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Abstract. Rotation intertwining maps from the set of convex bodies in Rn into
itself that are continuous linear operators with respect to Minkowski and Blaschke
addition are investigated. The main focus is on Blaschke-Minkowski homomorphisms.
We show that such maps are represented by a spherical convolution operator. An
application of this representation is a complete classification of all even Blaschke-
Minkowski homomorphisms which shows that these maps behave in many respects
similar to the well known projection body operator. Among further applications is the
following result: If an even Blaschke-Minkowski homomorphism maps a convex body
to a polytope, then it is a constant multiple of the projection body operator.
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1. Introduction and Statement of Main Results

For n ≥ 3 let Kn be the set of convex bodies in Rn, i.e. nonempty, compact, convex
sets, equipped with the Hausdorff topology. Let Kn

0 be the subset of Kn consisting
of the convex bodies with interior points. A convex body K ∈ Kn is determined
by its support function h(K, ·), defined on Rn by h(K, x) = max{x · y : y ∈ K}.
We shall mostly consider the restriction of support functions to the Euclidean unit
sphere Sn−1 which are elements of C(Sn−1), the space of continuous functions on
Sn−1 with the uniform topology.

By Minkowski’s existence theorem, a convex body K ∈ Kn
0 is also determined up

to translation by its surface area measure (of order n− 1) Sn−1(K, ·). The measure
of a Borel set ω ⊆ Sn−1 is the n− 1 dimensional Hausdorff measure of the set of all
boundary points of K at which there exists a normal vector of K belonging to ω.
Sn−1(K, ·) is an element of M+

o (Sn−1), the space of nonnegative measures on Sn−1

having their center of mass in the origin, equipped with the weak∗ topology.
Two of the most important algebraic structures on the set of convex bodies are

Minkowski (vector) addition and Blaschke addition. ForK1, K2 ∈ Kn and λ1, λ2 ≥ 0,
the support function of the Minkowski linear combination λ1K1 + λ2K2 is

h(λ1K1 + λ2K2, ·) = λ1h(K1, ·) + λ2h(K2, ·).

For K1, K2 ∈ Kn
0 and λ1, λ2 ≥ 0 (not both 0), the Blaschke linear combination

λ1 ·K1 # λ2 ·K2 is defined (up to translation) by

Sn−1(λ1 ·K1 # λ2 ·K2, ·) = λ1Sn−1(K1, ·) + λ2Sn−1(K2, ·).

With these operations Kn and [Kn
0 ], the set of translation classes of convex bodies

with nonempty interior, are abelian semi-groups.



There are several groups acting on the spaces Kn and [Kn
0 ]. One of the most

important is the group of rotations SO(n).
With these different structures on the space of convex bodies it is natural to

ask what kind of operators on Kn and [Kn
0 ] are compatible with the algebraic and

topological structures. From a geometric point of view we are interested in operators
that intertwine rotations.

In [26] Schneider started an investigation of continuous rigid motion intertwining
and Minkowski additive maps which he called Minkowski endomorphisms. Among
other results he obtained (under additional assumptions) characterizations of several
such mappings. In [27] Schneider classified all Minkowski endomorphisms in R2.
Kiderlen, relaxing the definition of Minkowski endomorphisms to continuous rotation
intertwining and Minkowski additive maps, extended in [13] Schneider’s classification
result to higher dimensions for weakly monotone Minkowski endomorphisms, i.e.
they are monotone with respect to set inclusion on convex bodies having their Steiner
point in the origin. Kiderlen also gave a complete classification of all Blaschke
endomorphisms, i.e. continuous rotation intertwining and Blaschke additive maps.

Definition 1.1 A map Φ : [Kn
0 ] → Kn is called Blaschke-Minkowski homomorphism

if it satisfies the following conditions:

(a) Φ is continuous.

(b) For all K,L ∈ [Kn
0 ],

Φ(K # L) = ΦK + ΦL. (1.1)

(c) Φ is rotation intertwining, i.e. for all K ∈ [Kn
0 ] and every ϑ ∈ SO(n),

Φ(ϑK) = ϑΦK.

The well known projection body operator, see (1.3), is an example of a Blaschke-
Minkowski homomorphism. For its many applications in different areas see [2], [3],
[5], [8], [9], [10] and [15]. Further examples of Blaschke-Minkowski homomorphisms
can be found in [7] and [12]. The operator that maps every convex body to the
origin is called the trivial Blaschke-Minkowski homomorphism.

The main purpose of this article is to show that there is a representation for
Blaschke-Minkowski homomorphisms analogous to the ones obtained by Schneider
and Kiderlen and to establish a connection to the theory of Minkowski and Blaschke
endomorphisms developed by them. Moreover we will characterize special Blaschke-
Minkowski homomorphisms and investigate the volume and more general quermass-
integrals of images under these mappings.

Classification results of mappings of convex bodies, in particular of valuations on
convex sets, form a main part of convex geometry. Here, a map Φ defined on Kn

and taking values in an abelian semigroup is called a valuation if for all K,L ∈ Kn

such that also K ∪ L ∈ Kn,

Φ(K ∪ L) + Φ(K ∩ L) = ΦK + ΦL.

The theory of valuations and its important applications in integral geometry and
geometric probability are developed and described in [11], [14], [21], [22].
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In [15] and [16] valuations taking values in Kn are investigated which intertwine
volume preserving linear transformations. In Section 4 we will see that Blaschke-
Minkowski homomorphisms are special valuations. Thus, our results are a contribu-
tion to the classification of continuous rotation intertwining valuations taking values
in Kn. In full generality this problem is still open.

Let SO(n) denote the group of rotations in n dimensions. Identifying Sn−1 with
the homogeneous space SO(n)/SO(n − 1), where SO(n − 1) denotes the group of
rotations leaving the point

_
e (the pole) of Sn−1 fixed, it is possible to introduce a

natural convolution structure on C(Sn−1) andM(Sn−1). A special role play convolu-
tion operators generated by SO(n− 1) invariant (or zonal) functions and measures.
The set of continuous zonal functions on Sn−1 will be denoted by C(Sn−1,

_
e).

A function f ∈ C(Sn−1) is called weakly positive if there exists a vector x ∈ Rn

such that f(u) + x · u ≥ 0 for every u ∈ Sn−1. The main theorem of this article is
the following representation for Blaschke-Minkowski homomorphisms:

Theorem 1.2 If Φ : Kn → Kn is a Blaschke-Minkowski homomorphism, then there
is a weakly positive g ∈ C(Sn−1,

_
e), unique up to addition of a linear function, such

that
h(ΦK, ·) = Sn−1(K, ·) ∗ g. (1.2)

Note that in Theorem 1.2 the domain of Φ is the set Kn in contrast to Definition
1.1. The reason for this is a natural identification of maps on [Kn

0 ] with translation
invariant maps on Kn

0 and the fact (as we will show) that there is a unique continuous
extension of every Blaschke-Minkowski homomorphism to Kn.

A map Φ : Kn → Kn is called even if ΦK = Φ(−K) for every K ∈ Kn. We
call a body K ∈ Kn a body of revolution if K is invariant under rotations of
SO(n − 1). Using Theorem 1.2 and a further investigation of properties of gener-
ating functions of Blaschke-Minkowski homomorphisms, a classification of all even
Blaschke-Minkowski homomorphisms is possible.

Theorem 1.3 A map Φ : Kn → Kn is an even Blaschke-Minkowski homomorphism
if and only if there is a centrally symmetric body of revolution L ∈ Kn, unique up
to translation, such that

h(ΦK, ·) = Sn−1(K, ·) ∗ h(L, ·).

The projection body operator Π : Kn → Kn is defined by

h(ΠK, u) = voln−1(K|u⊥) =
1

2
(Sn−1(K, ·) ∗ h([−

_
e,

_
e], ·))(u), (1.3)

where [−_
e,

_
e] denotes the segment with endpoints −_

e and
_
e. The operator Π maps

polytopes to finite Minkowski linear combinations of rotated and dilated copies of
the line segment [−_

e,
_
e], which is a geometric interpretation of the convolution

formula in (1.3). A general convex body is mapped by Π to a zonoid, i.e. a limit
of Minkowski sums of line segments. By Theorem 1.3, a general even Blaschke-
Minkowski homomorphism maps polytopes to finite Minkowski linear combinations
of rotated and dilated copies of a symmetric body of revolution L. General convex
bodies are again mapped to limits of these finite Minkowski linear combinations.
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In [13] a notion of adjointness between Minkowski and Blaschke endomorphisms
was introduced. The following consequence of Theorem 1.2 illustrates the behaviour
of adjoint endomorphisms in conjunction with Blaschke-Minkowski homomorphisms.

Theorem 1.4 Let Ψ be a Minkowski and Ψ∗ a Blaschke endomorphism. Then the
following statements are equivalent:

(a) Ψ and Ψ∗ are adjoint endomorphisms.

(b) For every Blaschke-Minkowski homomorphism Φ

Φ ◦Ψ∗ = Ψ ◦ Φ. (1.4)

(c) (1.4) holds for some injective Blaschke-Minkowski homomorphism Φ.

