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Part I

Reconstructing structures from their
automorphism groups and polymorphism clones
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Reconstructing structures up to first-order . . .

Aut( )

Theorem (Ryll-Nardzewski)
Let ∆, Γ be ω-categorical structures on the same domain.
Then Aut(∆) = Aut(Γ) ⇔ ∆, Γ are first-order interdefinable.

Aut( ) as a topological group

first-order bi-interpretable with

Theorem (Ahlbrandt + Ziegler ’86)
Let ∆, Γ be ω-categorical structures.
Then Aut(∆) ∼=T Aut(Γ) ⇔ ∆, Γ are first-order bi-interpretable.
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Reconstruction from the abstract group

Aut( ) as an abstract group → ?

Can we reconstruct an ω-categorical structure ∆
from the algebraic group structure of Aut(∆)?

Can we reconstruct the topological structure of Aut(∆)
from its algebraic structure?
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Better reconstruction plans

Let ∆ be a structure.

Aut(∆). . . automorphism group of ∆

End(∆). . . endomorphism monoid of ∆

Pol(∆). . . polymorphism clone of ∆

End(∆) . . . all homomorphisms f : ∆→ ∆.

Pol(∆) . . . all homomorphisms f : ∆n → ∆, where 1 ≤ n < ω.

Pol(∆) is a function clone:

closed under composition
contains projections.

Observe: Pol(∆) ⊇ End(∆) ⊇ Aut(∆).
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Reconstruction up to primitive positive definitions

Pol( ) → ?

Theorem (Bodirsky + Nešetřil ’03)
Let ∆, Γ be ω-categorical structures on the same domain.
Then Pol(∆) = Pol(Γ) ⇔ ∆, Γ are primitive positive interdefinable.

Why primitive positive definitions?

For ∆ a structure with a finite relational signature τ :

Definition (Constraint Satisfaction Problem)

CSP(∆) is the computational problem to decide whether a given
primitive positive τ -sentence holds in ∆.
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Let ∆, Γ be ω-categorical structures on the same domain.
Then Pol(∆) = Pol(Γ) ⇔ ∆, Γ are primitive positive interdefinable.

Why primitive positive definitions?

For ∆ a structure with a finite relational signature τ :

Definition (Constraint Satisfaction Problem)

CSP(∆) is the computational problem to decide whether a given
primitive positive τ -sentence holds in ∆.

Reconstructing sheep from clones Michael Pinsker



Reconstruction up to primitive positive definitions

Pol( ) → ?

Theorem (Bodirsky + Nešetřil ’03)
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Topological clones

Function clones carry:

algebraic structure (composition / equations)
topological structure (pointwise convergence)

Let C,D be function clones.
ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

=⇒ Topological clones

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical structures. Then:
Pol(∆) ∼=T Pol(Γ) ⇔ ∆, Γ are primitive positive bi-interpretable.
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Reconstruction from the abstract clone

Pol( ) as an abstract clone → ?

Can we reconstruct an ω-categorical structure ∆
from the algebraic clone structure of Pol(∆)?

Can we reconstruct the topological structure of Pol(∆)
from its algebraic structure?

Reconstructing sheep from clones Michael Pinsker



Reconstruction from the abstract clone

Pol( ) as an abstract clone → ?

Can we reconstruct an ω-categorical structure ∆
from the algebraic clone structure of Pol(∆)?

Can we reconstruct the topological structure of Pol(∆)
from its algebraic structure?

Reconstructing sheep from clones Michael Pinsker



Reconstruction from the abstract clone

Pol( ) as an abstract clone → ?

Can we reconstruct an ω-categorical structure ∆
from the algebraic clone structure of Pol(∆)?

Can we reconstruct the topological structure of Pol(∆)
from its algebraic structure?

Reconstructing sheep from clones Michael Pinsker



Reconstruction from the abstract clone

Pol( ) as an abstract clone → ?

Can we reconstruct an ω-categorical structure ∆
from the algebraic clone structure of Pol(∆)?

Can we reconstruct the topological structure of Pol(∆)
from its algebraic structure?

Reconstructing sheep from clones Michael Pinsker



Part II

The topology of algebras
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Clones from algebras

Let A be an algebra.

Term functions of A (obtained by composition): function clone Clo(A).

Clo(A) encodes the equations (=identities) which hold in A.

Universal Algebra: Structure of A⇔ equations in Clo(A).

Reconstructing sheep from clones Michael Pinsker



Clones from algebras

Let A be an algebra.

Term functions of A (obtained by composition): function clone Clo(A).

Clo(A) encodes the equations (=identities) which hold in A.

Universal Algebra: Structure of A⇔ equations in Clo(A).

Reconstructing sheep from clones Michael Pinsker



Clones from algebras

Let A be an algebra.

Term functions of A (obtained by composition): function clone Clo(A).

Clo(A) encodes the equations (=identities) which hold in A.

Universal Algebra: Structure of A⇔ equations in Clo(A).

Reconstructing sheep from clones Michael Pinsker



Clones from algebras

Let A be an algebra.

