Algebraic structure of polymorphism clones of infinite CSP templates

Michael Pinsker

joint work with Pierre Gillibert & Julius Jonušas

Technische Universität Wien / Charles University Prague

Funded by Austrian Science Fund (FWF) grant P27600 and GAČR grant 18-20123S

The Constraint Satisfaction Problem: Complexity and Approximability

Dagstuhl 2018

Loop conditions

Michael Pinsker

joint work with Pierre Gillibert & Julius Jonušas

Technische Universität Wien / Charles University Prague

Funded by Austrian Science Fund (FWF) grant P27600 and GAČR grant 18-20123S

The Constraint Satisfaction Problem: Complexity and Approximability Dagstuhl 2018

0.0	$n \circ o$	ndit	ione
LUU	\mathbf{u}		

Loop conditions

Fixed point properties of an algebra A

- Fixed point properties of an algebra A
- $\blacksquare \Leftrightarrow$ equations / identities satisfied by A

- Fixed point properties of an algebra A
- $\blacksquare \Leftrightarrow$ equations / identities satisfied by A
- $\blacksquare \Leftrightarrow \text{structure of } \textbf{A}$

- Fixed point properties of an algebra A
- $\blacksquare \Leftrightarrow$ equations / identities satisfied by A
- $\blacksquare \Leftrightarrow \text{structure of } \textbf{A}$
- $\blacksquare \Leftrightarrow$ structure of the invariant relations of A

- Fixed point properties of an algebra A
- $\blacksquare \Leftrightarrow$ equations / identities satisfied by A
- $\blacksquare \Leftrightarrow \text{structure of } \textbf{A}$
- $\blacksquare \Leftrightarrow$ structure of the invariant relations of A
- $\blacksquare \Leftrightarrow \text{complexity of the corresponding CSP}$

■ Finite domain structure A: done.

- Finite domain structure A: done.
- Infinite domain A: Dichotomy conjecture when A is first-order definable in a finitely bounded homogeneous structure.

■ Finite domain structure A: done.

Infinite domain A: Dichotomy conjecture when A is first-order definable in a finitely bounded homogeneous structure.

Example.

Finite domain structure A: done.

■ Infinite domain A: Dichotomy conjecture when A is first-order definable in a finitely bounded homogeneous structure.

Example.

Fix propositional formula over language with one binary symbol <, e.g., $\phi(x, y, z) := ((x < y) \land (y < z)) \lor ((z < y) \land (y < x)).$

Finite domain structure A: done.

■ Infinite domain A: Dichotomy conjecture when A is first-order definable in a finitely bounded homogeneous structure.

Example.

Fix propositional formula over language with one binary symbol <, e.g., $\phi(x, y, z) := ((x < y) \land (y < z)) \lor ((z < y) \land (y < x)).$

INPUT: variables, constraints expressed using ϕ . QUESTION: satisfiable in a partial order?

Finite domain structure A: done.

■ Infinite domain A: Dichotomy conjecture when A is first-order definable in a finitely bounded homogeneous structure.

Example.

Fix propositional formula over language with one binary symbol <, e.g., $\phi(x, y, z) := ((x < y) \land (y < z)) \lor ((z < y) \land (y < x)).$

INPUT: variables, constraints expressed using ϕ . QUESTION: satisfiable in a partial order?

Number of values of solution not bounded but for each instance do not need more than number of variables.

Finite domain structure A: done.

■ Infinite domain A: Dichotomy conjecture when A is first-order definable in a finitely bounded homogeneous structure.

Example.

Fix propositional formula over language with one binary symbol <, e.g., $\phi(x, y, z) := ((x < y) \land (y < z)) \lor ((z < y) \land (y < x)).$

INPUT: variables, constraints expressed using ϕ . QUESTION: satisfiable in a partial order?

- Number of values of solution not bounded but for each instance do not need more than number of variables.
- CSP modeled by a single (countably) infinite template.

Loop conditions

Templates \mathbbm{A} definable in finitely bounded homogeneous structure.

Templates \mathbbm{A} definable in finitely bounded homogeneous structure.

