ast G(0)(\alpha + m) \ast G(1)(\alpha) \ast G(1)(\alpha + m)$$

is a $\mathbb{P}_\alpha^{0 \omega_m} \ast \mathbb{P}_\alpha^{0 \omega_m} \ast \mathbb{P}_\alpha^{1 \omega_m}$-generic filter over L containing it, then the isomorphism π of the transitive collapse $\dot{\mathcal{N}}$ of \mathcal{N}, onto \mathcal{N} extends to an elementary embedding from

$$\dot{\mathcal{N}}_0 := \dot{\mathcal{N}}[\bar{g}(0)(\bar{a}) \ast \bar{g}(0)(\bar{a} + m) \ast \bar{g}(1)(\bar{a}) \ast \bar{g}(1)(\bar{a} + m)]$$

into $L_\theta[G]$. Here $\bar{g}(i) = \pi^{-1}(g(i))$, $i \in 2$, and $\bar{\xi} = \pi^{-1}(\xi)$ for all $\xi \in \mathcal{N} \cap \text{Ord}$. By the genericity of G we know that, letting $X_\eta = \bigcup (G(1)(\alpha), X_{\alpha + m} = \bigcup (G(1)(\alpha + m), \text{properties } (**)_\alpha \text{ and } (**)_\alpha + m \text{ hold. By elementarity, } \dot{\mathcal{N}}_0 \text{ is a suitable model and } \dot{\mathcal{N}}_0 \models \phi(\omega_1, \omega_2, x_{\bar{a}}) \land \phi(\omega_1, \omega_2, x_{\bar{a} + m}), \text{ where } x_{\bar{a}} = \bigcup (g(1)(\alpha) = \bigcup (\bar{g}(1)(\bar{a}) \land x_{\bar{a} + m} = \bigcup (g(1)(\alpha + m) = \bigcup (\bar{g}(1)(\bar{a} + m)). \text{ By the construction of } \mathbb{P}_0, \mathcal{N}_0 = \mathcal{N}[x_{\bar{a}}, x_{\bar{a} + m}] \text{ and hence } \mathcal{N}_0 = \mathcal{N}[x_{\bar{a}}, x_{\bar{a} + m}] \models \phi(\omega_1, \omega_2, x_{\bar{a}}) \land \phi(\omega_1, \omega_2, x_{\bar{a} + m}).$

Let ξ be such that $\dot{\mathcal{N}} = L_\xi$ and let M be any suitable model containing $p(2)(\alpha)$, $p(2)(\alpha + m)$, and such that $\omega_1^M = \omega_1 \cap \mathcal{N}$. We have to show that $\mathcal{M} = p(\omega_1, \omega_2, x_{\bar{a}}) \land \phi(\omega_1, \omega_2, x_{\bar{a} + m})$. Set $\eta = \mathcal{M} \cap \text{Ord}$ and consider the chain $M_0 \subseteq M_1 \subseteq \mathcal{M}$ of suitable models, where $M_2 = L_{\eta}[x_{\bar{a}}, x_{\bar{a} + m}]$ and $M_1 = L_{\eta}[p(2)(\alpha), p(2)(\alpha + m)]$. Three cases are possible.

Case a. $\eta > \xi$. Since \mathcal{N} was chosen to be the least countable elementary submodel of L_θ containing the initial condition, the poset and the sequence of dense sets, it follows that ξ (and therefore also δ) is collapsed to ω in $L_\xi + 2$, and hence this case cannot happen.

Case b. $\eta = \xi$. In this case $M_2 \models \phi(\omega_1, \omega_2, x_{\bar{a}}) \land \phi(\omega_1, \omega_2, x_{\bar{a} + m})$. Indeed, $M_2 = L_{\eta}[x_{\bar{a}}, x_{\bar{a} + m}]$. Since ϕ is a Σ_1-formula, $\omega_1^{M_2} = \omega_1^M$, and $\omega_2^{M_2} = \omega_2^M$, we have $\mathcal{M} = p(\omega_1, \omega_2, x_{\bar{a}}) \land \phi(\omega_1, \omega_2, x_{\bar{a} + m}).$

Case c. $\eta < \xi$. In this case M_2 is an element of $\mathcal{N}[x_{\bar{a}}, x_{\bar{a} + m}]$. Since $L_\theta[G]$ satisfies $(**)_{\alpha}$ and $(**)_{\alpha + m}$, by elementarity so does the model $\mathcal{N}[x_{\bar{a}}, x_{\bar{a} + m}]$ with $x_{\bar{a}}$ replaced by $x_{\bar{a}}$ and $x_{\bar{a} + m}$ replaced by $x_{\bar{a} + m}$. In particular, $M_2 \models \phi(\omega_1, \omega_2, x_{\bar{a}}) \land \phi(\omega_1, \omega_2, x_{\bar{a} + m})$. Since ϕ is a Σ_1-formula, $\omega_1^{M_2} = \omega_1^M$, and $\omega_2^{M_2} = \omega_2^M$, we have $\mathcal{M} = \phi(\omega_1, \omega_2, x_{\bar{a}}) \land \phi(\omega_1, \omega_2, x_{\bar{a} + m})$, which finishes our proof.

Set $\mathbb{P}_0 = \mathbb{P}_0 \ast \mathbb{P}_1 \ast \mathbb{P}_2$. Let us fix $\xi \in \omega_3$ and denote by $\mathbb{P}_0^{\alpha \xi}, \mathbb{P}_1^{\alpha \xi}, \mathbb{P}_2^{\alpha \xi}$ the following posets in $L, L^{\mathbb{P}_0^{\alpha \xi}}, \text{ and } L^{\mathbb{P}_1^{\alpha \xi}}, \mathbb{P}_2^{\alpha \xi}$, respectively:

$$\prod_{\sigma \in \omega_1 \setminus \{\xi\}} \mathbb{P}_0^{\alpha} \text{ with supports of size } \omega_1;$$
$$\prod_{\sigma \in \omega_1 \setminus \{\xi\}} \mathbb{P}_0^{\alpha} \text{ with countable supports; and}$$
\[\prod_{\alpha \in \omega_1 \setminus \{\xi\}} \mathbb{P}_\alpha^2 \] with countable supports.

Observe that \(\mathbb{P}_0^\xi := \mathbb{P}_0^0 \cdot \mathbb{P}_0^1 \cdot \mathbb{P}_0^2 \cdot \mathbb{P}_0^\xi \) for posets \(\mathbb{P} \subseteq \mathbb{Q} \). The notation \(\mathbb{P} \prec \mathbb{Q} \) means that the identity embedding from \(\mathbb{P} \) to \(\mathbb{Q} \) is complete.\(^2\) Let \(\mathbb{R} \) be the quotient poset \(\mathbb{P}_0^\mathbb{P}_0 \). Thus \(\mathbb{P}_0^\mathbb{P}_0 = \mathbb{P}_0 \).

Step 3. We begin with fixing some terminology. For \(\alpha : 1 < \alpha < \omega_3 \) we will say that there is a stationary kill of \(S_\alpha \), if there is a closed unbounded set \(C \) disjoint from \(S_\alpha \).

We will say that the stationary kill of \(S_\alpha \) is coded by a real, if there is a closed unbounded set disjoint from \(S_\alpha \) which is constructible from this real.