Term functions of A (obtained by composition): function clone Clo(A).

Clo(A) encodes the equations (=identities) which hold in A.

Universal Algebra: Structure of A⇔ equations in Clo(A).

Reconstructing sheep from clones Michael Pinsker



Clones from algebras

Let A be an algebra.

Term functions of A (obtained by composition): function clone Clo(A).

Clo(A) encodes the equations (=identities) which hold in A.

Universal Algebra: Structure of A⇔ equations in Clo(A).

Reconstructing sheep from clones Michael Pinsker



Birkhoff’s theorem

For an algebra A consider the algebras obtained by taking
Homomorphic images
Subalgebras
Powers / finite Powers.

Theorem (Birkhoff 1935)
Let A, B be algebras.

Then Clo(B) = Clo(C) for some C ∈ HSP(A)↔
∃ clone homomorphism from Clo(A) onto Clo(B).

Theorem (Bodirsky + MP ’11)
Let A, B be countable.

Then Clo(B) = Clo(C) for some C ∈ HSPfin(A)↔
∃ uniformly continuous clone homomorphism from Clo(A) onto Clo(B).
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HSP vs. HSPfin

When do HSP and HSPfin coincide for an algebra?

When can HSPfin be described algebraically?

Can we reconstruct the topological structure of function clones
from their algebraic structure?
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Part III

Reconstruction notions & results
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Reconstruction notions

Let O be the largest function clone on ω, and C be a closed subclone.

Definition

C has reconstruction ⇔ C ∼= D implies C ∼=T D
for all closed subclones D of O;

C has automatic homeomorphicity ⇔ every clone isomorphism
between C and a closed subclone of O is a homeomorphism;

C has automatic continuity ⇔
every clone homomorphism from C into O is continuous.

Observation. (2) =⇒ (1).

Fact. For groups (3) =⇒ (2).
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Groups: the small index property

Automorphism groups with automatic continuity:

(N; =) (Dixon+Neumann+Thomas’86)
(Q;<) and the atomless Boolean algebra (Truss’89)
the random graph (Hodges+Hodkinson+Lascar+Shelah’93)
the random Kn-free graphs (Herwig’98)
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Groups: Rubin’s forall-exists interpretations

Automorphism groups with automatic homeomorphicity:

the random graph
(Q;<)
all homogeneous countable graphs
various ω-categorical semilinear orders
the random partial order
the random tournament
(Rubin ’94)

the random k -hypergraphs
the Henson digraphs
(Barbina+MacPherson ’07).
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Clones + monoids: Negative results

Observation
If ∆ is ω-categorical,
then Emb(∆) does not have automatic continuity.

Theorem (Evans + Hewitt ’90)
There exists an ω-categorical ∆ such that
Aut(∆) does not have reconstruction.

Theorem (Bodirsky + Evans + Kompatscher + MP ’16)

Pol(∆), End(∆), Aut(∆) do not have reconstruction.
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Method I: Automatic continuity via Birkhoff’s theorem

Let C be a closed subclone of O, and ξ : C→ O be a homomorphism.

Theorem (Birkhoff ’35)

The algebra (ω; ξ[C]) is an HSP of the algebra (ω; C).

The only possibly discontinuous step is an infinite product.

Theorem (Bodirsky + MP + Pongrácz ’13)

Any closed subclone of O containing ωω has
automatic continuity and automatic homeomorphicity.
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Method II: Automatic homeomorphicity via groups

Let C be a closed subclone of O
whose group GC of invertibles has automatic homeomorphicity.

Show:

the closure of GC in O has reconstruction;
the clone of unary functions of C has reconstruction;
C has reconstruction.

Theorem (Bodirsky + MP + Pongrácz ’13)

Let G be the random graph.
The following have automatic homeomorphicity:

End(G);
Pol(G);
Various other famous clones containing Aut(G).
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Method III: Rubin’s interpretations

Interpret structure ∆ in the algebraic structure of its clone Pol(∆).

Theorem (Maissel + Rubin ’15)

Let Pol(∆),Pol(∆′) contain all transpositions on their domain ω.

Then any clone isomorphism Pol(∆)→ Pol(∆′)
is induced by a permutation of ω.
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Part IV

The open problem
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The open problem

Let 1 be the clone containing only projections – the smallest clone.

Problem
Let ∆ be ω-categorical.

If Pol(∆)→ 1 via a clone homomorphism, then also continuously?
1 ∈ HSP(Pol(∆)) implies 1 ∈ HSPfin(Pol(∆))?

Theorem (Barto + Kompatscher + Olšák + Van Pham + MP ’17)
Let ∆ be ω-categorical, with less than double exponential type growth.
TFAE:

There is no linear uniformly continuous homomorphism
Pol(∆)→ 1;
Pol(∆) contains functions u, v (unary) and s (6-ary) such that

∀x , y , z (u ◦ s(x , y , x , z, y , z) = v ◦ s(y , x , z, x , z, y)) .
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Thank you!
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