Reconstructing structures from their abstract clones

Michael Pinsker

Vienna University of Technology / Charles University Prague

Funded by Austrian Science Fund (FWF) grant no. P27600 and Czech Grant Agency (GAČR) grant no. 18-20123S

Set Theory, Model Theory and Applications Eilat Campus of Ben-Gurion University of the Negev April 2018

Outline

Reconstructing structures from their automorphism groups and polymorphism clones

- Reconstructing structures from their automorphism groups and polymorphism clones
- The topology of algebras

- Reconstructing structures from their automorphism groups and polymorphism clones
- The topology of algebras
- Reconstruction notions, results, problems

Part I

Reconstructing structures from their automorphism groups and polymorphism clones

countable

Reconstructing sheep from clones

countable, ω -categorical

Reconstructing sheep from clones

Reconstructing sheep from clones

Theorem (Ryll-Nardzewski)

Let Δ , Γ be ω -categorical structures on the same domain.

Then $Aut(\Delta) = Aut(\Gamma) \Leftrightarrow \Delta, \Gamma$ are first-order interdefinable.

Theorem (Ryll-Nardzewski)

Let Δ , Γ be ω -categorical structures on the same domain.

Then $Aut(\Delta) = Aut(\Gamma) \Leftrightarrow \Delta, \Gamma$ are first-order interdefinable.

Aut(as a topological group

Theorem (Ryll-Nardzewski)

Let Δ , Γ be ω -categorical structures on the same domain.

Then $Aut(\Delta) = Aut(\Gamma) \Leftrightarrow \Delta, \Gamma$ are first-order interdefinable.

 $\mathsf{Aut}(oldsymbol{fin})$ as a topological group o

Theorem (Ryll-Nardzewski)

Let Δ , Γ be ω -categorical structures on the same domain.

Then $Aut(\Delta) = Aut(\Gamma) \Leftrightarrow \Delta, \Gamma$ are first-order interdefinable.

Theorem (Ryll-Nardzewski)

Let Δ , Γ be ω -categorical structures on the same domain. Then Aut(Δ) = Aut(Γ) $\Leftrightarrow \Delta$, Γ are first-order interdefinable.

Theorem (Ahlbrandt + Ziegler '86)

Let Δ , Γ be ω -categorical structures. Then Aut(Δ) \cong^{T} Aut(Γ) $\Leftrightarrow \Delta$, Γ are first-order bi-interpretable.

Reconstruction from the abstract group

Reconstruction from the abstract group

 $Aut(\blacksquare)$ as an abstract group \rightarrow ?

Can we reconstruct an ω-categorical structure Δ from the algebraic group structure of Aut(Δ)?

Reconstruction from the abstract group

Aut(\blacksquare) as an abstract group \rightarrow ?

- Can we reconstruct an ω-categorical structure Δ from the algebraic group structure of Aut(Δ)?
- Can we reconstruct the topological structure of Aut(Δ) from its algebraic structure?

Reconstructing sheep from clones

Let Δ be a structure.

Let Δ be a structure.

• $Aut(\Delta)...automorphism group of \Delta$

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $\blacksquare \ End(\Delta)... endomorphism monoid of \Delta$

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $End(\Delta)...endomorphism monoid of \Delta$
- $Pol(\Delta)...polymorphism clone of \Delta$

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $\blacksquare \ {\rm End}(\Delta).\,.\,.\,{\rm endomorphism}$ monoid of Δ
- $Pol(\Delta)...polymorphism clone of \Delta$

 $End(\Delta) \dots$ all homomorphisms $f \colon \Delta \to \Delta$.

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $End(\Delta)...endomorphism monoid of \Delta$
- $Pol(\Delta)...polymorphism clone of \Delta$

 $End(\Delta) \dots$ all homomorphisms $f \colon \Delta \to \Delta$.

 $Pol(\Delta) \dots$ all homomorphisms $f: \Delta^n \to \Delta$, where $1 \le n < \omega$.

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $End(\Delta)$... endomorphism monoid of Δ
- $Pol(\Delta)...polymorphism clone of \Delta$

 $End(\Delta) \dots$ all homomorphisms $f \colon \Delta \to \Delta$.

 $Pol(\Delta) \dots$ all homomorphisms $f: \Delta^n \to \Delta$, where $1 \le n < \omega$.

 $Pol(\Delta)$ is a function clone:

- closed under composition
- contains projections.

Let Δ be a structure.