Fix a nicely definable sequence \(\tilde{B} = \langle B_{\xi,m} : \xi < \omega_1, m \in \omega \rangle \) of almost disjoint subsets of \(\omega \). We will define a finite support iteration \(\langle \mathbb{P}_\alpha, \mathbb{Q}_\gamma : \alpha \leq \omega_3, \gamma < \omega_3 \rangle \) such that \(\mathbb{P}_0 \) is as above, \(\mathbb{Q}_\alpha \) is a \(\mathbb{P}_\alpha \)-name for a \(\sigma \)-centered poset, in \(L^{\mathbb{P}_\alpha} \) there is a \(\Delta^1_2 \)-definable wellorder of the reals and \(c = b = \mathbb{N}_3 \). Every \(\mathbb{Q}_\alpha \) is going to add a generic real whose \(\mathbb{P}_\alpha \)-name will be denoted by \(\dot{u}_\alpha \) and we shall prove that \(L[\mathcal{G}_\alpha] \cap \omega^\omega = L[\langle \dot{u}_\alpha^G : \xi < \alpha \rangle] \cap \omega^\omega \) for every \(\mathbb{P}_\alpha \)-generic filter \(\mathcal{G}_\alpha \) (see Lemma 2). This gives us a canonical wellorder of the reals in \(L[\mathcal{G}_\alpha] \), which depends only on the sequence \(\langle \dot{u}_\alpha^G : \xi < \alpha \rangle \), whose \(\mathbb{P}_\alpha \)-name will be denoted by \(\dot{\gamma}_\alpha \). We can additionally arrange that for \(\alpha < \beta \) we have that \(1_{\mathbb{P}_\beta} \) forces \(\dot{\gamma}_\alpha \) to be an initial segment of \(\dot{\gamma}_\beta \). Then if \(G \) is a \(\mathbb{P}_{\omega_3} \)-generic filter over \(L, \langle \dot{\gamma}_\alpha : \alpha < \omega_3 \rangle \) will be the desired wellorder of the reals. Furthermore this wellorder will not depend on the generic set \(G \) (see Lemmas 4 and 5).

We proceed with the recursive construction of \(\mathbb{P}_{\omega_1} \). Along this construction we shall also define a sequence \(\langle A_\alpha : \alpha \in \text{Lim}(\omega_3) \rangle \), where \(A_\alpha \) is a \(\mathbb{P}_\alpha \)-name for a subset of \([\alpha, \alpha + \omega) \). For every \(\omega_2 \leq \nu < \omega_3 \) fix a bijection \(\iota_\nu : \{0,1,2\} \times \nu \rightarrow \text{Lim}(\omega_3) \). If \(\mathcal{G}_\alpha \) is \(\mathbb{P}_\alpha \)-generic over \(L \), \(\dot{\gamma}_\alpha = \dot{\gamma}_{\alpha}^G \) and \(x, y \) are reals in \(L[\mathcal{G}_\alpha] \) such that \(x <_\alpha y \), let \(x \cdot y = (2n : n \in x) \cup (2n + 1 : n \in y) \) and \(\Delta(x \cdot y) = (2n + 2 : n \in x \cdot y) \cup (2n + 1 : n \notin x \cdot y) \).

Suppose \(\mathbb{P}_\alpha \) has been defined and fix a \(\mathbb{P}_\alpha \)-generic filter \(\mathcal{G}_\alpha \).

Case 1. Suppose \(\alpha \) is a limit ordinal and write it in the form \(\omega_2 \cdot \alpha' + \xi \), where \(\xi < \omega_2 \). If \(\alpha' > 0 \), let \(i = \iota_{\omega_2 \cdot \xi} \cdot (\omega_2, \kappa) \) and \(\dot{\xi}_0, \dot{\xi}_1 = \iota^{-1}(\xi) \). Let \(A_\alpha := A_\alpha^G \) be the set \(\alpha + (\omega \setminus \Delta(x_{\xi_0} \cdot x_{\xi_1})) \), where \(x_{\xi} \) is the \(\xi \)-th real in \(L[\mathcal{G}_{\omega_2 \cdot \alpha'}] \cap [\omega]^{\omega_2} \) according to the wellorder \(\dot{\gamma}_{\omega_2 \cdot \alpha'}^G \) (here \(G_{\omega_2 \cdot \alpha'} = G_\alpha \cap \mathbb{P}_{\omega_2 \cdot \alpha'} \)). Let also

\[Q_\alpha = \{ \langle s_0, s_1 \rangle : s_0 \in [\omega]^{<\omega}, s_1 \in \bigcup_{m \in \Delta(x_{\xi_0} \cdot x_{\xi_1})} Y_{\alpha+m} \times \{ m \} \}_{<\omega} \],

where \(\langle t_0, t_1 \rangle = \langle s_0, s_1 \rangle \) if and only if \(s_1 \subseteq t_1, s_0 \) is an initial segment of \(t_0 \) and \((t_0 \setminus s_0) \cap B_{\xi,m} = \emptyset \) for all \(\langle \xi, m \rangle \in s_1 \).

\(^2\) It might seem unclear why we denote \(\mathbb{P}_0^0 \cdot \mathbb{P}_0^1 \cdot \mathbb{P}_0^2 \cdot \mathbb{P}_0^\xi \) by \(\mathbb{P}_0^\mathbb{P}_0 \) and not simply by \(\mathbb{P}_0 \). It is to reserve the notation \(\mathbb{P}_0^\mathbb{P}_0 \) for a certain restriction of \(\mathbb{P}_0^0 \cdot \mathbb{P}_0^1 \cdot \mathbb{P}_0^2 \cdot \mathbb{P}_0^\xi \) appearing naturally in the proof of Lemma 3.
Case 2. If α is not of the form above, i.e. α is a successor or $\alpha < \omega_2$, then A_α is a name for the empty set and Q_α is a name for the following poset adding a dominating real:

$$Q_\alpha = \{(s_0, s_1) : s_0 \in \omega^{<\omega}, s_1 \in [0.t.(\zeta^G_\alpha)]^{<\omega}\},$$

where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ if and only if s_0 is an initial segment of t_0, $s_1 \subset t_1$, and $t_0(n) > x_\xi(n)$ for all $n \in \text{dom}(t_0) \setminus \text{dom}(s_0)$ and $\xi \in s_1$, where x_ξ is the ξ-th real in $L[G_\alpha] \cap \omega^\omega$ according to the wellorder $<^G_\alpha$.

In both cases Q_α adds the generic real\(^3\) $u_\alpha = \bigcup\{s_0 : \exists s_1 \langle s_0, s_1 \rangle \in g_\alpha\}$, where g_α is Q_α-generic over $V[G_\alpha]$ and $L[G_\alpha][u_\alpha] = L[G_\alpha][g_\alpha]$.

With this the definitions of $\mathbb{P} = \mathbb{P}_\alpha$ and $\langle A_\alpha : \alpha \in \text{Lim}(\omega_3) \rangle$ are complete.

Remark 1. Note that if the first case in the definition of Q_α above takes place, then in $L^{\mathbb{P}_\alpha}$ the poset Q_α produces a real r_α, which for certain reals x, y codes $\gamma_{\alpha + m}$ for all $m \in \Delta(x \ast y)$.

Let H be a poset. An H-name \dot{f} is called a nice name for a real if $\dot{f} = \bigcup_{i \in \omega} (\{i, \dot{f}_i\}, p)$: $p \in A(\dot{f})$ where for all $i \in \omega$, $A(\dot{f})$ is a maximal antichain in H, $\dot{f}_i \in \omega$ and for all $p \in A(\dot{f})$, $p \vdash \dot{f}(i) = \dot{f}_i$. From now on we will assume that all names for reals are nice.

Using the fact that for every $p \in \mathbb{P}$ and $\alpha > 0$ the coordinate $p(\alpha)$ is a \mathbb{P}_α-name for a finite set of ordinals, one can show that the set D of conditions p fulfilling the following properties is dense in \mathbb{P}:

- For every $\alpha > 0$ in the support of p, $p(\alpha) = \langle s_0, s_1 \rangle$ for some $s_1 \in [\text{Ord}]^{<\omega}$ and $s_0 \in [\omega]^{<\omega}$ or $s_0 \in \omega^{<\omega}$ depending on Q_α.