A different application of Theorem 1.3 is the following characterization of Π.

Theorem 1.5 Let Φ : Kn → Kn be an even Blaschke-Minkowski homomorphism.
If there exists a convex body K ∈ Kn

0 such that ΦK is a polytope, then there is a
constant c ∈ R+ such that

Φ = cΠ.

As a consequence of Theorem 1.2 the image of a Minkowski linear combination
under a Blaschke-Minkowski homomorphism is a homogeneous polynomial of degree
n − 1. In particular, Blaschke-Minkowski homomorphisms satisfy, for K ∈ Kn, the
Steiner type formula

Φ(K + εBn) =
n−1∑
i=0

εi

(
n− 1

i

)
ΦiK,

where Bn is the Euclidean unit ball and the sum is with respect to Minkowski
addition. The operators Φi : Kn → Kn, i = 0, . . . , n−1, are continuous and rotation
intertwining. The image of a ball under a Blaschke-Minkowski homomorphism Φ is
again a ball. Let in the following rΦ ∈ R+ denote the radius of ΦBn and κn the
volume of Bn.

We will prove a strengthened version of the classical inequality between the two
consecutive quermassintegrals Wn−1 and Wn−2, using the induced weakly monotone
Minkowski endomorphisms Φn−2.

Theorem 1.6 Let Φ : Kn → Kn be a nontrivial Blaschke-Minkowski homomor-
phism. If K ∈ Kn, then

Wn−1(K)2 ≥ κn

r2
Φ

Wn−2(Φn−2K) ≥ κnWn−2(K). (1.5)

If K is not a singleton, there is equality on the left hand side only if Φn−2K is a ball
and equality on the right hand side only if K is ball.

Inequality (1.5) is related to a conjectured projection inequality of Petty for the
volume of projection bodies, see [5], [18] and [24].
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2. Spherical Convolution and Spherical Harmonics

As we deal with different kinds of analytical representations of convex bodies by
functions and measures on Sn−1 ∼= SO(n)/SO(n − 1), we will first introduce some
basic notions connected to SO(n) and Sn−1. As general reference for this section we
recommend the article by Grinberg and Zhang [9] and the book by Groemer [10].

The identification of Sn−1 with SO(n)/SO(n− 1) is for u ∈ Sn−1 given by

u = ϑ
_
e 7→ ϑSO(n− 1).

The projection from SO(n) onto Sn−1 is ϑ 7→
_

ϑ := ϑ
_
e. The unity e ∈ SO(n) is

mapped to the pole of the sphere
_
e ∈ Sn−1. SO(n) and Sn−1 will be equipped with

the invariant probability measures denoted by dϑ and du.
Let C(SO(n)) denote the set of continuous functions on SO(n) with the uniform

topology and M(SO(n)) its dual space of signed finite measures on SO(n) with the
weak∗ topology. Let M+(SO(n)) be the set of nonnegative measures on SO(n). For
µ ∈M(SO(n)) and f ∈ C(SO(n)), the canonical pairing is

〈µ, f〉 = 〈f, µ〉 =

∫
SO(n)

f(ϑ)dµ(ϑ).

Sometimes we will identify a continuous function f with the absolute continuous
measure with density f and thus view C(SO(n)) as a subspace of M(SO(n)). The
canonical pairing is then consistent with the usual inner product on C(SO(n)).

For ϑ ∈ SO(n), the left translation ϑf of f ∈ C(SO(n)) is defined by

ϑf(η) = f(ϑ−1η). (2.1)

For µ ∈M(SO(n)), we set
〈ϑµ, f〉 = 〈µ, ϑ−1f〉, (2.2)

then ϑµ is just the image measure of µ under the rotation ϑ. For f ∈ C(SO(n)),
the function f̂ ∈ C(SO(n)) is defined by

f̂(ϑ) = f(ϑ−1). (2.3)

For a measure µ ∈M(SO(n)), we set

〈µ̂, f〉 = 〈µ, f̂〉. (2.4)

As SO(n) is a compact Lie group the space C(SO(n)) carries a natural convolution
structure. For f, g ∈ C(SO(n)), the convolution f ∗ g ∈ C(SO(n)) is defined by

(f ∗ g)(η) =

∫
SO(n)

f(ηϑ−1)g(ϑ)dϑ =

∫
SO(n)

f(ϑ)g(ϑ−1η)dϑ.

For µ ∈ M(SO(n)), the convolutions µ ∗ f ∈ C(SO(n)) and f ∗ µ ∈ C(SO(n))
with a function f ∈ C(SO(n)) are defined by

(f ∗ µ)(η) =

∫
SO(n)

f(ηϑ−1)dµ(ϑ), (µ ∗ f)(η) =

∫
SO(n)

ϑf(η)dµ(ϑ). (2.5)
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Using (2.5), one easily checks that for σ ∈M(SO(n)) and f, g ∈ C(SO(n))

〈g ∗ σ, f〉 = 〈g, f ∗ σ̂〉. (2.6)

This leads to the definition of the convolution of two measures µ, σ ∈M(SO(n))

〈µ ∗ σ, f〉 = 〈σ, µ̂ ∗ f〉 = 〈µ, f ∗ σ̂〉. (2.7)

The convolution on M(SO(n)) is associative, but as for n ≥ 3 the group of rotations
is not abelian, the convolution on M(SO(n)) is not commutative. For the following
Lemma see [9], p.85.

Lemma 2.1 Let µm, µ ∈ M(SO(n)), m = 1, 2, . . . and let f ∈ C(SO(n)). If
µm → µ weakly, then f ∗ µm → f ∗ µ and µm ∗ f → µ ∗ f uniformly.

In order to define a convolution structure on C(Sn−1), we will use the method
from Grinberg and Zhang [9] identifying Sn−1 with SO(n)/SO(n−1). This leads to
the identification of C(Sn−1) with right SO(n− 1)-invariant functions in C(SO(n))
by

^

f (ϑ) = f(ϑ
_
e), f ∈ C(Sn−1). (2.8)

Conversely, every f ∈ C(SO(n)) induces a continuous function
_

f on Sn−1, defined
by

_

f (
_
η) =

∫
SO(n−1)

f(ηϑ)dϑ.

If f ∈ C(SO(n)) is right SO(n−1) invariant and g ∈ C(Sn−1) then f =
^
_

f and g =
_
^
g.

Thus C(Sn−1) is isomorphic to the subspace of right SO(n− 1) invariant functions
in C(SO(n)). For a measure µ ∈M(Sn−1) and a function f ∈ C(SO(n)), we set

〈^
µ, f〉 = 〈µ,

_

f 〉.

In this way the one-to-one correspondence of functions on Sn−1 with right SO(n−1)
invariant functions on SO(n) carries over to the space M(Sn−1) and right SO(n−1)
invariant measures in M(SO(n)).

Note that definitions (2.1), (2.2) and (2.3), (2.4) become now meaningful for
spherical functions and measures. Convolution on C(Sn−1) can be defined via the
identification (2.8). For example the convolution of a function f ∈ C(Sn−1) with a
measure µ ∈M(Sn−1) is given by

(f ∗ µ)(
_
η) = (

^

f ∗ ^
µ)(η) =

∫
SO(n)

f(ηϑ−1_
e)d

^
µ(ϑ).

In an analogous way, convolutions of functions or measures can be defined. Note that
the Dirac measure δ_

e is the unique rightneutral element for the convolution on Sn−1.
An essential role among spherical functions play SO(n − 1) invariant functions.

Such a function with the property that ϑf = f for every ϑ ∈ SO(n − 1), is called
zonal. Zonal functions depend only on the distance of u to

_
e, i.e. on the value u ·_

e.
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Of course the notion of SO(n − 1) invariance carries over to measures as well.
We call a measure µ ∈ M(Sn−1) zonal, if ϑµ = µ for every ϑ ∈ SO(n − 1). The
set of all continuous, zonal functions will be denoted by C(Sn−1,

_
e) and M(Sn−1,

_
e)

denotes the set of zonal measures on Sn−1.
Spherical convolution becomes simpler for zonal measures. For f ∈ C(Sn−1) and

µ ∈M(Sn−1,
_
e), we have

(f ∗ µ)(
_
η) = 〈f, ηµ〉 =

∫
Sn−1

f(ηu)dµ(u). (2.9)

For f ∈ C(Sn−1), the rotational symmetrization f̄ ∈ C(Sn−1,
_
e) is defined by

f̄ = δ_
e ∗ f =

∫
SO(n−1)

ϑfdϑ.

Since δ_
e is the right invariant element for the convolution on Sn−1, we get

f ∗ g = f ∗ δ_
e ∗ g = f ∗ ḡ. (2.10)

Thus, for spherical convolution from the right, it suffices to consider zonal functions
and measures. Note that, if µ ∈M(Sn−1,

_
e), then by (2.9) for every f ∈ C(Sn−1)

(ϑf) ∗ µ = ϑ(f ∗ µ) (2.11)

for every ϑ ∈ SO(n). Thus the spherical convolution from the right is a rotation
intertwining operator on C(Sn−1) and M(Sn−1).