- $Aut(\Delta)...automorphism group of \Delta$
- $End(\Delta)...endomorphism monoid of \Delta$
- $Pol(\Delta)...polymorphism clone of \Delta$

 $End(\Delta) \dots$ all homomorphisms $f: \Delta \rightarrow \Delta$.

 $Pol(\Delta) \dots$ all homomorphisms $f: \Delta^n \to \Delta$, where $1 \le n < \omega$.

- $Pol(\Delta)$ is a function clone:
 - closed under composition
 - contains projections.

Observe: $Pol(\Delta) \supseteq End(\Delta) \supseteq Aut(\Delta)$.

Reconstructing sheep from clones

$$\mathsf{Pol}(\texttt{I}) \rightarrow ?$$

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain.

Then $Pol(\Delta) = Pol(\Gamma) \Leftrightarrow \Delta, \Gamma$ are primitive positive interdefinable.

$$\mathsf{Pol}(\texttt{I}) \rightarrow ?$$

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain.

Then $Pol(\Delta) = Pol(\Gamma) \Leftrightarrow \Delta, \Gamma$ are primitive positive interdefinable.

Why primitive positive definitions?

$$\mathsf{Pol}(\blacksquare) \to ?$$

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain. Then Pol(Δ) = Pol(Γ) $\Leftrightarrow \Delta$, Γ are primitive positive interdefinable.

Why primitive positive definitions?

For Δ a structure with a finite relational signature τ :

$$\mathsf{Pol}(\textcircled{\blacksquare}) \to ?$$

Theorem (Bodirsky + Nešetřil '03)

Let Δ , Γ be ω -categorical structures on the same domain. Then Pol(Δ) = Pol(Γ) $\Leftrightarrow \Delta$, Γ are primitive positive interdefinable.

Why primitive positive definitions?

For Δ a structure with a finite relational signature τ :

Definition (Constraint Satisfaction Problem)

 $CSP(\Delta)$ is the computational problem to decide whether a given primitive positive τ -sentence holds in Δ .
Reconstructing sheep from clones

Function clones carry:

Function clones carry:

■ algebraic structure (composition / equations)

Function clones carry:

- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

Function clones carry:

- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

Let **C**, **D** be function clones.

 $\xi\colon \mathbf{C}\to\mathbf{D}$ is a (clone) homomorphism iff

Function clones carry:

- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

- $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff
 - it preserves arities;

Function clones carry:

- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

- $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff
 - it preserves arities;
 - sends every projection in **C** to the corresponding projection in **D**;

Function clones carry:

- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

- $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff
 - it preserves arities;
 - sends every projection in **C** to the corresponding projection in **D**;
 - $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.

Function clones carry:

- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

- $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff
 - it preserves arities;
 - sends every projection in **C** to the corresponding projection in **D**;
 - $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.
- \implies Topological clones

Function clones carry:

- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

Let \mathbf{C}, \mathbf{D} be function clones.

- $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff
 - it preserves arities;
 - sends every projection in **C** to the corresponding projection in **D**;
 - $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbb{C}$.

 \implies Topological clones

Theorem (Bodirsky + MP '12)

Let Δ , Γ be ω -categorical structures. Then:

 $\mathsf{Pol}(\Delta) \cong^{\mathcal{T}} \mathsf{Pol}(\Gamma) \Leftrightarrow \Delta, \Gamma \text{ are primitive positive bi-interpretable.}$

Reconstructing sheep from clones

 $\mathsf{Pol}(\textcircled{\bullet})$ as an abstract clone \to ?

Can we reconstruct an ω-categorical structure Δ from the algebraic clone structure of Pol(Δ)?

 $\mathsf{Pol}(\blacksquare)$ as an abstract clone \rightarrow ?

- Can we reconstruct an ω-categorical structure Δ from the algebraic clone structure of Pol(Δ)?
- Can we reconstruct the topological structure of Pol(Δ) from its algebraic structure?

Part II

The topology of algebras

Reconstructing sheep from clones

Clones from algebras

Reconstructing sheep from clones

Clones from algebras

Let \mathfrak{A} be an algebra.

Let \mathfrak{A} be an algebra.

Term functions of \mathfrak{A} (obtained by composition): function clone $Clo(\mathfrak{A})$.

Let \mathfrak{A} be an algebra.

Term functions of \mathfrak{A} (obtained by composition): function clone $Clo(\mathfrak{A})$.

 $Clo(\mathfrak{A})$ encodes the equations (=identities) which hold in \mathfrak{A} .