Lemma 2. Let $\gamma \leq \omega_3$ and let G_γ be a \mathbb{P}_γ-generic filter over L. Then $L[G_\gamma] \cap \omega^\omega = L[\{\dot{u}_\xi^{G_\gamma} : \xi < \gamma\}] \cap \omega^\omega$.

Proof. Let $\dot{f} = \bigcup_{i \in \omega} (\{i, \dot{f}_i\}, p) : p \in A(\dot{f})$ be a nice \mathbb{P}_γ-name for a real such that $\bigcup_{i \in \omega} A(\dot{f}) \subset D$, $\dot{f} = \dot{f}_\gamma^G$, and let p_1 be the unique element of $A(\dot{f}) \cap G_\gamma$. Let $u_\xi = u_\xi^{G_\gamma}$ for all $\xi < \gamma$. Since \mathbb{P}_0 is countably distributive, there exists $q \in \mathbb{P}_0 \cap G_\gamma$ such that $q \leq p_1(0)$ for all $i \in \omega$.

Observe that $\langle i, j \rangle \in f$ if and only if there exists $p \in A(\dot{f})$ such that $p(0) \geq q$ and for every α in the support of p the following holds:

If $p \upharpoonright \alpha$ forces Q_α to be an almost disjoint coding, i.e. $\alpha = \omega_2 \cdot \alpha' + i(\beta_0, \beta_1)$ for some $\alpha' > 0$ and $\beta_0 < \beta_1 < o.t.(\zeta^G_\alpha)$ and Q_α produces a real coding a stationary kill of $S_{\alpha + m}$ for all $m \in \Delta(x_{\beta_0} \ast x_{\beta_1})$, then $p(\alpha)_0$ is an initial segment of u_α and $u_\alpha \setminus p(\alpha)_0$ is disjoint from $B_{\zeta, m}$ for all $\langle \zeta, m \rangle \in p(\alpha)_1$; and

\(^3u_\alpha \in [\omega]^{<\omega}$ in the first case and $u_\alpha \in \omega^{<\omega}$ in the second case.
If $p \upharpoonright \alpha$ forces \dot{Q}_α to be a poset adding a dominating function, i.e. Q_α produces a real u_α dominating all reals in $L(\langle u_\xi : \xi < \alpha \rangle)$, then $p(\alpha)_0$ is an initial segment of u_α and $u_\alpha(n) > x_\alpha(n)$ for all $\xi < p(\alpha)$ and $n \geq \text{dom}(p(\alpha)_0)$, where x_ξ is the ξ-th real in $L(\langle u_\xi : \xi < \alpha \rangle)$ according to the wellorder $\dot{\langle}^G_\alpha$.

Since $\dot{\langle}^G_\alpha$ depends only on the sequence $\langle u_\xi : \xi < \beta \rangle$ for all $\beta < \gamma$, the definition of f above implies that $f \in L(\langle u_\xi : \xi < \gamma \rangle)$, which finishes our proof. \hfill \square

Lemma 3. Let G be a \mathbb{P}-generic filter over L. Then for $\xi \in \bigcup_{\alpha \in \text{Lim}(\omega_1)} A^G_\alpha$ there is no real coding a stationary kill of S_{ξ}.

Proof. Let $p \in G$ be a condition forcing

$$\xi \in \bigcup_{\alpha \in \text{Lim}(\omega_1)} A^G_\alpha.$$

Suppose that $\xi = \beta + 2n - 1$ for some limit β and $n \in \omega$. Without loss of generality, $p \in \mathbb{P}_\beta \cap \mathcal{D}$.

We define a finite support iteration of a countably distributive poset followed by c.c.c. posets $\langle \mathbb{P}_\alpha, \dot{Q}_\gamma : \alpha \leq \omega_3, \gamma < \omega_3 \rangle$, where $\mathbb{P}_0 = \mathbb{P}_0 \upharpoonright p(0)$ and in $L^{\mathbb{P}_0}$ we have $\dot{Q}_\alpha = Q_\alpha \upharpoonright p(\alpha)$. Such an iteration is just another way of thinking of the poset $\mathbb{P} \upharpoonright p$ which will appear useful for further considerations.

Let $p^\mathbb{P}_0, p^\dot{R}_0$ be such that $p^\mathbb{P}_0 \in \dot{\mathbb{P}}^\mathbb{P}_0$, $p^\dot{R}_0 \in \dot{\mathbb{R}}$ and $\langle p^\mathbb{P}_0, p^\dot{R}_0 \rangle = p(0)$, where $\dot{\mathbb{R}}$ is the quotient poset $\mathbb{P}_0/\mathbb{P}_0^{\mathbb{R}}$. Denote by $p^{\mathbb{P}_0^\mathbb{P}}$ the restriction $\mathbb{P}_0^{\mathbb{P}} \upharpoonright p^\mathbb{P}_0$ and let \mathbb{R} be the $\mathbb{P}_0^\mathbb{P}$-name for $\dot{\mathbb{R}} \upharpoonright p^\mathbb{P}_0$. Note that $\mathbb{P}_0^\mathbb{P} \ast \mathbb{P}_0 = \mathbb{P}_0^\mathbb{P}$.

Now we define a finite support iteration $\langle \mathbb{P}_\alpha, \dot{Q}_\gamma^P : \alpha \leq \omega_3, \gamma < \omega_3 \rangle$, where $\mathbb{P}_0^\mathbb{P}$ is as above and \dot{Q}_γ^P is a name for a σ-centered poset. Also we define a sequence $\langle A^\mathbb{P}_\alpha : \alpha \in \text{Lim}(\omega_1) \rangle$, where $A^\mathbb{P}_\alpha$ is a $\mathbb{P}_0^\mathbb{P}$-name for a subset of $[\alpha, \alpha + \omega)$. The intention is to show that in $\mathbb{P} = \mathbb{P}_\omega_3$ the components $\mathbb{P}_0^\mathbb{P}, \mathbb{P}_1^\mathbb{P}, \mathbb{P}_2^\mathbb{P}$ of $\mathbb{P}_0^\mathbb{P}, \mathbb{P}_1, \mathbb{P}_2$, respectively, can be left out in a certain sense. Thus the iteration $\langle \mathbb{P}_\alpha^\mathbb{P}, \dot{Q}_\gamma^\mathbb{P} : \alpha \leq \omega_3, \gamma < \omega_3 \rangle$ will be introduced along the lines of the definition of $\langle \mathbb{P}_\alpha, \dot{Q}_\gamma : \alpha \leq \omega_3, \gamma < \omega_3 \rangle$. In particular, every $\dot{Q}_\alpha^\mathbb{P}$ will add a generic real with $\mathbb{P}_\alpha^{\mathbb{P}} \ast \dot{Q}_\alpha^\mathbb{P}$-name $\dot{u}_\alpha^\mathbb{P}$. Given a $\mathbb{P}_\alpha^{\mathbb{P}}$-generic filter $G = G^\mathbb{P}_\alpha$, this gives us a canonical wellorder of the reals in $L(\dot{u}_\alpha^{\mathbb{P}} : \xi < \alpha)$ which depends only on the sequence $\langle u_\xi^{\mathbb{P}} : \xi < \alpha \rangle$, whose $\mathbb{P}_\alpha^{\mathbb{P}}$-name will be denoted by $\dot{z}_\alpha^\mathbb{P}$. We can additionally arrange that for $\alpha < \beta$ we have that $1_{\mathbb{P}_\beta}$ forces $\dot{z}_\alpha^\mathbb{P}$ to be an initial segment of $\dot{z}_\beta^\mathbb{P}$. Along the recursive construction for every $\gamma < \omega_3$ we will establish the following properties:

1. $\dot{z}_\gamma^\mathbb{P} <_{\mathbb{P}^\gamma} \dot{z}_\gamma^\mathbb{P};$

\footnote{In fact, one can prove that $\models_{\mathbb{P}_0^\mathbb{P}} \dot{\mathbb{R}} = \mathbb{P}_0^\mathbb{P} \ast \mathbb{P}_1^\mathbb{P} \ast \mathbb{P}_2^\mathbb{P}$, but this does not simplify the proof.}
2. $u_γ^{\pm x \gamma} = u_γ^H$, $\zeta_γ^{\pm x \gamma} = \zeta_γ^H$ and $A_γ^H = A_γ^{\pm x \gamma}$ for limit $γ$, where $H_γ^{\pm x} \subseteq P_γ^{\pm x}$ is the preimage of the $\bar{P}_γ$-generic filter $H_γ$ under the complete embedding from (1);

3. Let $P_γ^{\pm x} \cap \bar{P}_γ^{\pm x}$ be the quotient posets $P_γ^{\pm x} / P_0^{\pm x}$ and $\bar{P}_γ / \bar{P}_0$ respectively. Then $\bar{P}_0 \cap P_γ^{\pm x} = \bar{P}_0$; and

4. $L[H_γ] \cap [\text{Ord}]^ω = L[H_γ^{\pm x}] \cap [\text{Ord}]^ω$ where $H_γ$, $H_γ^{\pm x}$ are as in (2).

For $γ = 0$ the properties above follow from the corresponding definitions. Suppose that (1)-(4) are established for all $η < γ$.

Case 1. If $γ$ is a limit, there is nothing to prove except for (4) (To see that $P_γ^{\pm x}$ is completely embedded in $\bar{P}_γ$ refer to the inductive hypothesis and [2, Lemma 10]). Let $H_0^{\pm x} = H_0^{\pm x} \cap P_0^{\pm x}$, $H_0 = H_γ \cap P_0$ and let K be an \mathbb{R}-generic filter over $L[H_0^{\pm x}]$ such that $L[H_0] = L[H_0^{\pm x}] [K]$. Let E be the poset $(P_0^{\pm x})^{\bar{P}_0} = P_0^{\bar{H}_0} \in L[H_0^{\pm x}]$ (the latter equality follows from (3)). Then $H_{(1,γ)}(= H_γ / H_0)$ is E-generic over $L[H_0^{\pm x}][K]$. Therefore $L[H_0^{\pm x}][K][H_{(1,γ)}] = L[H_0^{\pm x}][H_{(1,γ)}][K]$. The following standard fact may be compared to [9, Lemma 15.19].

Claim. Suppose that P, Q are in V, P is $ω$-distributive and Q is c.c.c. in V^P. Then P is $ω$-distributive in V^Q. In particular, if P is $ω$-distributive and Q is a finite support iteration of $σ$-centered posets, then P is $ω$-distributive in V^Q.

Proof. Let $G \times H$ be $P \times Q$-generic. Let $f : ω → \text{Ord}$ be in $V[H][G] = V[G][H]$ and $σ$ be a Q-name for f in $V[G]$. Without loss of generality, $σ$ is a nice name which can be written as $\bigcup_{i ∈ \text{Ord}} \{ (i, j^i_p, p) : p ∈ \mathcal{A}_i \}$, where j^i_p is an ordinal and $\mathcal{A}_i \in G$ is a maximal antichain in Q. As Q is c.c.c. in $V[G]$, each \mathcal{A}_i is countable in $V[G]$, and hence $σ$ is countable in $V[G]$. Therefore $σ ∈ V$ by the countable distributivity of P. It follows that f belongs to $V[H]$. □

By the above Claim, \mathbb{R} is countably distributive in $L[H_0^{\pm x}][H_{(1,γ)}] = L[H_0^{\pm x}]$ and hence $L[H_0] \cap [\text{Ord}]^ω = L[H_0^{\pm x}] \cap [\text{Ord}]^ω$.

Case 2. $γ = η + 1$.

Let $H_0^{\pm x}_η$ be a $P_0^{\pm x}$-generic filter over L and let K be an \mathbb{R}-generic filter over $L[H_0^{\pm x}_η]$, where $H_0^{\pm x} = H_0^{\pm x} \cap P_0^{\pm x}$. In $L[H_0^{\pm x}]$, the quotient poset $P_{(1,0)} = P_0 / P_0$ is a finite support iteration of $σ$-centered posets. Since $P_0^{\pm x}$ has c.c.c. in $L[H_0^{\pm x}][K]$ and R is $ω$-distributive, $H_0^{\pm x} \cap (1,0)$-generic over $L[H_0^{\pm x}][K]$. By (3), the equality $P_{(1,0)} = P_{(1,0)}$ holds in $L[H_0^{\pm x}][K]$. Therefore $H_0 := H_0^{\pm x} \ast K \ast H_0^{\pm x}$ is $P_0^{\pm x}$-generic over L.

Since $p ∈ D$, one of the following alternatives holds.
Case a). \(\bar{\mathcal{Q}}_\eta\) is a name for an almost disjoint coding below the condition \(p(\eta) = \langle \zeta_0^\eta, \zeta_1^\eta \rangle\).
Set \(\bar{\mathcal{Q}}_\eta = \bar{\mathcal{Q}}_\eta^H, u_\delta = u_\delta^H, A_\delta = A_\delta^H\), and \(\delta = \zeta^\eta_\delta\) for all \(\delta \leq \eta\).

It follows that:
- \(\eta\) is a limit ordinal that can be written in the form \(\eta = \omega_2 \cdot \nu + \zeta\), where \(\zeta = i(\zeta_0, \zeta_1)\) for some \(\zeta_0, \zeta_1 < 0.t.(\zeta^\eta_{\omega_2}, \nu)\);
- \(A_\eta = \eta + (\omega \setminus \Delta(x_{\zeta_0} \ast x_{\zeta_1}))\), where \(x_\epsilon\) is the \(\epsilon\)-th real in \(L[\langle u_\delta : \delta < \omega_2 \cdot \nu \rangle \cap \omega\omega\) according to the natural wellorder \(\langle \zeta^\eta_{\omega_2}, \nu \rangle\) of this set;
- \(\bar{\mathcal{Q}}_\eta = \{ (s_0, s_1) : s_0 \in [\omega]^{<\omega}, s_1 \in [\bigcup_{m \in \Delta(x_{\zeta_0} \ast x_{\zeta_1})} Y_{\eta+m} \times \{ m \}]^{<\omega}, s_0 \text{ end-extends } s_0^\eta, s_1 \supseteq s_1^\eta \text{ and } s_0 \setminus s_0^\eta \cap B_{\epsilon,m} = \emptyset \text{ for all } (\epsilon, m) \in \bigcup_{\eta} \text{ ordered as before.}\)

Our choice of \(p\) and the fact that the upwards closure of \(H_\eta\) in \(\mathbb{P}_\eta\) is a \(\mathbb{P}_\eta\)-generic filter containing \(p\) imply that \(Y_\xi\) is not among the \(Y_{\eta+m}\)'s involved into the definition of \(\bar{\mathcal{Q}}_\eta\). Thus \(\bar{\mathcal{Q}}_\eta \in H[\eta]^\zeta\). Moreover, \(\bar{\mathcal{Q}}_\eta\) is fully determined by the relevant \(Y_{\eta+m}\)'s, and the sequence \(\langle u_\delta : \delta < \eta \rangle\) which belongs to \(L[\eta]_{\omega_1}\) and does not depend on \(K\) by (2).