Ausschöpfungsherangehensweise

Templates \mathbb{A} definable in finitely bounded homogeneous structure.

Ausschöpfungsherangehensweise: subclasses (see e.g. talk of Antoine Mottet)

Templates \mathbb{A} definable in finitely bounded homogeneous structure.

- Ausschöpfungsherangehensweise: subclasses (see e.g. talk of Antoine Mottet)
- Einschließungsherangehensweise

Templates \mathbb{A} definable in finitely bounded homogeneous structure.

- Ausschöpfungsherangehensweise: subclasses (see e.g. talk of Antoine Mottet)
- Einschließungsherangehensweise: superclasses e.g., ω-categorical structures.

Templates \mathbb{A} definable in finitely bounded homogeneous structure.

- Ausschöpfungsherangehensweise: subclasses (see e.g. talk of Antoine Mottet)
- Einschließungsherangehensweise: superclasses e.g., ω-categorical structures.

Templates \mathbb{A} definable in finitely bounded homogeneous structure.

- Ausschöpfungsherangehensweise: subclasses (see e.g. talk of Antoine Mottet)
- **Einschließungsherangehensweise**: superclasses e.g., *ω*-categorical structures.

ω -categorical structure A:

 High symmetry: Pol(A) contains big permutation group *G* More precisely: ∀n ≥ 1 Aⁿ/G is finite.

Templates \mathbbm{A} definable in finitely bounded homogeneous structure.

- Ausschöpfungsherangehensweise: subclasses (see e.g. talk of Antoine Mottet)
- **Einschließungsherangehensweise**: superclasses e.g., *ω*-categorical structures.

- High symmetry: Pol(A) contains big permutation group G
 More precisely: ∀n ≥ 1 Aⁿ/G is finite.
- Limitations on orbit growth (in *n*): further structural implications.

Templates \mathbb{A} definable in finitely bounded homogeneous structure.

- Ausschöpfungsherangehensweise: subclasses (see e.g. talk of Antoine Mottet)
- **Einschließungsherangehensweise**: superclasses e.g., *ω*-categorical structures.

- High symmetry: Pol(A) contains big permutation group *G* More precisely: ∀n ≥ 1 Aⁿ/*G* is finite.
- Limitations on orbit growth (in *n*): further structural implications.
- Think: "fuzzy" finite algebra.

Templates \mathbb{A} definable in finitely bounded homogeneous structure.

- Ausschöpfungsherangehensweise: subclasses (see e.g. talk of Antoine Mottet)
- **Einschließungsherangehensweise**: superclasses e.g., *ω*-categorical structures.

- High symmetry: Pol(A) contains big permutation group *G* More precisely: ∀n ≥ 1 Aⁿ/*G* is finite.
- Limitations on orbit growth (in *n*): further structural implications.
- Think: "fuzzy" finite algebra.
- However, simple factoring by *G* not possible (no congruence).

Loop conditions

Definition (Single h1 equation / identity)

Expression $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$, x_i, y_j not necessarily distinct.

Definition (Single h1 equation / identity) Expression $t(x_1,...,x_n) = t(y_1,...,y_n)$, x_i, y_j not necessarily distinct.

Theorem (Siggers '11, Kearnes + Marković + McKenzie '14)

A finite idempotent algebra, equationally non-trivial. Then **A** has terms s, t satisfying the equations

$$s(a, r, e, a) = s(r, a, r, e)$$

and

$$t(x, y, x, z, y, z) = t(y, x, z, x, z, y).$$

Definition (Single h1 equation / identity) Expression $t(x_1, ..., x_n) = t(y_1, ..., y_n), x_i, y_j$ not necessarily distinct.

Theorem (Siggers '11, Kearnes + Marković + McKenzie '14)

A finite idempotent algebra, equationally non-trivial. Then **A** has terms s, t satisfying the equations

$$s(a, r, e, a) = s(r, a, r, e)$$

and

$$t(x, y, x, z, y, z) = t(y, x, z, x, z, y).$$

Definition (graph G_t of single h1 equation with function symbol t)

Vertices: all variables x_i , y_i of the equation.