Let \mathfrak{A} be an algebra.

Term functions of \mathfrak{A} (obtained by composition): function clone $Clo(\mathfrak{A})$.

 $Clo(\mathfrak{A})$ encodes the equations (=identities) which hold in \mathfrak{A} .

Universal Algebra: Structure of $\mathfrak{A} \Leftrightarrow$ equations in $Clo(\mathfrak{A})$.

Reconstructing sheep from clones

For an algebra ${\mathfrak A}$ consider the algebras obtained by taking

For an algebra \mathfrak{A} consider the algebras obtained by taking

Homomorphic images

For an algebra ${\mathfrak A}$ consider the algebras obtained by taking

- Homomorphic images
- Subalgebras

For an algebra ${\mathfrak A}$ consider the algebras obtained by taking

- Homomorphic images
- Subalgebras
- Powers / finite Powers.

For an algebra ${\mathfrak A}$ consider the algebras obtained by taking

- Homomorphic images
- Subalgebras
- Powers / finite Powers.

Theorem (Birkhoff 1935)

Let $\mathfrak{A}, \mathfrak{B}$ be algebras.

Then $Clo(\mathfrak{B}) = Clo(\mathfrak{C})$ for some $\mathfrak{C} \in HSP(\mathfrak{A}) \leftrightarrow \exists$ clone homomorphism from $Clo(\mathfrak{A})$ onto $Clo(\mathfrak{B})$.

For an algebra ${\mathfrak A}$ consider the algebras obtained by taking

- Homomorphic images
- Subalgebras
- Powers / finite Powers.

Theorem (Birkhoff 1935)

Let $\mathfrak{A}, \mathfrak{B}$ be algebras.

Then $Clo(\mathfrak{B}) = Clo(\mathfrak{C})$ for some $\mathfrak{C} \in HSP(\mathfrak{A}) \leftrightarrow \exists$ clone homomorphism from $Clo(\mathfrak{A})$ onto $Clo(\mathfrak{B})$.

Theorem (Bodirsky + MP '11)

Let $\mathfrak{A}, \mathfrak{B}$ be countable.

Then $\mathsf{Clo}(\mathfrak{B}) = \mathsf{Clo}(\mathfrak{C})$ for some $\mathfrak{C} \in \mathsf{HSP}^{\mathsf{fin}}(\mathfrak{A}) \leftrightarrow$

 \exists uniformly continuous clone homomorphism from $Clo(\mathfrak{A})$ onto $Clo(\mathfrak{B})$.

HSP vs. HSP^{fin}

Reconstructing sheep from clones

■ When do HSP and HSP^{fin} coincide for an algebra?

- When do HSP and HSP^{fin} coincide for an algebra?
- When can HSP^{fin} be described algebraically?

- When do HSP and HSP^{fin} coincide for an algebra?
- When can HSP^{fin} be described algebraically?
- Can we reconstruct the topological structure of function clones from their algebraic structure?

Part III

Reconstruction notions & results

Reconstructing sheep from clones

Reconstructing sheep from clones

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Definition

■ C has reconstruction \Leftrightarrow C \cong D implies C \cong^T D for all closed subclones D of O;

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Definition

- C has reconstruction \Leftrightarrow C \cong D implies C \cong^{T} D for all closed subclones D of O;
- C has automatic homeomorphicity ⇔ every clone isomorphism between C and a closed subclone of O is a homeomorphism;
Reconstruction notions

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Definition

- C has reconstruction \Leftrightarrow C \cong D implies C \cong^{T} D for all closed subclones D of O;
- C has automatic homeomorphicity ⇔ every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has automatic continuity ⇔ every clone homomorphism from C into O is continuous.

Reconstruction notions

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Definition

- C has reconstruction \Leftrightarrow C \cong D implies C \cong^T D for all closed subclones D of O;
- C has automatic homeomorphicity ⇔ every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has automatic continuity ⇔ every clone homomorphism from C into O is continuous.

Observation. (2) \implies (1).

Reconstruction notions

Let **O** be the largest function clone on ω , and **C** be a closed subclone.

Definition

- C has reconstruction \Leftrightarrow C \cong D implies C \cong^T D for all closed subclones D of O;
- C has automatic homeomorphicity ⇔ every clone isomorphism between C and a closed subclone of O is a homeomorphism;
- C has automatic continuity ⇔ every clone homomorphism from C into O is continuous.

Observation. (2) \implies (1).

Fact. For groups (3) \implies (2).