Therefore \(\bar{\mathcal{Q}}_\eta\) does not depend on \(K\) and hence we may set \(\bar{\mathcal{Q}}_{\eta}^{\sharp} = : \bar{\mathcal{Q}}_\eta, A_{\eta}^{\sharp} = : A_\eta\). Let \(\bar{\mathcal{Q}}_{\eta}^{\sharp}, A_{\eta}^{\sharp}\) be \(\mathbb{P}_\eta^{\sharp}\)-names for \(\bar{\mathcal{Q}}_\eta^{\sharp}\) and \(A_\eta^{\sharp}\) respectively. By the definition, (3) and the third part of (2) hold true.

The equality \(L[H_\eta] \cap \text{Ord}^\omega = L[H_\eta^{\sharp}] \cap \text{Ord}^\omega\) and the \(\sigma\)-centeredness of \(\bar{\mathcal{Q}}_\eta\) imply that any \(\mathbb{Q}_\eta^{\sharp}\)-generic over \(L[H_\eta^{\sharp}]\) is \(\mathbb{Q}_\eta^{\sharp}\)-generic over \(L[H_\eta]\) and vice versa. Therefore \(\mathbb{P}_{\eta+1}^{\sharp} \subset \mathbb{P}_{\eta+1}\) (note that \(H_\eta\) may be thought of as being an arbitrary \(\mathbb{P}_\eta^{\sharp}\)-generic filter over \(L\)). This establishes (1).

Let \(h_\eta\) be a \(\mathbb{Q}_\eta^{\sharp}\)-generic over \(L[H_\eta^{\sharp}]\) (or, equivalently, \(\mathcal{Q}_\eta^{\sharp}\)-generic filter over \(L[H_\eta]\)). Since a (nice) \(\mathbb{Q}_\eta^{\sharp}\)-name for a countable set of ordinals in \(L[H_\eta]\) can be naturally identified with a countable set of ordinals, every \(\mathbb{Q}_\eta^{\sharp}\)-name \(\sigma \in L[H_\eta]\) for a countable set of ordinals is in fact in \(L[H_\eta^{\sharp}]\). Therefore \(L[H_{\eta+1}] \cap \text{Ord}^\omega = L[H_{\eta+1}^{\sharp}] \cap \text{Ord}^\omega\), where \(H_{\eta+1} = H_\eta \ast h_\eta\). This proves (4).

Let us denote by \(u_{\eta, \delta}^{\sharp} \in [\omega]^{<\omega} \cap L[H_{\eta+1}^{\sharp}]\) the union of the first coordinates of elements of \(h_\eta\). By the maximality principle, this gives us a \(\mathbb{P}_{\eta+1}^{\sharp}\)-name \(u_\eta^{\sharp}\). By the definitions of \(\hat{u}_\delta\) and \(u_\delta\), \(u_\delta^H \ast h_\eta = u_\delta^H \ast H_{\eta}^{\sharp} \ast h_\eta\), which proves the first part of (2). By (4) and Lemma 2,

\[
L[H_\eta^{\sharp} \ast h_\eta] \cap [\omega]^{<\omega} = (L[H_\eta^{\sharp} \ast h_\eta] \cap [\text{Ord}^{\omega}]^{<\omega}) \cap [\omega]^{<\omega} = (L[H_\eta \ast h_\eta] \cap [\text{Ord}^{<\omega}]^{<\omega}) \cap [\omega]^{<\omega} = L[H_\eta \ast h_\eta] \cap [\omega]^{<\omega} = L[H_\eta \ast h_\eta] \cap [\omega]^{<\omega} = L[H_{\eta+1} \cap [\omega]^{<\omega} = L[H_{\eta+1} \ast h_\eta] \cap [\omega]^{<\omega},
\]

which implies the second equality in (2) and thus concludes Case a).

Case b). \(\bar{\mathcal{Q}}_\eta\) is a name for a poset adjoining a dominating function restricted to the condition \(p(\eta) = \langle s_0^\eta, s_1^\eta \rangle\). This case is analogous to, but easier than the Case a) (here we
do not have to worry about $Y_{ξ}$ and we leave it to the reader.

This finishes our construction of $⟨p^ξ _{α}, q^ξ _γ : α ≤ ω_3, γ < ω_1⟩$. Observe that conditions (1)-(4) hold for $γ = ω_3$. In particular, $L[G] ∩ ω_ω = L[G^ζ] ∩ ω_ω$, where $G^ζ ∈ P^ζ$ is the preimage of the $P^{α_1}$-generic filter G under the complete embedding from (1). So it is sufficient to show that in $L[G^ζ]$ there is no real coding a closed unbounded sub-
set disjoint from $S_{ζ}$. Since $P^{ζ, ω_1}$ is a $P^{ζ}_0$-name for a c.c.c poset and $P^{ζ}_0, P^{ζ}_1$ are $P^{ζ}_0, P^{ζ}_1, P^{ζ}_2$-names for $ω_2$-c.c. posets, respectively, every closed unbounded sub-
set of $ω_2$ in $L[G^ζ]$ contains a closed unbounded subset of $ω_2$ in $L[G^{0, ζ}_0]$, see [9, Lemma 22.25]. (Here $G^{0, ζ} = G^ζ ∩ P^{0, ζ}$ is the $P^{0, ζ}$-generic filter over L induced by $G^ζ$). Thus it suffices to verify that $S_{ζ}$ is stationary in $L^{P^{0, ζ}}$. We shall use here an idea from [6].

Fix $p ∈ P^{0, ζ}$ and let C be a name for a club in $ω_2$. We would like to find $q ∈ P^{0, ζ}$ such that $q ≤ p$ and $q ≠_p C ∩ S_{ζ} ≠ ∅$. Let $⟨M_i : i < ω_2⟩$ be a continuous chain of elementary submodels of some large $L_θ$ such that M_0 contains $p, α, C, ω_1 + 1, M_0$, $γ_1 := M_i ∩ ω_2 ∈ ω_2, cof(γ_1) = ω_1$, and $M_i^{<ω_1} ⊆ M_i$ for all $i ∈ ω_2$. Set $S^0_{ζ} = \{ i ∈ S_{ζ} : γ_1 = i \}$ and note that $S^0_{ζ}$ is stationary.

Claim. There exists $i ∈ S^0_{ζ}$ such that $i ∉ S_α$ for all $α ∈ M_i \{ ξ \}$.

Proof. Note that $α ∈ M_i$ is equivalent to $α < γ_1$, and hence to $α < i$ since $i ∈ S^0_{ζ}$. Suppose that for every $i ∈ S^0_{ζ}$ there exists $f(i) < i$ such that $i ∈ S_{f(i)}$ and $f(i) ≠ ξ$. By Fodor’s Lemma there exists $j ∈ ω_2$ and a stationary $T ⊆ S^0_{ζ}$ such that $f(i) ≡ j$ for all $i ∈ T$. It follows that $T ⊆ S_j$, and hence $T ⊆ S_j ∩ S_{ζ}$, a contradiction.

Choose i as in the Claim above. We shall build an $ω_1$-sequence $p = p_0 ≥ p_1 ≥ ⋯$ with a lower bound forcing $ι ∈ C$. Let $⟨ι_α : α < ω_1⟩$ be an increasing continuous sequence of ordinals such that $sup_{α ∈ ω_1} i_α = i$. Given $p_α$, let $p_{α+1} ≤ p_α$ be such a condition in $P^{0, ζ} ∩ M_1$ such that $p_{α+1}$ forces some ordinal $j_{α+1} ∈ \{ i_α + 1, i \}$ to belong to C. For limit $α$ and $ξ ∈ i \{ ξ \}$ set

$$p_α(ξ) = \bigcup_{β < α} p_β(ξ) ∪ \{ sup_{β < α} p_β(ξ), i_α ∪ i \}.$$

Since $S_{ζ}$'s consist of ordinals of cofinality $ω_1$ and M_i is closed under countable se-
quences of its elements, $p_α ∈ P^{0, ζ} ∩ M_1$. This finishes our construction of the sequences $⟨p_α : α < ω_1⟩ ∈ M_i^{ω_1}$ and $⟨j_α : α < ω_1⟩ ∈ 2^{ω_1}$. Set $q(ξ) = ∪_{α ∈ ω_1} p_α(ξ) ∪ \{ i \}$ for all $ξ ∈ i \{ ξ \}$, and $q(ξ) ∩ S_{ζ} = ∅$ for all $ξ ∈ i \{ ξ \}$. From the above it follows that $q ∈ P^{0, ζ}$ and $q ⊨ P^{0, ζ}, i ∈ C$, which finishes our proof.