Edges: From x_i to y_i , for all i.

Loop conditions

Loop conditions

Fun fact

Let **A** be an algebra, and $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$ be an equation. TFAE:

Fun fact

Let **A** be an algebra, and $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$ be an equation. TFAE:

■ A has a term satisfying the equation.

Fun fact

Let **A** be an algebra, and $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$ be an equation. TFAE:

■ A has a term satisfying the equation.

■ A satisfies the G_t -loop condition: Whenever $H \le (\mathbf{A}^{\omega})^2$ and $G_t \to H$, then *H* has a loop.

Fun fact

Let **A** be an algebra, and $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$ be an equation. TFAE:

- A has a term satisfying the equation.
- A satisfies the G_t -loop condition: Whenever $H \le (\mathbf{A}^{\omega})^2$ and $G_t \to H$, then *H* has a loop.
- $G_t \rightarrow H$: homomorphism or embedding of G_t into H. Which does not matter.
Equations \Leftrightarrow loop conditions

Fun fact

Let **A** be an algebra, and $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$ be an equation. TFAE:

- A has a term satisfying the equation.
- A satisfies the G_t -loop condition: Whenever $H \le (\mathbf{A}^{\omega})^2$ and $G_t \to H$, then H has a loop.
- $G_t \rightarrow H$: homomorphism or embedding of G_t into H. Which does not matter.
- If $G_t \to G_{t'}$, then *t* implies *t'*.

Equations \Leftrightarrow loop conditions

Fun fact

Let **A** be an algebra, and $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$ be an equation. TFAE:

- A has a term satisfying the equation.
- A satisfies the G_t -loop condition: Whenever $H \le (\mathbf{A}^{\omega})^2$ and $G_t \to H$, then H has a loop.
- $G_t \rightarrow H$: homomorphism or embedding of G_t into H. Which does not matter.
- If $G_t \to G_{t'}$, then *t* implies *t'*.
- For finite A: finite power Aⁿ sufficient.

Equations \Leftrightarrow loop conditions

Fun fact

Let **A** be an algebra, and $t(x_1, \ldots, x_n) = t(y_1, \ldots, y_n)$ be an equation. TFAE:

■ A has a term satisfying the equation.

■ A satisfies the G_t -loop condition: Whenever $H \le (\mathbf{A}^{\omega})^2$ and $G_t \to H$, then *H* has a loop.

- $G_t \rightarrow H$: homomorphism or embedding of G_t into H. Which does not matter.
- If $G_t \to G_{t'}$, then *t* implies *t'*.
- For finite A: finite power Aⁿ sufficient.
- Undirected loop lemma (Bulatov '05): finite graphs containing K₃ and invariant under an idempotent equationally non-trivial algebra have a loop.

Theorem (Olšák '18)

All undirected non-bipartite loop conditions are equivalent.

Theorem (Olšák '18)

- All undirected non-bipartite loop conditions are equivalent.
- all strongly connected algebraic length 1 loop conditions are equivalent.

Theorem (Olšák '18)

- All undirected non-bipartite loop conditions are equivalent.
- all strongly connected algebraic length 1 loop conditions are equivalent.
- No finiteness, no idempotency!

Theorem (Olšák '18)

- All undirected non-bipartite loop conditions are equivalent.
- all strongly connected algebraic length 1 loop conditions are equivalent.
- No finiteness, no idempotency!
- Relative statement.

Theorem (Olšák '18)

- All undirected non-bipartite loop conditions are equivalent.
- all strongly connected algebraic length 1 loop conditions are equivalent.
- No finiteness, no idempotency!
- Relative statement.

Theorem (Olšák '16)

Let A be idempotent and equationally non-trivial. Then A satisfies

$$t(x, y, y, y, x, x) = t(y, x, y, x, y, x) = t(y, y, x, x, x, y).$$

Theorem (Olšák '18)

- All undirected non-bipartite loop conditions are equivalent.
- all strongly connected algebraic length 1 loop conditions are equivalent.
- No finiteness, no idempotency!
- Relative statement.