Groups: the small index property

Reconstructing sheep from clones

Groups: the small index property

Automorphism groups with automatic continuity:

Automorphism groups with automatic continuity:

- (\mathbb{N} ; =) (Dixon+Neumann+Thomas'86)
- \blacksquare (Q; <) and the atomless Boolean algebra (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)
- the random K_n -free graphs (Herwig'98)

Reconstructing sheep from clones

Automorphism groups with automatic homeomorphicity:

Automorphism groups with automatic homeomorphicity:

■ the random graph

 $(\mathbb{Q}; <)$ all homogeneous countable graphs various ω -categorical semilinear orders the random partial order the random tournament (Rubin '94)

Automorphism groups with automatic homeomorphicity:

■ the random graph

 $(\mathbb{Q}; <)$ all homogeneous countable graphs various ω -categorical semilinear orders the random partial order the random tournament (Rubin '94)

 the random k-hypergraphs the Henson digraphs (Barbina+MacPherson '07).

Reconstructing sheep from clones

Observation

If Δ is ω -categorical, then Emb(Δ) does not have automatic continuity.

Observation

If Δ is ω -categorical, then Emb(Δ) does not have automatic continuity.

Theorem (Evans + Hewitt '90)

There exists an ω -categorical Δ such that Aut(Δ) does not have reconstruction.

Observation

If Δ is ω -categorical, then Emb(Δ) does not have automatic continuity.

Theorem (Evans + Hewitt '90)

There exists an ω -categorical Δ such that Aut(Δ) does not have reconstruction.

Theorem (Bodirsky + Evans + Kompatscher + MP '16)

 $Pol(\Delta)$, $End(\Delta)$, $\overline{Aut(\Delta)}$ do not have reconstruction.

Reconstructing sheep from clones

Let **C** be a closed subclone of **O**, and $\xi : \mathbf{C} \to \mathbf{O}$ be a homomorphism.

Let **C** be a closed subclone of **O**, and ξ : **C** \rightarrow **O** be a homomorphism.

Theorem (Birkhoff '35)

The algebra (ω ; ξ [**C**]) is an HSP of the algebra (ω ; **C**).

Let **C** be a closed subclone of **O**, and ξ : **C** \rightarrow **O** be a homomorphism.

Theorem (Birkhoff '35)

The algebra $(\omega; \xi[\mathbf{C}])$ is an HSP of the algebra $(\omega; \mathbf{C})$.

The only possibly discontinuous step is an infinite product.

Let **C** be a closed subclone of **O**, and ξ : **C** \rightarrow **O** be a homomorphism.

Theorem (Birkhoff '35)

The algebra $(\omega; \xi[\mathbf{C}])$ is an HSP of the algebra $(\omega; \mathbf{C})$.

The only possibly discontinuous step is an infinite product.

Theorem (Bodirsky + MP + Pongrácz '13)

Any closed subclone of **O** containing ω^{ω} has automatic continuity and automatic homeomorphicity.

Reconstructing sheep from clones

Let C be a closed subclone of O

whose group \mathbf{G}_{C} of invertibles has automatic homeomorphicity.

Let ${\bf C}$ be a closed subclone of ${\bf O}$

whose group $\mathbf{G}_{\mathcal{C}}$ of invertibles has automatic homeomorphicity.

Show:

Let ${\bf C}$ be a closed subclone of ${\bf O}$

whose group $\mathbf{G}_{\mathcal{C}}$ of invertibles has automatic homeomorphicity.

Show:

• the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;

Let ${\bf C}$ be a closed subclone of ${\bf O}$

whose group $\mathbf{G}_{\mathcal{C}}$ of invertibles has automatic homeomorphicity.

Show:

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of **C** has reconstruction;

Let ${\bf C}$ be a closed subclone of ${\bf O}$

whose group $\mathbf{G}_{\mathcal{C}}$ of invertibles has automatic homeomorphicity.

Show:

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of **C** has reconstruction;
- C has reconstruction.

Let ${\bf C}$ be a closed subclone of ${\bf O}$

whose group $\mathbf{G}_{\mathcal{C}}$ of invertibles has automatic homeomorphicity.

Show:

- the closure of \mathbf{G}_{C} in \mathbf{O} has reconstruction;
- the clone of unary functions of **C** has reconstruction;
- C has reconstruction.

Theorem (Bodirsky + MP + Pongrácz '13)

Let G be the random graph.