Corollary 1. Let G be a P-generic filter over L and let x, y be reals in $L[G]$. Then $x ∩ G^ζ \ y$ if and only if there is $α < ω_3$ such that for all m, the stationary kill of $S_{α+m}$ is coded by a real iff $m ∈ Δ(x ∩ y)$.
Proof. Suppose that \(x \prec^G y \). Let \(\alpha' > 0 \) be minimal such that \(x, y \in L[G_{\omega_2, \alpha}] \) and let \(i = i_{\alpha, \alpha'} \). Find \(\xi \in \text{Lim}(\omega_2) \) such that \(i(\xi) = (\xi_x, \xi_y) \) where \(x \) and \(y \) are the \(\xi_x \)-th and \(\xi_y \)-th real respectively in \(L[G_{\omega_2, \alpha}] \) according to the wellorder \(\prec^G_{\omega_2, \alpha'} \). (By Lemma 2 such a \(\xi \) exists). Let \(\alpha = \omega_2 \cdot \alpha' + \xi \). Then \(Q_{\alpha} \) adds a real coding a stationary kill for \(S_{\alpha + m} \) for all \(m \in \Delta(x \ast y) \). On the other hand if \(m \notin \Delta(x \ast y) \), then \(\alpha + m \notin A_{3}^{\omega_3} = \alpha + (\omega_3 \Delta(x \ast y)) \) and so by Lemma 3, there is no real in \(L[G] \) coding the stationary kill of \(S_{\alpha + m} \).

Now suppose that there exists \(\alpha \) such that the stationary kill of \(S_{\alpha + m} \) is coded by a real iff \(m \in \Delta(x \ast y) \). Since the stationary kill of some \(\alpha + m \)'s is coded by a real in \(L[G] \), Lemma 3 implies that \(\bar{Q}_{\alpha} \) introduced a real coding stationary kill for all \(m \in \Delta(a \ast b) \) for some reals \(a \prec^G_{\omega_3} b \), while there are no reals coding a stationary kill of \(S_{\alpha + m} \) for \(m \notin \Delta(a \ast b) \). Therefore \(\Delta(a \ast b) = \Delta(x \ast y) \) and hence \(a = x \) and \(b = y \), and consequently \(x \prec^G y \).

Lemma 4. Let \(G \) be \(\mathbb{P} \)-generic over \(L \) and let \(x, y \) be reals in \(L[G] \). If \(x \prec^G y \), then there is a real \(r \) such that for every countable suitable model \(M \) such that \(r \in M \), there is \(\bar{a} < \omega_3^M \) such that for all \(m \in \Delta(x \ast y) \),

\[
(L[r])^M = S_{\bar{a} + m} \text{ is not stationary.}
\]

Proof. By Corollary 1, there exists \(\alpha < \omega_3 \) such that \(\bar{Q}_{\alpha} \) adds a real \(r \) coding a stationary kill of \(S_{\alpha + m} \) for all \(m \in \Delta(x \ast y) \). Let \(M \) be a countable suitable model containing \(r \). It follows that \(Y_{\alpha + m} \cap \omega_1^M \in M \) and hence \(X_{\alpha} \cap \omega_1^M, X_{\alpha + m} \cap \omega_1^M \) also belong to \(M \). Observe that these sets are actually in \(N := (L[r])^M \). Note also that \(N \) is a countable suitable model and consequently by the definition of \(L(X_{\alpha + m}, X_{\alpha}) \) we have that for every \(m \in \Delta(x \ast y) \),

\[
\text{"Using the sequence } \vec{A}, X_{\alpha + m} \cap \omega_1 \text{ (resp. } X_{\alpha} \cap \omega_1 \text{) almost disjointly codes a subset } \vec{Z}_m \text{ (resp. } \vec{Z}_0) \text{ of } \omega_2, \text{ whose even part } \text{Even}(\vec{Z}_m) \text{ (resp. } \text{Even}(\vec{Z}_0) \text{)} \text{ codes a tuple } (\bar{C}, \bar{W}_m, \bar{W}_0) \text{ (resp. } (\bar{C}, \bar{W}_0, \bar{W}_0) \text{), where } \bar{W}_m \text{ and } \bar{W}_0 \text{ are the } \bar{L}-\text{least codes of ordinals } \bar{\alpha}_m, \bar{\alpha}_0 < \omega_3 \text{ (resp. } \bar{\alpha}_0 = \bar{\alpha}_0 \text{ is the largest limit ordinal not exceeding } \bar{\alpha}_m \text{ and } \bar{C} \text{ is a club in } \omega_2 \text{ disjoint from } S_{\bar{a}_m}.\text{\"}

\[
\text{Note that in particular for every } m \neq m' \in \Delta(x \ast y), \bar{a}_m = \bar{a}_{m'}. \quad \Box
\]

Lemma 5. Let \(G \) be \(\mathbb{P} \)-generic over \(L \) and let \(x, y \) be reals in \(L[G] \). If there is a real \(r \) such that for every countable suitable model \(M \) containing \(r \) as an element, there is \(\bar{a} < \omega_3^M \) such that for every \(m \in \Delta(x \ast y) \),

\[
(L[r])^M = S_{\bar{a} + m} \text{ is not stationary,}
\]

\[\text{In the above, } \vec{A}, S_{\alpha_0}, S_{\bar{a}_0}, \omega_1, \omega_2, \omega_3 \text{ refer of course to their interpretations in the model } N.\]
then \(x <^G y \).

Proof. Suppose that there is such a real \(r \). By the L"owenheim-Skolem theorem, it has the property described in the formulation with respect to all suitable models \(M \), in particular for \(\mathbb{R}_\Theta \), where \(\Theta \) is sufficiently large (here \(\mathbb{R}_\Theta \) denotes the set of all sets hereditarily of cardinality \(< \Theta \)). That is there is \(\alpha < \omega_3 \) such that for every \(m \in \Delta(x \ast y) \)

\[
L_\Theta[r] \models S_{\alpha + m} \text{ is not stationary.}
\]

Thus in particular the stationary kill of at least some \(S_{\alpha + m} \) was coded by a real. Lemma 3 implies that \(\dot{Q}^G_\alpha \) introduced a real \(u_\alpha \) (perhaps different from \(r \)) coding stationary kill for all \(m \in \Delta(a \ast b) \) for some reals \(a \dot{<}^G b \), while there are no reals coding a stationary kill of \(S_{\alpha + m} \) for \(m \notin \Delta(a \ast b) \). Therefore \(\Delta(a \ast b) \supset \Delta(x \ast y) \), which yields \(\Delta(a \ast b) = \Delta(x \ast y) \). From the above, it follows that \(a = x, b = y \) and hence \(x \dot{<}^G y \), which finishes our proof. \(\square \)

Combining Lemmata 4,5 and the fact that we have added dominating reals cofinally often, we get the following result.

Theorem 1. It is consistent with \(\kappa = \beta = \aleph_3 \), that there is a projective (indeed \(\Delta^1_3 \)-definable) wellorder of the reals.

3. **Projective mad families**

The main result of this section and of the whole paper is the following theorem which answers [7, Question 19] in the positive.