As a zonal function on Sn−1 depends only on the value of u ·_
e, there is a natural

isomorphism between functions and measures on [−1, 1] and zonal functions and
measures on Sn−1. Define a map Λ : C(Sn−1,

_
e) → C([−1, 1]), f 7→ Λf, by

Λf(t) = f(t
_
e +

√
1− t2v), v ∈ _

e
⊥ ∩ Sn−1. (2.12)

Then it is easy to see that Λ is an isomorphism with inverse

Λ−1 : C([−1, 1]) → C(Sn−1,
_
e), f 7→ f(

_
e · . ).

For a zonal measure µ ∈M(Sn−1,
_
e) and a function f ∈ C([−1, 1]), define

〈Λµ, f〉 = 〈µ,Λ−1f〉.

The map Λ : M(Sn−1,
_
e) →M([−1, 1]) is the extension of the map defined in (2.12)

and it is again an isomorphism between M(Sn−1,
_
e) and M([−1, 1]) with inverse

〈Λ−1µ, f〉 = 〈µ,Λf̄〉, µ ∈M([−1, 1]), f ∈ C(Sn−1).

The isomorphism Λ allows one to identify the dual space of C(Sn−1,
_
e) with the

space M(Sn−1,
_
e). Using this identification, we obtain for µ, ν ∈ M(Sn−1,

_
e) and

f ∈ C(Sn−1,
_
e),

〈µ ∗ ν, f〉 =

∫
Sn−1

∫
Sn−1

Λf(u · v)dµ(u)dν(v) = 〈ν ∗ µ, f〉. (2.13)

Thus, the convolution of zonal functions and measures is abelian and M(Sn−1,
_
e)

with the convolution structure becomes an abelian Banach algebra.
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Another property of zonal measures µ ∈M(Sn−1,
_
e) is

µ̂ = µ. (2.14)

As a consequence of (2.6) and (2.14) we obtain the following important Lemma.

Lemma 2.2 Let µ, ν ∈M(Sn−1) and f ∈ C(Sn−1), then

〈µ ∗ ν, f〉 = 〈µ, f ∗ ν〉.

Using Lemma 2.2 and (2.13), we get for µ ∈M(Sn−1) and f ∈ C(Sn−1,
_
e),

(µ ∗ f)(u) =

∫
Sn−1

Λf(u · v)dµ(v). (2.15)

We will frequently use zonal approximate identities (ϕk)k∈N. These are non-
negative functions in C∞(Sn−1). They have already been considered by Berg [1] and
we just briefly recall their most important properties in the following Lemma.

Lemma 2.3 Let (ϕk)k∈N be a zonal approximate identity. Then

(a) f ∗ ϕk ∈ C∞(Sn−1) and limk→∞ f ∗ ϕk = f uniformly for every f ∈ C(Sn−1).

(b) µ ∗ ϕk ∈ C∞(Sn−1) and limk→∞ µ ∗ ϕk = µ weakly for every µ ∈M(Sn−1).

We now collect some facts from the theory of spherical harmonics. A spherical
harmonic of dimension n and order k is the restriction to Sn−1 of a harmonic poly-
nomial of order k in n variables. Let Hn

k denote the space of spherical harmonics
of dimension n and order k. Hn will denote the space of all finite sums of spherical
harmonics of dimension n.
Hn

k is a finite dimensional vector space of dimension N(n, k). The spaces Hn
k

are pairwise orthogonal with respect to the usual inner product on C(Sn−1). By
definition, Hn

k is invariant with respect to rotations. Moreover, Hn
k is irreducible,

i.e. {0} and Hn
k are the only subspaces invariant under SO(n). As a consequence

we have the following version of Schur’s Lemma for spherical harmonics.

Lemma 2.4 Let Φ : Hn
k → M(Sn−1) be a linear map that intertwines rotations.

Then Φ is either injective or the zero map.

IfH1, . . . , HN(n,k) is an orthonormal basis ofHn
k , then there is a unique polynomial

P n
k ∈ C([−1, 1]) of degree k such that

N(n,k)∑
i=1

Hi(u)Hi(v) = N(n, k)P n
k (u · v). (2.16)

The polynomial P n
k is called the Legendre polynomial of dimension n and order k.

The zonal function u 7→ P n
k (

_
e ·u) is up to a multiplicative constant the unique zonal

spherical harmonic in Hn
k .
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The collection {H1, . . . , HN(n,k) : k ∈ N} forms a complete orthogonal system in
L2(Sn−1), i.e. for every square integrable function f the series

f ∼
∞∑

k=0

πkf

converges in quadratic mean to f , where πkf ∈ Hn
k is the orthogonal projection of

f on the space Hn
k . Using (2.16) and (2.9), we obtain

πkf =

N(n,k)∑
i=1

〈f,Hi〉Hi = N(n, k)(f ∗ P n
k (

_
e · . )). (2.17)

This leads to the definition of the spherical expansion of a measure µ ∈M(Sn−1)

µ ∼
∞∑

k=0

πkµ, (2.18)

where πkµ ∈ Hn
k is defined by

πkµ = N(n, k)(µ ∗ P n
k (

_
e · . )). (2.19)

We note here two special cases of (2.19)

π0µ = µ ∗ 1 and π1µ = nµ ∗ (
_
e · . ). (2.20)

By Lemma 2.2, we have for every f ∈ C(Sn−1)

〈πkµ, f〉 = N(n, k)〈µ ∗ P n
k (

_
e · . ), f〉 = N(n, k)〈µ, f ∗ P n

k (
_
e · . )〉 = 〈µ, πkf〉,

which, by the completeness of the system of spherical harmonics, immediately gives:

Lemma 2.5 Let µ ∈M(Sn−1). If µ ∗ P n
k (

_
e · . ) = 0 for every k ∈ N then µ = 0.

By Lemma 2.5, µ ∈ M(Sn−1) is uniquely determined by its series expansion
(2.18). Zonal functions and measures are even determined by a sequence of real
numbers. To see this, note that

δ_
e ∗ P

n
k (u · . ) = P n

k (
_
e · u)P n

k (
_
e · . )

and thus, by (2.15) and (2.7),

(µ ∗ P n
k (

_
e · . ))(u) = 〈µ, P n

k (u · . )〉 = 〈µ, δ_
e ∗ P

n
k (u · . )〉 = 〈µ, P n

k (
_
e · . )〉P n

k (
_
e · u).

Hence the series expansion of a zonal measure µ becomes

µ ∼
∞∑

k=0

N(n, k)〈µ, P n
k (

_
e · . )〉P n

k (
_
e · . ).

The numbers µk := 〈µ, P n
k (

_
e · .)〉 are called Legendre coefficients of µ ∈M(Sn−1,

_
e).

Using πkH = H for every H ∈ Hn
k and the fact, that spherical convolution of zonal

measures is commutative, we obtain a version of the Funk-Hecke Theorem.
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Corollary 2.6 If µ ∈M(Sn−1,
_
e) and H ∈ Hn

k , then H ∗ µ = µkH.

We are now ready to give the definition of multiplier operators.

Definition 2.7 We call a map Φ : Q ⊆ M(Sn−1) →M(Sn−1) a multiplier trans-
formation if there is a sequence of real numbers ck such that, for every k ∈ N,

πkΦµ = ckπkµ, ∀µ ∈ Q. (2.21)

The numbers c0, c1, c2, . . . are called the multipliers of Φ.

Using again the fact that spherical convolution of zonal measures is commutative,
we see that for µ ∈M(Sn−1,

_
e) the map Φµ : M(Sn−1) →M(Sn−1)

ν 7→ ν ∗ µ

is a multiplier transformation. The sequence of multipliers of these convolution
operators is just the sequence of Legendre coefficients of the measure µ.

By definition (2.19) of the orthogonal projection πk and (2.11), it is easy to see
that multiplier transformations intertwine rotations and that, by definition (2.21),
they are linear on the space Hn. The following corollary to Schur’s Lemma estab-
lishes the converse statement, see [26], p.67.

Theorem 2.8 If Φ : Hn → M(Sn−1) is an intertwining linear map, then Φ is a
multiplier transformation.

3. Convex Bodies and Multiplier Transformations

We collect here further material on convex geometry and endomorphisms of con-
vex bodies, see [28], [26] and [13]. We also prove that every Blaschke-Minkowski
homomorphism is a multiplier transformation.

The volume of a Minkowski linear combination λ1K1 + . . . + λmKm of convex
bodies K1, . . . , Km is a homogeneous polynomial of degree n in the λi

V (λ1K1 + . . .+ λmKm) =
∑

i1,...,in

V (Ki1 , . . . , Kin)λi1 · · ·λin .

