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Fixed point properties of an algebra A

⇔ equations / identities satisfied by A

⇔ structure of A

⇔ structure of the invariant relations of A

⇔ complexity of the corresponding CSP
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CSP(A)

Finite domain structure A: done.

Infinite domain A: Dichotomy conjecture when A is
first-order definable in a finitely bounded homogeneous structure.

Example.
Fix propositional formula over language with one binary symbol <, e.g.,
φ(x , y , z) := ((x < y) ∧ (y < z)) ∨ ((z < y) ∧ (y < x)).

INPUT: variables, constraints expressed using φ.
QUESTION: satisfiable in a partial order?

Number of values of solution not bounded -
but for each instance do not need more than number of variables.

CSP modeled by a single (countably) infinite template.
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The conjecture and ω-categoricity

Templates A definable in finitely bounded homogeneous structure.

Ausschöpfungsherangehensweise: subclasses
(see e.g. talk of Antoine Mottet)

Einschließungsherangehensweise: superclasses
e.g., ω-categorical structures.

ω-categorical structure A:

High symmetry: Pol(A) contains big permutation group G

More precisely: ∀n ≥ 1 An/G is finite.
Limitations on orbit growth (in n): further structural implications.
Think: “fuzzy" finite algebra.
However, simple factoring by G not possible (no congruence).
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Single h1 equations

Definition (Single h1 equation / identity)

Expression t(x1, . . . , xn) = t(y1, . . . , yn), xi , yj not necessarily distinct.

Theorem (Siggers ’11, Kearnes + Marković + McKenzie ’14)

A finite idempotent algebra, equationally non-trivial.
Then A has terms s, t satisfying the equations

s(a, r ,e,a) = s(r ,a, r ,e)

and
t(x , y , x , z, y , z) = t(y , x , z, x , z, y).

Definition (graph Gt of single h1 equation with function symbol t)

Vertices: all variables xi , yi of the equation.
Edges: From xi to yi , for all i .
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Equations⇔ loop conditions

Fun fact
Let A be an algebra, and t(x1, . . . , xn) = t(y1, . . . , yn) be an equation.
TFAE:

A has a term satisfying the equation.

A satisfies the Gt -loop condition:
Whenever H ≤ (Aω)2 and Gt → H, then H has a loop.

Gt → H: homomorphism or embedding of Gt into H.
Which does not matter.
If Gt → Gt ′ , then t implies t ′.
For finite A: finite power An sufficient.
Undirected loop lemma (Bulatov ’05):
finite graphs containing K3 and invariant under an idempotent
equationally non-trivial algebra have a loop.
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The big loop condition collaps / idempotency

Theorem (Olšák ’18)
All undirected non-bipartite loop conditions are equivalent.
all strongly connected algebraic length 1 loop conditions are
equivalent.

No finiteness, no idempotency!
Relative statement.

Theorem (Olšák ’16)
Let A be idempotent and equationally non-trivial. Then A satisfies

t(x , y , y , y , x , x) = t(y , x , y , x , y , x) = t(y , y , x , x , x , y).

Not equivalent to single h1 equation (Kazda ’17).
Absolute statement. Idempotency but no finiteness.
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Higher dimensions

Definition (m-dimensional h1 equation)

t(x1
1 , . . . , x

n
1 )

= t(x1
2 , . . . , x

n
2 )

· · ·
= t(x1

m, . . . , x
n
m)

Definition (relation Rt of m-dimensional h1 equations of t)

Domain: the variables x j
i .

Tuples: columns.

Examples: weak near unanimity / Olšák term.
Constant tuple in Rt means triviality of the equations.
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Equations⇒ constant tuples

Higher dimensional fun fact
Let A be an algebra. TFAE:

A has a term satisfying t(. . .) = · · · = t(. . .) (with m occurrences).
Whenever H ≤ (Aω)m and Rt → H, then H has a loop
(= a constant tuple).

Definition
K m

n . . . complete m-ary relation on n vertices without loops (NAE).

Non-trivial; weakest of its dimension & number of variables.

Theorem (Olšák ’16)
Let A be idempotent and equationally non-trivial.
Then A satisfies the K 3

2 -loop condition:

t(x , y , y , y , x , x) = t(y , x , y , x , y , x) = t(y , y , x , x , x , y).
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The idempotent collaps, revisited

Proposition

For all m ≥ 2, for all n ≥ 4 the conditions K m
n and K m

n+1 are equivalent.

Proof. Simple pp definition.
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For all m ≥ 2, for all n ≥ 4 the conditions K m
n and K m

n+1 are equivalent.

Proof. Simple foggy pp definition.

Proposition
Let A be idempotent, equationally non-trivial.
Then it satisfies K 3

n for some n.

Proof.
Let t be a k -ary Taylor term of A.
Take t ∗ t ∗ t and distribute n := 2k variables well among its variables.

Corollary

K 3
4 holds in all idempotent equationally non-trivial algebras.

(along with Olšák’s K 3
2 ).
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From finite idempotent algebras to the ω-categorical

We lose:

Finiteness. OK.

Idempotency!
(There is always a big permutation group in the algebra.)

Good news:

Marcin Kozik’s talk on loop conditions in finite non-idempotent
algebras.
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ω-categoricity

Evidence: Non-triviality does not imply satisfaction of loop conditions.

Example: Algebra of all “injective" functions on ω.

Theorem (Barto + P. ’16)
Let A be the polymorphism algebra of an ω-categorical structure.
If A satisfies non-trivial h1 identities locally (= on every finite set),
then A satisfies

e1 ◦ s(x , y , x , z, y , z) = e2 ◦ s(y , x , z, x , z, y) .

Above situation is the tractability condition of the infinite dichotomy
conjecture (see Michael Kompatscher’s talk).
Proof uses pseudoloop lemma.
Proof is horrible.
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Pseudoloop conditions

Higher dimensional pseudo fun fact

Let A be the polymorphism algebra of an ω-categorical structure
which is a model-complete core (∼ locally idempotent).
TFAE:

A has terms ei and t satisfying e1 ◦ t(. . .) = · · · = em ◦ t(. . .).
For all n ≥ 1, whenever H ≤ (An)m and Rt → H,
then H has a pseudoloop.
(= constant tuple modulo the large permutation group within A).

Call the second statement the Rt -pseudoloop condition.
Example: K 2

3 -pseudoloop condition means satisfaction of
e1 ◦ s(x , y , x , z, y , z) = e2 ◦ s(y , x , z, x , z, y).
Barto - P. prove this condition holds
assuming the tractability condition of the dichotomy conjecture.
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The tiny pseudoloop condition collaps

Sad proposition

For all n ≥ 4 the K 2
n - and K 2

n+1-pseudoloop conditions are equivalent.

Proof indirect (no explicit pp definition).

Does not work for higher dimensions.
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The future

Are all non-bipartite pseudoloop conditions equivalent?

Can we reprove Barto-P. by deriving the K 2
34298745630-pseudoloop

condition?

Find local arguments in infinite algebras:
When non-trivial h1 equations hold on every finite set of size s,
derive that the K 2

34298745630-pseudoloop condition holds for
H ≤ (Alog s)2.

Find methods for separating (pseudo-) loop conditions.
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Thank you!
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