Theorem 2. It is consistent with \(\kappa = \beta = \aleph_3 \), that there is a \(\Delta^1_3 \)-definable wellorder of the reals and a \(\Pi^1_2 \)-definable \(\omega \)-mad subfamily of \([\omega]^\omega \) (resp. \(\omega'' \)).

The proof is completely analogous to that of Theorem 2. Moreover, we believe that adding the argument responsible for \(\omega \)-mad families would just make the proof in the previous section messier without introducing any new ideas besides those used in the proof of Theorem 1 and in [7]. Therefore the proof of Theorem 2 is just sketched here. More precisely, we shall define the corresponding poset \(P_{\omega^\omega} \) and leave it to the reader to verify that the proof of Theorem 1 can be carried over.

Let \(\dot{B} = \langle B_{\xi,m} : \xi < \omega_1, m \in \omega \rangle \) be as in the proof of Theorem 1. We will define a finite support iteration \(\langle P_\alpha, \dot{Q}_\gamma : \alpha \leq \omega_3, \gamma < \omega_3 \rangle \), where \(\dot{Q}_\alpha \) is a \(P_\alpha \)-name for a \(\sigma \)-centered poset and in \(L[P_{\omega^\omega}] \) there is a \(\Delta^1_3 \)-definable wellorder of the reals, a \(\Pi^1_3 \)-definable \(\omega \)-mad subfamily of \([\omega]^\omega \) (the case of subfamilies of \(\omega'' \) is completely analogous, see [7]), and \(\kappa = \beta = \aleph_3 \).
\(\mathbb{P}_0 \) is a three step iteration \(\mathbb{P}^0 * \mathbb{P}^1 * \mathbb{P}^2 \), where \(\mathbb{P}^0 \) and \(\mathbb{P}^1 \) are exactly the same as in the proof of Theorem 1. The poset \(\mathbb{P}^2 \) uses the following modification of Definition 1, where \(\phi \) is as in \((**)_\eta\) from the previous section.

Definition 2. Let \(X, X' \subset \omega_1 \) be such that \(\phi(\omega_1, \omega_2, X) \) and \(\phi(\omega_1, \omega_2, X') \) hold in any suitable model \(\mathcal{M} \) with \(\omega_1^\mathcal{M} = \omega_1^\mathcal{L} \) containing \(X \) and \(X' \), respectively. Let also \(\eta \) be a countable limit ordinal. We denote by \(\mathcal{L}_\eta(X, X') \) the poset of all functions \(r : |r| \to 2 \), where the domain \(|r|\) of \(r \) is a countable limit ordinal such that:

1. \(|r| \geq \eta\)
2. if \(\gamma < \eta \) then \(r(\gamma) = 0 \)
3. if \(\gamma < |r| \) then \(\gamma \in X \) iff \(r(\eta + 3\gamma) = 1 \)
4. if \(\gamma < |r| \) then \(\gamma \in X' \) iff \(r(\eta + 3\gamma + 1) = 1 \)
5. if \(\gamma \leq |r| \), \(\mathcal{M} \) is a countable suitable model containing \(r \upharpoonright \gamma \) as an element and \(\gamma = \omega_1^\mathcal{M} \), then \(\mathcal{M} \models \phi(\omega_1, \omega_2, X \cap \gamma) \land \phi(\omega_1, \omega_2, X' \cap \gamma) \) holds in \(\mathcal{M} \).

The extension relation is end-extension.

For \(\alpha \in \text{Lim}(\omega_3) \setminus \omega_2 \) and \(m \in \omega \) set \(\mathbb{P}^2_{\alpha+m} = \prod_{\eta \in \text{Lim}(\omega_1)} \mathcal{L}_\eta(X_{\alpha+m}, X_\alpha) \). If \(\alpha \in \text{Lim}(\omega_2) \) and \(m \in \omega \), let \(\mathbb{P}^2_{\alpha+m} \) be the trivial poset. Then let

\[
\mathbb{P}^2 = \prod_{\alpha \in \text{Lim}(\omega_1)} \prod_{m \in \omega} \mathbb{P}^2_{\alpha+m}
\]

with countable supports. By the \(\Delta \)-system Lemma in \(L^{\mathbb{P}^0 * \mathbb{P}^1} \) the poset \(\mathbb{P}^2 \) has the \(\omega_2 \)-c.c. Analogously to Lemma 1 we conclude that \(\mathbb{P}_0 = \mathbb{P}^0 * \mathbb{P}^1 * \mathbb{P}^2 \) is \(\omega \)-distributive.

If \(\alpha \) is limit and \(m \in \omega \), we shall refer to the localizing set for \(X_{\alpha+m} \) produced by \(\mathcal{L}_\eta(X_{\alpha+m}, X_\alpha) \) as \(Y_{\alpha+m, \eta} \). That is \(Y_{\alpha+m, \eta} \subseteq \omega_1 \setminus \eta \) and \(Y_{\alpha+m, \eta} \) codes both \(X_{\alpha+m} \) and \(X_\alpha \).

Every \(\mathbb{Q}_\alpha \) is going to add a generic real whose \(\mathbb{P}_\alpha \)-name will be denoted by \(\dot{u}_\alpha \) and similarly to the proof of Lemma 2 one can prove that \(L[G_\alpha] \cap \omega^\omega = L[\langle \dot{u}_\xi^G : \xi < \alpha \rangle] \cap \omega^\omega \) for every \(\mathbb{P}_\alpha \)-generic filter \(G_\alpha \). This gives us a canonical wellorder of the reals in \(L[G_\alpha] \), which depends only on the sequence \(\langle \dot{u}_\xi^G : \xi < \alpha \rangle \), whose \(\mathbb{P}_\alpha \)-name will be denoted by \(\dot{\xi}_\alpha \). We can additionally arrange that for \(\alpha < \beta \) we have that \(1_{\mathbb{P}_\beta} \) forces \(\dot{\xi}_\alpha \) to be an initial segment of \(\dot{\xi}_\beta \). Then if \(G \) is a \(\mathbb{P}_{\omega_1} \)-generic filter over \(L \), \(\dot{G} = \bigcup \{ \dot{G}_\alpha : \alpha < \omega_1 \} \) will be the desired wellorder of the reals.

We proceed with the recursive construction of \(\mathbb{P}_{\omega_1} \). Along this construction we shall also define a sequence \(\langle \dot{A}_\alpha : \alpha \in \text{Lim}(\omega_3) \rangle \), where \(\dot{A}_\alpha \) is a \(\mathbb{P}_\alpha \)-name for a subset of \([\alpha, \alpha + \omega) \). Let \(i : \omega \times \omega \to \omega \) and

\[
j_\nu : \nu \cup \{ (\xi, \xi) : \xi < \xi < \nu \} \to \text{Lim}(\omega_2)
\]
be some bijections, where $\nu \in [\omega_2, \omega_3]$. Suppose \mathbb{P}_α has been defined and fix a \mathbb{P}_α-generic filter G_α.

Case 1. α is a limit ordinal that can be written in the form $\omega_2 \cdot \alpha' + \xi$ for some $\alpha' > 0$, $\xi < \omega_2$, and the preimage $j^{-1}(\xi)$ is a tuple (ξ_0, ξ_1) for some $\xi_0 \lesssim_{\omega_2 \cdot \alpha'} \xi_1$, where $j = j_{\alpha, t}(\xi_0)$. In this case the definition of \bar{Q}_α is the same as in the proof of Theorem 1.