The coefficients V (Ki1 , . . . , Kin) are called mixed volumes of Ki1 , . . . , Kin . These
functionals are nonnegative, translation invariant, monotone (with respect to set
inclusion) and multilinear with respect to Minkowski addition. Denote by Vi(K,L)
the mixed volume V (K, . . . ,K, L, . . . , L), whereK appears n−i times and L appears
i times. The quermassintegrals Wi(K) are given by Vi(K,B

n).
Let Kn

i be the subset of Kn consisting of convex bodies whose dimension is at
least n− i. Then K ∈ Kn

i if and only if Wi(K) > 0. The classical inequality between
two consecutive quermassintegrals states that for K ∈ Kn and 0 ≤ i ≤ n− 2,

Wi+1(K)n−i ≥ κnWi(K)n−i−1, (3.1)

where κn is the volume of the Euclidean unit ball Bn. If K ∈ Kn
i+1 there is equality

in (3.1) if and only if K is a ball.
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For the functional V1(K,L) there is an integral representation

V1(K,L) =
1

n
〈h(L, ·), Sn−1(K, ·)〉. (3.2)

This shows that V1 : [Kn
0 ] × Kn → R is bilinear with respect to Blaschke and

Minkowski addition.
Also the surface area measure of a Minkowski linear combination of convex bodies

K1, . . . , Km can be expressed as a polynomial homogeneous of degree n− 1

Sn−1(λ1K1 + . . .+ λmKm, ·) =
∑

i1,...,in−1

λi1 · · ·λin−1S(Ki1 , . . . , Kin−1 , ·). (3.3)

The coefficients S(Ki1 , . . . , Kin−1 , ·) ∈ M+
o (Sn−1) are called the mixed surface area

measures of Ki1 , . . . , Kin . They have the property that for any convex body K

V (K,K1, . . . , Kn−1) =
1

n
〈h(K, ·), S(K1, . . . , Kn−1, ·)〉. (3.4)

The measures Sj(K, ·) := S(K, . . . ,K,Bn, . . . , Bn, ·), where K appears j times and
Bn appears n− 1− j times, are called the area measures of order j of K.

By (2.20) and (3.4), we have for K ∈ Kn,

Wn−1(K) = κnπ0h(K, ·) and W1(K) =
1

n
π0Sn−1(K, ·). (3.5)

A convex body K ∈ Kn is uniquely determined by its support function h(K, ·),
which is positively homogeneous of degree one and sublinear. Conversely, every
function with these properties is the support function of a convex body. By (2.1),
we have ϑh(K, ·) = h(ϑK, ·) for ϑ ∈ SO(n). Thus the support function of a convex
body K is zonal if and only if K is a body of revolution. The Steiner point map
s : Kn → Rn, defined by

s(K) = n

∫
Sn−1

h(K, u)udu,

is up to a multiplicative constant the unique vector valued continuous, rotation
intertwining and Minkowski additive map, see [26]. Since vector addition in Rn

coincides with Minkowski addition of singletons, it is possible to give an alternative
definition of the Steiner point

h({s(K)}, ·) = nh(K, ·) ∗ (
_
e · . ) = π1h(K, ·). (3.6)

A convex bodyK ∈ Kn
0 is also uniquely determined up to translation by its surface

area measure Sn−1(K, ·) which is an element of M+
o (Sn−1), the set of nonnegative

measures on the sphere with center of mass in the origin. Conversely, every element
ofM+

o (Sn−1) that is not concentrated on any great sphere is the surface area measure
of a convex body with interior points. For ϑ ∈ SO(n), we have ϑSn−1(K, ·) =
Sn−1(ϑK, ·) and again the surface area measure of a convex body K is zonal if and
only if K is a body of revolution.
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There is no nonzero vector valued map from the set of translation classes of
convex bodies [Kn

0 ] = Kn
0/Rn that is continuous, rotation intertwining and additive

with respect to Blaschke addition. This fact is reflected by the relation

π1Sn−1(K, ·) = nSn−1(K, ·) ∗ (
_
e · . ) = 0. (3.7)

By (3.6), the Steiner point map can be interpreted as a convolution operator on
the set of convex bodies. We will consider in the following more general transfor-
mations induced by convolution operators. By (2.5), the convolution from the left
with measures µ ∈ M+(SO(n)) can be interpreted as (weighted) rotation means.
The following consequences of this interpretation appear in [9].

Lemma 3.1 Let µ ∈M+(SO(n)).

(a) For K ∈ Kn, the function µ ∗ h(K, ·) is the support function of a convex body.

(b) For L ∈ Kn
0 and µ 6= 0, the measure µ ∗ Sn−1(L, ·) is the surface area measure

of a convex body with interior points.

By (2.10) and the remarks after Definition 2.7, spherical convolution operators
from the right are multiplier transformations. It follows from (3.7) that the con-
volution of surface area measures with a nonnegative zonal measure µ gives again
nonnegative measures with center of mass in the origin. It is also not hard to see
that Sn−1(K, ·) ∗ µ is not concentrated on any great sphere. Thus, the measure
Sn−1(K, ·)∗µ is again a surface area measure of a convex body. Noting (3.7), we see
that it is sufficient that the measure µ is positive up to addition of a measure with
density c(

_
e · . ). We capture this property of a measure in the following definition:

Definition 3.2 A measure µ ∈ M(Sn−1,
_
e) is called weakly positive if it is non-

negative up to addition of a linear measure, i.e. a measure with density c(
_
e · . ),

c ∈ R.

It was shown in [13] that also the cone of support functions is invariant under
convolution of zonal weakly positive measures. We summarize these results in

Lemma 3.3 Let µ ∈M(Sn−1,
_
e) be weakly positive.

(a) For K ∈ Kn the function h(K, ·) ∗ µ is the support function of a convex body.

(b) For L ∈ Kn
0 and µ not linear the measure Sn−1(L, ·) ∗ µ is the surface area

measure of a convex body with interior points.

We call a map Φ : Kn → Kn that is continuous, rotation intertwining and
Minkowski additive a Minkowski endomorphism. A Blaschke endomorphism is a
map Ψ : [Kn

0 ] → [Kn
0 ] that is continuous, rotation intertwining and additive with

respect to Blaschke addition.
Let K,L ∈ Kn. Then K ⊆ L if and only if h(K, ·) ≤ h(L, ·). Thus a map

Φ : Kn → Kn defined by
h(ΦK, ·) = h(K, ·) ∗ µ,

with a weakly positive measure µ ∈M(Sn−1,
_
e) is, by (3.6), monotone (with respect

to set inclusion) on the set of convex bodies having their Steiner point in the origin.
We call a Minkowski endomorphism with this property weakly monotone.
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A classification of weakly monotone Minkowski endomorphisms and Blaschke
endomorphisms was established by Kiderlen in [13]. We summarize his results in

Theorem 3.4 A map Φ : Kn → Kn is a weakly monotone Minkowski endomor-
phism if and only if there is a unique weakly positive measure µ ∈M(Sn−1,

_
e) such

that
h(ΦK, ·) = h(K, ·) ∗ µ, K ∈ Kn. (3.8)

A map Ψ : [Kn
0 ] → [Kn

0 ] is a Blaschke endomorphism if and only if there is a weakly
positive measure ν ∈ M(Sn−1,

_
e), unique up to addition of a linear measure, such

that
Sn−1(ΨK, ·) = Sn−1(K, ·) ∗ ν, K ∈ Kn

0 . (3.9)

The major open problem concerning Minkowski endomorphisms is a classification
without the extra assumption of weak monotonicity. For n = 2, Schneider obtained
in [27] such a result by showing that every Minkowski endomorphism is weakly
monotone. The following conjecture appears implicitly in [27] and [13].

Conjecture 3.5 For n ≥ 3 every Minkowski endomorphism is weakly monotone.

In [13] a natural notion of adjointness between Minkowski and Blaschke endo-
morphisms was introduced.

Definition 3.6 A Minkowski endomorphism Φ and a Blaschke endomorphism Ψ
are called adjoint if for every K ∈ Kn

0 and every L ∈ Kn

V1(ΨK,L) = V1(K,ΦL).

Using (3.2), Lemma 2.2 and Theorem 3.4, we see that a Blaschke and a Minkowski
endomorphism are adjoint if and only if they have the same generating measure up
to addition of a linear measure. By Theorem 3.4, every Blaschke endomorphism has
an adjoint weakly monotone Minkowski endomorphism. The converse statement is
equivalent to Conjecture 3.5.

The results obtained in Theorem 3.4 show that the respective endomorphisms
are multiplier transformations. This fact has been deduced for Minkowski endomor-
phisms in [26] using a different method. In the following we will adapt the technique
by Schneider to show that also Blaschke-Minkowski homomorphisms induce multi-
plier transformations.

Every Blaschke-Minkowski homomorphism Φ : [Kn
0 ] → Kn induces a map on the

set of surface area measures by

ΦSn−1(K, ·) = h(ΦK, ·), K ∈ Kn
0 . (3.10)

Using Theorem 2.8, we obtain:

Theorem 3.7 Let Φ : [Kn
0 ] → Kn be a Blaschke-Minkowski homomorphism. Then

the induced map on the set of surface area measures is a multiplier transformation,
i.e. there is a sequence ck ∈ R such that, for every K ∈ Kn

0 ,

πkh(ΦK, ·) = πkΦSn−1(K, ·) = ckπkSn−1(K, ·).
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For the proof of Theorem 3.7, we need some well known facts on the vector space
of differences of surface area measures, see [33] and [10], p.70.