The following have automatic homeomorphicity:

Let ${\bf C}$ be a closed subclone of ${\bf O}$

whose group $\mathbf{G}_{\mathcal{C}}$ of invertibles has automatic homeomorphicity.

Show:

- the closure of \mathbf{G}_{C} in \mathbf{O} has reconstruction;
- the clone of unary functions of **C** has reconstruction;
- C has reconstruction.

```
Theorem (Bodirsky + MP + Pongrácz '13)
Let G be the random graph.
The following have automatic homeomorphicity:
■ End(G);
```

Let ${\bf C}$ be a closed subclone of ${\bf O}$

whose group $\mathbf{G}_{\mathcal{C}}$ of invertibles has automatic homeomorphicity.

Show:

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of **C** has reconstruction;
- C has reconstruction.

```
Theorem (Bodirsky + MP + Pongrácz '13)
```

Let *G* be the random graph.

The following have automatic homeomorphicity:

Let ${\bf C}$ be a closed subclone of ${\bf O}$

whose group $\mathbf{G}_{\mathcal{C}}$ of invertibles has automatic homeomorphicity.

Show:

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of **C** has reconstruction;
- C has reconstruction.

Theorem (Bodirsky + MP + Pongrácz '13)

Let G be the random graph.

The following have automatic homeomorphicity:

- End(G);
- Pol(*G*);

■ Various other famous clones containing Aut(*G*).

Method III: Rubin's interpretations

Reconstructing sheep from clones

Interpret structure Δ in the algebraic structure of its clone Pol(Δ).

Theorem (Maissel + Rubin '15)

Let $Pol(\Delta)$, $Pol(\Delta')$ contain all transpositions on their domain ω .

Then any clone isomorphism $Pol(\Delta) \rightarrow Pol(\Delta')$ is induced by a permutation of ω .

Part IV The open problem

Reconstructing sheep from clones

Reconstructing sheep from clones

Let 1 be the clone containing only projections – the smallest clone.

Let 1 be the clone containing only projections – the smallest clone.

Problem

Let Δ be ω -categorical.

Let 1 be the clone containing only projections - the smallest clone.

Problem

Let Δ be ω -categorical.

If $Pol(\Delta) \rightarrow 1$ via a clone homomorphism, then also continuously?
Let 1 be the clone containing only projections – the smallest clone.

Problem

Let Δ be ω -categorical.

- If $Pol(\Delta) \rightarrow 1$ via a clone homomorphism, then also continuously?
- 1 ∈ HSP(Pol(Δ)) implies 1 ∈ HSP^{fin}(Pol(Δ))?

Let 1 be the clone containing only projections – the smallest clone.

Problem

Let Δ be ω -categorical.

If $Pol(\Delta) \rightarrow 1$ via a clone homomorphism, then also continuously?

■ 1 ∈ HSP(Pol(Δ)) implies 1 ∈ HSP^{fin}(Pol(Δ))?

Theorem (Barto + Kompatscher + Olšák + Van Pham + MP '17)

Let Δ be ω -categorical, with less than double exponential type growth. TFAE:

Let 1 be the clone containing only projections – the smallest clone.

Problem

Let Δ be ω -categorical.

If $Pol(\Delta) \rightarrow 1$ via a clone homomorphism, then also continuously?

■ 1 ∈ HSP(Pol(Δ)) implies 1 ∈ HSP^{fin}(Pol(Δ))?

Theorem (Barto + Kompatscher + Olšák + Van Pham + MP '17)

Let Δ be ω -categorical, with less than double exponential type growth. TFAE:

■ There is no linear uniformly continuous homomorphism $Pol(\Delta) \rightarrow 1;$

Let **1** be the clone containing only projections – the smallest clone.

Problem

Let Δ be ω -categorical.

If $Pol(\Delta) \rightarrow 1$ via a clone homomorphism, then also continuously?

■ 1 ∈ HSP(Pol(Δ)) implies 1 ∈ HSP^{fin}(Pol(Δ))?

Theorem (Barto + Kompatscher + Olšák + Van Pham + MP '17)

Let Δ be ω -categorical, with less than double exponential type growth. TFAE:

- There is no linear uniformly continuous homomorphism $Pol(\Delta) \rightarrow 1;$
- Pol(Δ) contains functions u, v (unary) and s (6-ary) such that

$$\forall x, y, z \ (u \circ s(x, y, x, z, y, z) = v \circ s(y, x, z, x, z, y)).$$

Michael Pinsker

Thank you!

Reconstructing sheep from clones

Michael Pinsker