Case 2. α is a limit ordinal that can be written in the form $\omega_2 \cdot \alpha' + \xi$ for some $\alpha' > 0$ and the preimage $j^{-1}(\xi)$ is an ordinal $\zeta \in o.t.(\bar{G}_\alpha^{\omega_2 \cdot \alpha'})$, where $j = j_{\alpha, t}(\zeta)$. In this case we use a simplified version of the poset from [7, Theorem 1]. More precisely, ordinals fulfilling the condition above will be used for the construction of a Π^1_2 definable ω-mad family \mathcal{A}.

For a subset s of ω and $l \in |s| (= \text{card}(s) \leq \omega)$ we denote by $s(l)$ the l-th element of s. In what follows we shall denote by $E(s)$ and $O(s)$ the sets $\{s(2i) : 2i \in |s|\}$ and $\{s(2i + 1) : 2i + 1 \in |s|\}$, respectively. Let \mathcal{A}_α be the approximation to \mathcal{A} constructed thus far. Suppose also that

$$\forall \mathcal{D} \in [\mathcal{A}_\alpha]^{<\omega} \forall B \in \bar{B} ([E(B) \cup \mathcal{D}]) = |O(B) \cup \mathcal{D}| = \omega).$$

Observe that equation (*) yields $|E(B) \cup \mathcal{D}| = |O(B) \cup \mathcal{D}| = \omega$ for every $\mathcal{D} \in [\bar{B} \cup \mathcal{A}_\alpha]^{<\omega}$ and $B \in \bar{B} \setminus \mathcal{D}$. Let χ be the ζ-th real in $L[G_\alpha^{\omega_2 \cdot \alpha'}] \cap [\omega]^{<\omega}$ according to the wellorder $\preceq_{\omega_2 \cdot \alpha'}$. Set $C_n = \{\chi(n, m) : m \in \omega\} \in [\omega]^{<\omega}$ and $C = \{C_n : n \in \omega\}$. Unless the following holds, \bar{Q}_α is a \mathbb{P}_α-name for the trivial poset: none of the C_n’s is covered by a finite subfamily of \mathcal{A}_α. In the latter case $\bar{Q}_\alpha := \bar{Q}_G^{G_\alpha}$ is defined as follows.

Let us fix a limit ordinal $\eta_\alpha \in \omega_1$ such that there are no finite subsets I, E of $(\omega_1 \setminus \eta_\alpha) \times \omega$, \mathcal{A}_α, respectively and $n \in \omega$, such that $C_n \subset \bigcup_{(q, m) \in I} B_{q,m} \cup \bigcup_{E}$. (The almost disjointness of the $B_{q,m}$’s imply that if $C_n \subset \bigcup B' \cup \bigcup \mathcal{A}'$ for some $B' \in [\bar{B}]^{<\omega}$ and $\mathcal{A}' \in [\mathcal{A}_\alpha]^{<\omega}$, then $C_n \setminus \bigcup \mathcal{A}'$ has finite intersection with all elements of $\bar{B} \setminus B'$. This easily yields the existence of such an η_α.) Let I_α be an infinite subset of ω coding a surjection from ω onto η_α. For a subset s of ω we denote by Δ_s the set $\{2k + 1 : k \in \text{sup } s \setminus s\} \cup \{2k + 2 : k \in s\}$.

In $V[G_\alpha]$, \bar{Q}_α consists of pairs (s, s') such that $s \in [\omega]^{<\omega}$, $s' \in [[B_{q,m} : m \in \Delta(s), \beta \in Y_{a+m, \eta_\alpha}] \cup \mathcal{A}_\alpha]^{<\omega}$, and for every $2n \in |s \cap B_{0,0}|$, $n \in I_\alpha$ if and only if there exists $m \in \omega$ such that $(s \cap B_{0,0})(2n) = B_{0,0}(2m)$. For conditions $p = (s, s')$ and $q = (t, t')$ in \bar{Q}_α, we let $q \leq p$ if and only if t is an end-extension of s and $t \setminus s$ has empty intersection with all elements of s'.

Let h_α be a \bar{Q}_α-generic filter over $L[G_\alpha]$. Set $u_\alpha = \bigcup_{(s, s') \in h_\alpha} s$, $A_\alpha = \alpha + (\omega \setminus \Delta(u_\alpha))$, and $\mathcal{A}_{\alpha+1} = \mathcal{A}_\alpha \cup \{u_\alpha\}$. As a consequence of the definition of \bar{Q}_α and the genericity of
we get\(^6\)

1. \(u_\alpha \in [\omega]^\omega \), \(u_\alpha \) is almost disjoint from all elements of \(\mathcal{A}_\alpha \), and has infinite intersection with \(C_\alpha \) for all \(n \in \omega \);

2. If \(m \in \Delta(u_\alpha) \), then \(|u_\alpha \cap B_{\beta,m}| < \omega \) if and only if \(\beta \in Y_{\alpha+m,\eta_\alpha} \);

3. For every \(n \in \omega \), \(n \in I_\alpha \) if and only if there exists \(m \in \omega \) such that \((u_\alpha \cap B_{0,0})(2n) = B_{0,0}(2m) \); and

4. Equation \((*)\) holds for \(\alpha + 1 \), i.e. for every \(B \in \bar{B} \) and a finite subfamily \(\mathcal{A}' \) of \(\mathcal{A}_{\alpha+1} \), \(\mathcal{A}' \) covers neither a cofinite part of \(E(B) \) nor of \(O(B) \).

By (2) \(u_\alpha \) codes \(Y_{\alpha+m,\eta_\alpha} \) for all \(m \in \Delta(u_\alpha) \).

Case 3. If \(\alpha \) is not of the form above, i.e. \(\alpha \) is a successor or \(\alpha < \omega_2 \), then \(\dot{A}_\alpha \) is a name for the empty set and \(\dot{Q}_\alpha \) is a name for the poset adding a dominating real defined in Case 2 of the proof of Theorem 1.

With this the definitions of \(P = P_{\omega_1} \) and \(\langle \dot{A}_\alpha : \alpha \in \text{Lim}(\omega_3) \rangle \) are complete. Let \(G \) be a \(P \)-generic over \(L \).

Just as in the proof of Theorem 1 one can verify that Lemmata 2 and 3 hold true. These were of crucial importance for the proof of Corollary 1, which in turn was used in the proofs of Lemmata 4 and 5. Again, a direct verification shows that all of these statements still hold and hence \(G \) is a \(\Delta^1_3 \)-wellorder of the reals in \(L[G] \).

Lemmas 2 implies that the family \(\mathcal{A} \) we construct in the instances of **Case 2** is an \(\omega \)-mad subfamily of \([\omega]^\omega \). Condition (3) above yields \(\eta_\alpha < \omega_1^M \) for all countable suitable models \(M \) containing \(\dot{\alpha}_{\alpha} \) provided that at stage \(\alpha \), **Case 2** took place (i.e., there is a condition in \(G \) which forces this). Combining this with the ideas of the proofs of Lemmata 4 and 5 we get that \(a \in \mathcal{A} \iff \) for every countable suitable model \(M \) containing \(a \) as an element there exists \(\bar{\alpha} < \omega_3^M \) such that \(S_{\bar{\alpha}+k}^M \) is nonstationary in \((L[a])^M \) for all \(k \in \Delta(a) \). This provides a \(\Pi^1_2 \) definition of \(\mathcal{A} \), which finishes our proof of Theorem 2.

4. Questions

The consistency of the existence of a \(\Delta^1_3 \)-definable wellorder of the reals in the presence of \(c \geq \aleph_3 \) and MA, is still open. A second question naturally emerging from the developed techniques is the existence of a model in which a desired inequality between the cardinal characteristics of the real line holds, there is a \(\Delta^1_3 \)-definable wellorder of the reals...
reals and $\mathfrak{c} \geq \aleph_3$. Note that the bookkeeping argument which we have used in Theorems 1 and 2 allows only for handling of countable objects, which presents an additional difficulty in obtaining such models.

References