Lemma 3.8 Let Q ⊆M+
o (Sn−1) denote the set of surface area measures of convex

bodies with interior points. Then

(a) Q is dense in M+
o (Sn−1) and Mo(S

n−1) = Q−Q.

(b) Q∩Hn is dense in Q.

PROOF OF THEOREM 3.7: By the additivity property of Blaschke-Minkowski
homomorphisms, the induced map (3.10) on the cone Q of surface area measures
of convex bodies is linear, and hence by Lemma 3.8 (a), there is a unique linear
extension Φ̃ to the vector space M(Sn−1) given by

Φ̃(µ) = ΦSn−1(K+, ·)− ΦSn−1(K−, ·),

where µ− π1µ = Sn−1(K+, ·)− Sn−1(K−, ·) ∈Mo(S
n−1) for some K+, K− ∈ Kn

0 .
The restriction of Φ̃ to Hn is by definition linear and intertwines rotations. Thus,

by Theorem 2.8, it is a multiplier transformation. The result follows since Φ̃ and Φ
coincide on the set Q∩Hn which is dense in Q by Lemma 3.8 (b). �

By Cauchy’s surface area formula, the mean width of the projection body of a
convex body K ∈ Kn

0 is a constant multiple of the surface area of K. The following
corollary to Theorem 3.7 is a generalization of this fact.

Corollary 3.9 Let Φ : [Kn
0 ] → Kn be a Blaschke-Minkowski homomorphism. Then

Wn−1(ΦK) = rΦW1(K),

where rΦ ∈ R+ is the radius of the ball ΦBn.

Proof: We will first show that ΦBn is a ball. To see this, note that πkSn−1(B
n, ·) = 0

for k ≥ 1. Thus by Theorem 3.7, we have πkh(ΦB
n, ·) = 0 for k ≥ 1, hence ΦBn is

a ball. By Theorem 3.7, the radius rΦ of ΦBn is given by

rΦ = π0h(ΦB
n, ·) = π0ΦSn−1(B

n, ·) = c0π0Sn−1(B
n, ·) = c0ωn,

where c0 denotes the first multiplier of Φ and ωn is the surface area of Bn . By (3.5),
we have Wn−1(ΦK) = κnπ0h(ΦK) and thus, again by Theorem 3.7 and (3.5),

Wn−1(ΦK) = κnπ0ΦSn−1(K, ·) =
rΦ
n
π0Sn−1(K, ·) = rΦW1(K).

�

4. Characterization of Blaschke-Minkowski Homomorphisms

We turn now to the proofs of the main theorems. From now on we will view a map
Φ : [Kn

0 ] → Kn via the obvious identification as a translation invariant map on Kn
0 .

The next lemma shows that every Blaschke-Minkowski homomorphism has a unique
continuous extension to Kn.
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Lemma 4.1 Let Φ : Kn
0 → Kn be a Blaschke-Minkowski homomorphism. Then

there is a unique continuous extension of Φ to Kn.

Proof: Let Km ∈ Kn
0 be a sequence converging to K ∈ Kn. Then we define

ΦK = lim
m→∞

ΦKm.

To see that this limit exists, note that, by Corollary 3.9, Wn−1(ΦKm) = rΦW1(Km).
Thus, Wn−1(ΦKm) → rΦW1(K) as m →∞. Hence the sequence ΦKm is bounded.
Let ΦKmj

be a convergent subsequence of ΦKm with limit L ∈ Kn. By Theorem
3.7 and (2.19),

πkh(ΦKmj
, ·) = ckπkSn−1(Kmj

, ·) = ckN(n, k)Sn−1(Kmj
, ·) ∗ P n

k (
_
e · . ).

By Lemma 2.1, this converges uniformly to ckπkSn−1(K, ·). On the other hand,
πkh(ΦKmj

, ·) → πkh(L, ·) as j → ∞. By the completeness of spherical harmonics,
this implies that the limit of every convergent subsequence ΦKmj

of ΦKm coincides
and thus ΦKm itself is convergent. �

We will need a criterion to determine if a measure µ ∈ M(Sn−1,
_
e) is weakly

positive. Let L = {h(K, ·) − h(L, ·) : K,L ∈ Kn} denote the vector space of
differences of support functions. The following Lemma is in a slightly weaker form
due to Schneider [27] for n = 2 and Kiderlen [13] for n ≥ 3.

Lemma 4.2 Let g ∈ L and let N be a dense subset of M+
o (Sn−1). Then

〈g, µ〉 ≥ 0 ∀µ ∈ N (4.1)

if and only if there is an x ∈ Rn such that

g(u) + x · u ≥ 0 ∀u ∈ Sn−1. (4.2)

Proof: Obviously, (4.2) for some x ∈ Rn implies (4.1). Conversely, assume that (4.1)
holds. Since N is dense in M+

o (Sn−1), (4.1) holds for every measure in M+
o (Sn−1).

Let
g = h(L, ·)− h(M, ·)

with convex bodies L,M ∈ Kn
0 . Define the inradius of L relative to M by

r(L,M) = max{λ ≥ 0 : λM ⊆ L+ x for some x ∈ Rn}.

Choose x ∈ Rn, with r(L,M)M ⊆ L+ x. By the definition of r(L,M), the contact
points of r(L,M)M and L+ x are distributed on their boundaries such that

o ∈ conv{N(L, y) ∩ Sn−1 : y ∈ r(L,M)M ∩ L+ x},

where N(L, y) is the normal cone of L in y. Otherwise we could move the body
r(L,M)M inside L+ x away from the contact points and blow it up, in contradic-
tion to the definition of r(L,M). Let µ ∈ M+

o (Sn−1) be concentrated in the set
{N(L, y) ∩ Sn−1 : y ∈ r(L,M)M ∩ L+ x}. By (4.1),

r(L,M)〈h(M, ·), µ〉 = 〈h(L, ·), µ〉 = 〈g + h(M, ·), µ〉 ≥ 〈h(M, ·), µ〉.
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Thus r(L,M) ≥ 1, and hence we have for every u ∈ Sn−1

g(u) + h(M,u) + x · u = h(L+ x, u) ≥ r(L,M)h(M,u) ≥ h(M,u).

�

Using (3.2), and noting that the set of surface area measures of convex bodies
is a dense subset of M+

o (Sn−1), we obtain the following geometric consequence of
Lemma 4.2 which was proved differently by Weil in [30].

Corollary 4.3 Let K,L ∈ Kn. If V1(M,K) ≤ V1(M,L) for every M ∈ Kn
0 then

there is a vector x ∈ Rn such that K + x ⊆ L.

Note that, if the function g in Lemma 4.2 is zonal, then the vector x in (4.2) can
be chosen as a multiple of

_
e. The following consequence of Lemma 4.2, which we

will use frequently, was also used in the proof of Theorem 3.4, see [13].

Corollary 4.4 Let µ ∈ M(Sn−1,
_
e) and let N be a dense subset of M+

o (Sn−1).
Then

ν ∗ µ ∈M+
o (Sn−1) ∀ ν ∈ N (4.3)

if and only if µ is weakly positive.

Proof: It is clear that (4.3) holds if µ is weakly positive. Conversely, assume that
(4.3) holds. Let (ϕk)k∈N be a zonal approximate identity. Then ν∗µ∗ϕk ≥ 0, and by
Lemma 2.3, µ∗ϕk ∈ C∞(Sn−1).Using (2.9), we see that (ν∗µ∗ϕk)(

_
e) = 〈µ∗ϕk, ν〉 ≥ 0

for every ν ∈ N . As C∞(Sn−1) ⊆ L, see [28] p.27, by Lemma 4.2 and the remark
after Corollary 4.3, there are ck ∈ R such that

(µ ∗ ϕk)(u) + ck(
_
e · u) ≥ 0.

Thus, for nonnegative f ∈ C(Sn−1), we have by (2.20)

f ∗ µ ∗ ϕk ≥ −ckf ∗ (
_
e · .) = −ck

n
π1f.

By Lemma 2.3, µ ∗ ϕk → µ weakly, and thus f ∗ µ ∗ ϕk → f ∗ µ uniformly by
Lemma 2.1. Hence there exists b ∈ R such that b ≥ −ckπ1f . Since π1f is a linear
functional, the sequence ck is bounded. Therefore we can assume that ck → c. �

The main ingredient in the proof of Theorem 1.2 is a classification of translation
invariant homogeneous valuations of convex sets. Since the map K 7→ Sn−1(K, ·)
is a translation invariant valuation, see [28], p.201, we obtain from the definition of
Blaschke addition that for all K,L ∈ Kn

0 such that K ∪ L ∈ Kn
0 and K ∩ L ∈ Kn

0 ,

(K ∪ L) # (K ∩ L) = K # L. (4.4)

Thus, if Φ is a Blaschke-Minkowski homomorphism, we have by Lemma 4.1 for all
K,L ∈ Kn such that K ∪ L ∈ Kn,

Φ(K ∪ L) + Φ(K ∩ L) = ΦK + ΦL. (4.5)

Hence, Φ is a valuation with respect to Minkowski addition. For further information
on valuations of this type see [15] and [16].

The following characterization is due to Hadwiger [11] and McMullen [20]:
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Theorem 4.5 A map ϕ : Kn → R is a continuous translation invariant valuation
homogeneous of degree n − 1 if and only if there is a function g ∈ C(Sn−1), unique
up to addition of a linear function, such that

ϕ(K) = 〈g, Sn−1(K, ·)〉.

Using Theorem 4.5 and (4.5), we can derive the representation theorem for
Blaschke-Minkowski homomorphisms.

PROOF OF THEOREM 1.2: Define a functional ϕ : Kn → R by

ϕ(K) = h(ΦK,
_
e).

Since Sn−1(λK, ·) = λn−1Sn−1(K, ·) for λ ≥ 0 and K ∈ Kn, we have by (1.1)

ΦλK = λn−1ΦK. (4.6)

Using (4.6) and (4.5), we see that the map ϕ is a continuous valuation on Kn

homogeneous of degree n − 1. By Theorem 4.5, there is a function g ∈ C(Sn−1),
unique up to addition of a linear function, such that

ϕ(K) = 〈g, Sn−1(K, ·)〉.

Since ϕ is invariant under rotations leaving
_
e fixed, the function g is zonal, and

thus, by (2.1) and (2.2),

h(ΦK,
_
η) = h(ΦK, η

_
e) = 〈g, Sn−1(η

−1K, ·)〉 = 〈ηg, Sn−1(K, ·)〉. (4.7)

(1.2) follows now from (2.9) and (2.15). To see that g is weakly positive, note that
by (3.6), (3.7) and the commutativity of the convolution of zonal functions,

h({s(ΦK)}, ·) = nh(ΦK, ·) ∗ (
_
e · . ) = nSn−1(K, ·) ∗ (

_
e · . ) ∗ g = 0.

Since s(ΦK) ∈ relint ΦK, see [28], p.43, we have h(ΦK, ·) ≥ 0. Thus, noting that
the set of surface area measures is a dense subset of M+

o (Sn−1), it follows from
Corollary 4.4 that g is weakly positive. �

For later applications, we state further properties of the generating functions of
Blaschke-Minkowski homomorphisms in the following Lemma.

Lemma 4.6 Let g ∈ C(Sn−1,
_
e) be the generating function of a Blaschke-Minkowski

homomorphism.

(a) g is a difference of support functions, i.e. g ∈ L.

(b) There is a symmetric body of revolution L ∈ Kn, such that for every u ∈ Sn−1,

g(u) + g(−u) = h(L, u).
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Proof: By Lemma 3.8 (a), there are convex bodies K+, K− ∈ Kn
0 such that

δ_
e − π1δ_

e = Sn−1(K+, ·)− Sn−1(K−, ·).

Since the Dirac measure δ_
e is the neutral element for zonal convolution, and as

(π1δ_
e )(u) = n

_
e · u by (2.20), we obtain

(δ_
e − π1δ_

e ) ∗ g = g − π1g = h(ΦK+, ·)− h(ΦK−, ·).

Since π1g is a linear functional on Rn, there is a vector x ∈ Rn such that

(π1g)(u) = x · u = h({x}, u).

Hence g = h(ΦK+ + x, ·)− h(ΦK−, ·) which proves (a).
To see (b), let {b1, . . . , bn} be an orthonormal basis in Rn such that

_
e = bn. For a

vector x ∈ Rn let x1, . . . , xn denote its coordinates with respect to b1, . . . , bn. Choose
β ∈ R+ such that the ellipsoid Eα defined by

x2
1 + . . .+ x2

n−1

α2
+
x2

n

β2
≤ 1

has surface area S(Eα) = 1. It was shown in [9], p.103, that as α → ∞, we have
β → 0 and

Sn−1(Eα, ·) →
1

2
(δ_

e + δ−_
e )

weakly. By Lemma 2.1,

h(ΦEα, u) = (Sn−1(Eα, ·) ∗ g)(u) →
1

2
(g(u) + g(−u))

uniformly in u ∈ Sn−1. Since h(ΦEα, ·) converges uniformly, it converges to a sup-
port function of a convex body, which proves (b). �

An immediate consequence of Lemma 4.6 is the complete classification of all even
Blaschke-Minkowski homomorphisms.

PROOF OF THEOREM 1.3: A Blaschke-Minkowski homomorphism is even if and
only if its generating function is even. Thus the result follows from Lemma 4.6 (b). �

If g = h(L, ·) for some body of revolution L ∈ Kn is the generating function of a
Blaschke-Minkowski homomorphism Φ, then by (4.7) and (3.2),

h(ΦK,
_
η) = nV1(K, ηL). (4.8)

Since K1 ⊆ K2 if and only if h(K1, ·) ≤ h(K2, ·), the monotonicity of mixed volumes
together with (4.8) implies

Corollary 4.7 A Blaschke-Minkowski homomorphism whose generating function is
given by h(L, ·) for some L ∈ Kn, is monotone with respect to set inclusion.
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Note that by Theorem 1.3 and Corollary 4.7, every even Blaschke-Minkowski
homomorphism is monotone.

By Lemma 3.1, every map Φ : Kn → Kn of the form

h(ΦK, ·) = Sn−1(K, ·) ∗ h(L, ·)

for some L ∈ Kn is a Blaschke-Minkowski homomorphism, but in general there are
generating functions g of Blaschke-Minkowski homomorphisms that are not support
functions. An example of such a map is the (normalized) second mean section
operator M2 introduced in [7] and further investigated in [12]: Let En

2 be the affine
Grassmanian of two-dimensional planes in Rn and µ2 its motion invariant measure,
normalized such that µ2({E ∈ En

2 : E ∩Bn 6= ∅}) = κn−2. Then

h(M2K, ·) = (n− 1)

∫
En
2

h(K ∩ E, ·)dµ2(E)− h({zn−1(K)}, ·) = Sn−1(K, ·) ∗ g2,

where zn−1(K) is the intrinsic (n − 1)st moment vector of K, see [28], p.304, and
Λg2 is given by

Λg2(t) = arccos(−t)
√

1− t2.

The function g2 is not a support function. Note that the operatorM2 is not monotone
but has the following weak monotonicity property: M2 is monotone on those convex
bodies having their (n − 1)st intrinsic moment vector in the origin. This is similar
to the monotonicity property of weakly monotone Minkowski endomorphisms.

We will give now a complete characterization of generating functions of Blaschke-
Minkowski homomorphisms in the spirit of a classification result of Weil [32] of
generating measures of generalized zonoids. To this end, we need the extension of
area measures of convex bodies to the space L of differences of support functions.

Definition 4.8 Let gi ∈ L, i = 1, . . . , n − 1, with gi = h(K0
i , ·) − h(K1

i , ·). Then
the mixed surface area measure of g1, . . . , gn−1 is defined by

S(g1, . . . , gn−1, ·) =
∑

α1,...,αn−1∈{0,1}

(−1)α1+...+αn−1S(Kα1
1 , . . . , K

αn−1

n−1 , ·) ∈Mo(S
n−1).

For a function f ∈ C(Sn−1), define

V (f, g1, . . . , gn−1) = 〈f, S(g1, . . . , gn−1, ·)〉.

For g ∈ L and j = 1, . . . , n − 1, the measure Sj(g, ·) = S(g, . . . , g, 1, ..., 1, ·), where
g appears j times and 1 appears n− j − 1 times, is called the area measure of order
j of g.

If Φ is a Blaschke-Minkowski homomorphism, then by Lemma 4.6 (a),

h(ΦK, ·) = Sn−1(K, ·) ∗ g = Sn−1(K, ·) ∗ h(L+, ·)− Sn−1(K, ·) ∗ h(L−, ·),

where g = h(L+, ·)− h(L−, ·). Thus, defining Blaschke-Minkowski homomorphisms
Φ+ and Φ− with generating functions h(L+, ·) and h(L−, ·) we obtain

h(ΦK, ·) = h(Φ+K, ·)− h(Φ−K, ·). (4.9)

In the light of (4.9), we need a criterion to determine whether a difference of support
functions is in fact a support function. This was established by Weil in [31].
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Theorem 4.9 A function g ∈ L is the support function of a convex body K if and
only if for all j ∈ {1, . . . , n− 1},

Sj(g, ·) ∈M+
o (Sn−1).

In order to use Theorem 4.9, we need to determine the area measures Sj(ΦK, ·). In
[9], p.105, the area measures of the convex body with support function µ ∗ h(K, ·),
µ ∈ M+(SO(n)) were calculated. The result established there extends easily to
differences of support functions. Identifying spherical measures with right SO(n−1)
invariant measures on SO(n), we get the following Lemma.

Lemma 4.10 Let Φ be a Blaschke-Minkowski homomorphism with generating func-
tion g ∈ L. Then 〈f, Sj(ΦK, ·)〉 is given by∫

(Sn−1)j

V (f,Λg(u1 · .), . . . ,Λg(uj · .), 1, . . . , 1)dSn−1(K, u1) . . . dSn−1(K, uj).

Using Lemma 4.10, Theorem 4.9 and the fact that the set of surface area mea-
sures of convex bodies forms a dense subset of M+

o (Sn−1), we obtain the following
characterization of generating functions of Blaschke-Minkowski homomorphisms.

Theorem 4.11 A function g ∈ L is the generating function of a Blaschke-Minkowski
homomorphism if and only if, for every j = 1, . . . , n− 1,∫

(Sn−1)j

V (f,Λg(u1 · .), . . . ,Λg(uj · .), 1, . . . , 1)dµ(u1) . . . dµ(uj) ≥ 0

for every nonnegative f ∈ C(Sn−1) and every µ ∈M+
o (Sn−1).

5. Endomorphisms and Homomorphisms of Convex Bodies

We turn now to the connection between adjoint Minkowski and Blaschke endomor-
phisms and Blaschke-Minkowski homomorphisms.

PROOF OF THEOREM 1.4: If Ψ and Ψ∗ are adjoint, then Ψ is weakly mono-
tone and they have the same generating measure µ ∈ M(Sn−1,

_
e). Let Φ be a

Blaschke-Minkowski homomorphism with generating function g ∈ C(Sn−1,
_
e). From

the commutativity of zonal convolution, it follows that

h(ΦΨ∗K, ·) = Sn−1(Ψ
∗K, ·) ∗ g = Sn−1(K, ·) ∗ µ ∗ g

= Sn−1(K, ·) ∗ g ∗ µ = h(ΦK, ·) ∗ µ = h(ΨΦK, ·).

Thus (a) implies (b) and obviously (b) implies (c).
By the multiplier property, a Blaschke-Minkowski homomorphism Φ is injective

if and only if all the multipliers of g are nonzero. Thus, the multipliers of Ψ∗ and
Ψ can be determined from Φ ◦ Ψ∗ and Ψ ◦ Φ and are equal if (1.4) holds. By the
completeness of the system of spherical harmonics, it follows that (c) implies (a). �

Theorem 1.4 shows that the following conjecture is equivalent to Conjecture 3.5:
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Conjecture 5.1 There exists an injective Blaschke-Minkowski homomorphism whose
range is invariant under every Minkowski endomorphism.

In view of this formulation of Conjecture 3.5, we further investigate the range of
Blaschke-Minkowski homomorphisms.

Theorem 5.2 The range of every Blaschke-Minkowski homomorphism is nowhere
dense in Kn.

Proof: We call K ∈ Kn
0 Blaschke decomposable if there exist two bodies K1, K2 ∈ Kn

0

not homothetic to K such that K = K1 # K2. By a result of Bronshtein [4], the
only Blaschke indecomposable bodies in Kn

0 are the simplices. Thus, every body in
the range of a Blaschke-Minkowski homomorphism with the only possible exception
of the image of simplices is decomposable with respect to Minkowski addition.

Since the image of simplices is nowhere dense in Kn and since, on the other hand,
the indecomposable bodies with respect to Minkowski addition form a dense subset
of Kn, the desired result follows. �

In the second part of this section we will see that most of the geometric convolu-
tion operators we encountered so far do not attain values in the set of polytopes.

Theorem 5.3 Let Φ : Kn → Kn be a Blaschke-Minkowski homomorphism generated
by the support function h(L, ·) of a body of revolution L ∈ Kn. If there is a convex
body K ∈ Kn

0 such that ΦK is a polytope, then there is a constant c ∈ R+ such that

Φ = cΠ.

Proof: Let P = ΦK = conv{x1, . . . , xk} be a polytope with vertices x1, . . . , xk. Then

h(P, ·) = Sn−1(K, ·) ∗ h(L, ·).

Since the body L ∈ Kn is unique up to translation, we can assume that h(L, ·) ≥ 0.

Let µ =
^

Sn−1 (K, ·) ∈M+(SO(n)), then by (1.2)

h(P, ·) =

∫
SO(n)

h(ϑL, ·)dµ(ϑ). (5.1)

From now on, we consider support functions as positive homogeneous functions on
Rn. Let C1, . . . , Ck denote the normal cones of the vertices of P . Then the support
function h(P, ·) is linear in every Ci, i = 1, . . . , k. Thus, by (5.1), we have∫

SO(n)

h(ϑL, v1) + h(ϑL, v2)− h(ϑL, v1 + v2)dµ(ϑ) = 0 (5.2)

for all v1, v2 ∈ Ci. Since support functions are sublinear, the integrand in (5.2) is
nonnegative. Thus, as µ is nonnegative, h(ϑL, v1) + h(ϑL, v2) = h(ϑL, v1 + v2) for
all ϑ in the support of µ. For each such ϑ, we thus have

h(L, v1) + h(L, v2) = h(L, v1 + v2)
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for all v1, v2 ∈ ϑCi. This implies that L is a polytope itself. But since L is a body
of revolution and the only polytopes that are bodies of revolution are the multiples
of the segment [−_

e,
_
e], the desired result follows from (1.3). �

Note that Theorem 1.3 and Theorem 5.3 imply Theorem 1.5. For a corresponding
result in dimension two see [27], p.311.

The Difference body operator D : Kn → Kn is the Minkowski endomorphism
defined by

DK = K + (−K).

The Blaschke body operator ∇ : Kn → Kn is the Blaschke endomorphism defined
by

∇K = K # (−K).

Corollary 5.4 The only even Blaschke endomorphisms taking values in the set of
polytopes are constant multiples of ∇.

If an even Minkowski endomorphism maps a zonoid onto a polytope, then it is a
constant multiple of D.

Proof: Let Ψ be an even Blaschke endomorphism and let ΨK = P be a polytope
for some K ∈ Kn

0 . By (1.1), the map Π ◦ Ψ is an even Blaschke-Minkowski homo-
morphism such that ΠΨK is a polytope. By Theorem 1.5 and Theorem 1.3, there
is a constant c ∈ R+ such that

Π ◦Ψ = cΠ. (5.3)

Since Π is injective all the even multipliers of Π are nonzero. Thus, by (5.3), all even
multipliers of Ψ are equal to c. Noting that the odd multipliers of even multiplier
operators are zero, the result follows.

An analogous argument leads to the second statement. �

6. Geometric Inequalities and Induced Operators

An important open problem in the theory of affine isoperimetric inequalities is the
conjectured projection inequality by Petty [24]:

κn−1
n

κn
n−1

V (ΠK) ≥ κnV (K)n−1 (6.1)

with equality if and only if K is an ellipsoid. If (6.1) holds, then, as was shown in
[18], it is a strengthened version of the classical isoperimetric inequality W1(K)n ≥
κnV (K)n−1, compare Lemma 6.7 and (6.6).

In this chapter we will study analogous problems for general Blaschke-Minkowski
homomorphisms and related operators which will be introduced in the next theorem.
Most of the results in this chapter were established for the projection body operator
in [18], see also [17], [19]. The aim of this section is to generalize the results obtained
there to general (nontrivial) Blaschke-Minkowski homomorphisms and to show that
the crucial tool is a representation of the form of (1.2).
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In the following Φ : Kn → Kn shall always denote a nontrivial Blaschke-Minkowski
homomorphism.

Theorem 6.1 The map Φ satisfies the Steiner type formula

Φ(K + εBn) =
n−1∑
i=0

εi

(
n− 1

i

)
ΦiK.

The operators Φi : Kn → Kn, i = 0, . . . , n−1, are continuous, translation invariant,
rotation intertwining Minkowski valuations and Φ0 = Φ.

Proof: The desired result is an immediate consequence of Theorem 1.2 and the
Steiner formula for the surface area measure of a convex body K, see (3.3),

Sn−1(K + εBn, ·) =
n−1∑
i=0

εi

(
n− 1

i

)
Sn−1−i(K, ·).

If g ∈ C(Sn−1,
_
e) denotes the generating function of Φ, then

h(ΦiK, ·) = Sn−1−i(K, ·) ∗ g. (6.2)

By Minkowski’s existence theorem, the area measure Si(K, ·) of order i of a convex
body K ∈ Kn

0 is also the surface area measure Sn−1(L, ·) of order n − 1 of some
convex body L ∈ Kn

0 . Thus, the mappings Φi are well defined. Since the mappings
K 7→ Si(K, ·) are translation invariant valuations, the operators Φi are Minkowski
valuations. �

Note that, by Theorem 1.2 and (3.3), the mappings Φi are special cases of more
general operators defined on the cartesian product of n − 1 copies of Kn. These
mappings are studied in more detail in [29]. In the following we will consider only
the operators Φi, i = 0, . . . , n− 2, since Φn−1 maps every body K to ΦBn because
S0(K, ·) = Sn−1(B

n, ·) is independent of K. We remark here that, for K ∈ Kn
i , the

image ΦiK is an element of Kn
0 and ΦiL = o if L ∈ Kn

i+2\Kn
i+1.

By (6.2), the Φi are multiplier operators, but apart from Φ0 = Φ and Φn−2

they can not be interpreted as additive transformations of convex bodies, since the
set of area measures Sj(K, ·) of order j does not form a cone in M+

o (Sn−1) for
j = 2, . . . , n − 2, see [6]. The operator Φn−2 is a Minkowski endomorphism. To
see this, note that the area measure S1(K, ·) of order one is related to the support
function h(K, ·) by the linear second order differential operator

∆1 = ∆0 + (n− 1),

where ∆0 denotes the Laplace Beltrami operator on Sn−1, see [9], p.87. We have

∆1h(K, ·) = S1(K, ·), (6.3)

where this equality is understood in the sense of distributions if h(K, ·) is not in
C2(Sn−1). From (6.3), it follows that S1(K1 + K2, ·) = S1(K1, ·) + S1(K2, ·), which
together with (6.2) shows that Φn−2 is a Minkowski endomorphism.

As ∆0 is an intertwining operator so is ∆1. Thus, by Lemma 2.8, ∆1 is a mul-
tiplier operator. For the following Lemma see [9], p.86, and note that multiplier
transformations are obviously commutative.
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Lemma 6.2 Let µ ∈M(Sn−1,
_
e) and ν ∈M(Sn−1). Then

∆1(ν ∗ µ) = ν ∗ (∆1µ) = (∆1ν) ∗ µ

in the sense of distributions.

Using Lemma 6.2, we get the following result.

Theorem 6.3 The operator Φn−2 is a weakly monotone Minkowski endomorphism.

Proof: We have seen that Φn−2 is a Minkowski endomorphism. In order to prove
that Φn−2 is weakly monotone, we need to show, by Theorem 3.4, that there is a
weakly positive measure µ ∈M(Sn−1,

_
e) such that h(Φn−2K, ·) = h(K, ·) ∗ µ.

If g ∈ C(Sn−1,
_
e) is the generating function of Φ, then by Lemma 6.2 and (6.3),

h(Φn−2K, ·) = S1(K, ·) ∗ g = h(K, ·) ∗∆1g,

thus we need to show that ∆1g is a weakly positive measure. Using Lemma 4.6 (a),
we have g = h(L1, ·)− h(L2, ·) for some convex bodies L1, L2 ∈ Kn. Hence,

∆1g = S1(L1, ·)− S1(L2, ·).

Using again Lemma 6.2 and (6.3), we obtain

S1(ΦK, ·) = Sn−1(K, ·) ∗∆1g ∈M+
o (Sn−1).

Thus, the desired result follows from Lemma 4.4 and from the fact that the set of
surface area measures is a dense subset of M+

o (Sn−1). �

For K,L ∈ Kn and i = 0, . . . , n − 2, let Wi(K,L) denote the mixed volume
V (L,K, . . . ,K,Bn, . . . , Bn), where K appears n − 1 − i times and Bn appears i
times. Note that, W0(K,L) = V1(K,L). For our further investigations we state the
following consequence of Lemma 2.2.

Lemma 6.4 For i = 0, . . . , n− 2 and K,L ∈ Kn,

Wi(K,ΦiL) = Wi(L,ΦiK).

Proof: Let g ∈ C(Sn−1,
_
e) denote the generating function of Φ. From (3.4), the

definition of Wi(K,L) and Lemma 2.2, it follows that

Wi(K,ΦiL) =
1

n
〈h(ΦiL, ·), Sn−1−i(K, ·)〉 =

1

n
〈Sn−1−i(L, ·) ∗ g, Sn−1−i(K, ·)〉

=
1

n
〈Sn−1−i(L, ·), Sn−1−i(K, ·) ∗ g〉 = Wi(L,ΦiK).

�

The Shephard problem asks whether for K,L ∈ Kn
0 ,

voln−1(K|u⊥) = h(ΠK, u) ≤ h(ΠL, u) = voln−1(L|u⊥) (6.4)
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for every u ∈ Sn−1 implies V (K) ≤ V (L). Obviously, (6.4) is equivalent to ΠK ⊆
ΠL. As was shown independently by Petty [23] and Schneider [25], the answer to
Shephard’s problem is no in general, but if the body L is a zonoid, the answer is
yes. The crucial tool in the proof of the latter statement is a special case of Lemma
6.4. In fact, an analogous result can be shown for general Blaschke-Minkowski
homomorphisms.

Corollary 6.5 Let K ∈ Kn
i and L ∈ ΦiKn

i . Then, for i = 0, . . . , n− 2,

ΦiK ⊆ ΦiL ⇒ Wi(K) ≤ Wi(L)

and Wi(K) = Wi(L) only if K and L are translates.

Proof: From the monotonicity of mixed volumes, Lemma 6.4 and the fact that
L = ΦiL0 for some convex body L0 ∈ Kn

i , it follows that

Wi(K,ΦiL0) = Wi(L0,ΦiK) ≤ Wi(L0,ΦiL) = Wi(L,ΦiL0) = Wi(L).

Using the generalized Minkowski inequality

Wi(K,L)n−i ≥ Wi(K)n−1−iWi(L), (6.5)

with equality if and only if K and L are homothetic, we thus get

Wi(K) ≤ Wi(L),

with equality only if K and L are homothetic. But homothetic bodies of equal ith
quermassintegral must be translates of each other. �

The special case i = 0,Φ = Π of Corollary 6.5 is the result of Schneider and Petty.
The following result is a generalization of Corollary 3.9, which follows from (6.2).

Corollary 6.6 For i = 0, . . . , n− 2 and K ∈ Kn,

Wn−1(ΦiK) = rΦWi+1(K),

where rΦ ∈ R+ is the radius of the ball ΦBn.

We will prove now an upper bound for the ith quermassintegral of ΦiK.

Theorem 6.7 For i = 0, . . . , n− 2 and K ∈ Kn,

Wi+1(K)n−i ≥ κn−1−i
n

rn−i
Φ

Wi(ΦiK),

where rΦ ∈ R+ is the radius of the ball ΦBn. There is equality only if ΦiK is a ball.
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Proof: Let K ∈ Kn and 0 ≤ i ≤ n − 2. From inequality (3.1), we get by repeated
application, the inequality

Wn−1(K)n−i ≥ κn−1−i
n Wi(K),

where, for K ∈ Kn
n−1, there is equality if and only if K is a ball. Taking K = ΦiK

and using Corollary 6.6, gives the desired result. �

In the following we will investigate, for K ∈ Kn
i , the similarity invariant ratio

ψi(K) =
Wi(ΦiK)

Wi(K)n−1−i
.

By a standard technique, using Blaschke’s selection theorem, it can be shown that
ψi attains a minimum on Kn

i . From the next theorem follows that the extremal
bodies K of this minimum have the property that K and Φ2

iK are homothetic.

Theorem 6.8 If K ∈ Kn
i and 0 ≤ i ≤ n− 2, then

ψi(K) ≥ ψi(ΦiK),

with equality if and only if K and Φ2
iK are homothetic.

Proof: Let K,L ∈ Kn
i . From the generalized Minkowski inequality (6.5) together

with Lemma 6.4, we obtain

Wi(L,ΦiK)n−i = Wi(K,ΦiL)n−i ≥ Wi(K)n−1−iWi(ΦiL),

with equality if and only if K and ΦiL are homothetic. Setting L = ΦiK, gives

Wi(ΦiK)n−i ≥ Wi(K)n−1−iWi(Φ
2
iK),

with equality if and only if K and Φ2
iK are homothetic. �

In the case i = n − 2, there is a result of Kiderlen [13] that K and Ψ2K, for
a nontrivial weakly monotone Minkowski endomorphism Ψ, are homothetic if and
only if K is a ball, where the combinations of the identity map and the reflection
in the origin are the trivial Minkowski endomorphisms. Thus, Theorem 6.7 and
Theorem 6.8 together with Kiderlen’s result imply Theorem 1.6.

In the proof of Theorem 1.6, we have used only that Φn−2 is a weakly monotone
(nontrivial) Minkowski endomorphism. In fact, inequality (1.5) with equality cases
is valid for every nontrivial weakly monotone Minkowski endomorphism, compare
also [26], p.70, for a related result. The reason why we chose the more restrictive for-
mulation of Theorem 1.6 is the author’s belief that Petty’s conjectured projection
inequality holds in a more general form for every Blaschke-Minkowski homomor-
phism and its induced operators

Wi+1(K)n−i ≥ κn−1−i
n

rn−i
Φ

Wi(ΦiK) ≥ κnWi(K)n−1−i, (6.6)
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giving a family of strengthened versions of the classical inequalities (3.1) between
consecutive quermassintegrals. The inequalities (3.1) are special cases of (6.6) for
the Blaschke-Minkowski homomorphisms K 7→ cB(W1(K), o), where c ∈ R+ and
B(W1(K), o) is the ball with center in the origin and radius W1(K). It is possible
to show that the case i = 0 of (6.6) implies the inequality for all other values of i,
for a proof compare the argument for the projection body operator in [18], p.57.
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