Theorem (Olšák '16)

Let A be idempotent and equationally non-trivial. Then A satisfies

$$t(x, y, y, y, x, x) = t(y, x, y, x, y, x) = t(y, y, x, x, x, y).$$

■ Not equivalent to single h1 equation (Kazda '17).

1 00	$\mathbf{n} \mathbf{c} \mathbf{c}$	ndli	lione
200			10113

Theorem (Olšák '18)

- All undirected non-bipartite loop conditions are equivalent.
- all strongly connected algebraic length 1 loop conditions are equivalent.
- No finiteness, no idempotency!
- Relative statement.

Theorem (Olšák '16)

Let A be idempotent and equationally non-trivial. Then A satisfies

$$t(x, y, y, y, x, x) = t(y, x, y, x, y, x) = t(y, y, x, x, x, y).$$

- Not equivalent to single h1 equation (Kazda '17).
- Absolute statement. Idempotency but no finiteness.

Loop conditions

Michael Pinsker

Definition (m-dimensional h1 equation)

$$t(x_1^1, \dots, x_1^n)$$

= $t(x_2^1, \dots, x_2^n)$
...
= $t(x_m^1, \dots, x_m^n)$

Definition (*m*-dimensional h1 equation)

$$t(x_1^1, \dots, x_1^n)$$

$$= t(x_2^1, \dots, x_2^n)$$

$$\dots$$

$$= t(x_m^1, \dots, x_m^n)$$

Definition (relation R_t of *m*-dimensional h1 equations of *t*)

Domain: the variables x_i^j . Tuples: columns.

Definition (*m*-dimensional h1 equation)

$$t(x_1^1, \dots, x_1^n)$$

= $t(x_2^1, \dots, x_2^n)$
...
= $t(x_m^1, \dots, x_m^n)$

Definition (relation R_t of *m*-dimensional h1 equations of *t*)

Domain: the variables x_i^j .

Tuples: columns.

Examples: weak near unanimity / Olšák term.

Definition (*m*-dimensional h1 equation)

$$t(x_1^1, \dots, x_1^n)$$

$$= t(x_2^1, \dots, x_2^n)$$

$$\dots$$

$$= t(x_m^1, \dots, x_m^n)$$

Definition (relation R_t of *m*-dimensional h1 equations of *t*)

Domain: the variables x_i^j . Tuples: columns.

- **Examples:** weak near unanimity / Olšák term.
- Constant tuple in R_t means triviality of the equations.

Loop conditions

Michael Pinsker

Higher dimensional fun fact

Let **A** be an algebra. TFAE:

- A has a term satisfying $t(...) = \cdots = t(...)$ (with *m* occurrences).
- Whenever $H \leq (\mathbf{A}^{\omega})^m$ and $R_t \to H$, then H has a loop

(= a constant tuple).

Higher dimensional fun fact

Let A be an algebra. TFAE:

- A has a term satisfying $t(...) = \cdots = t(...)$ (with *m* occurrences).
- Whenever $H \leq (\mathbf{A}^{\omega})^m$ and $R_t \to H$, then *H* has a loop (= a constant tuple).

Definition

 K_n^m ... complete *m*-ary relation on *n* vertices without loops (NAE).

Higher dimensional fun fact

Let **A** be an algebra. TFAE:

- A has a term satisfying $t(...) = \cdots = t(...)$ (with *m* occurrences).
- Whenever $H \leq (\mathbf{A}^{\omega})^m$ and $R_t \to H$, then *H* has a loop (= a constant tuple).

Definition

 K_n^m ... complete *m*-ary relation on *n* vertices without loops (NAE).

Non-trivial; weakest of its dimension & number of variables.

Higher dimensional fun fact

Let **A** be an algebra. TFAE:

- A has a term satisfying $t(...) = \cdots = t(...)$ (with *m* occurrences).
- Whenever $H \leq (\mathbf{A}^{\omega})^m$ and $R_t \to H$, then *H* has a loop (= a constant tuple).

Definition

 K_n^m ... complete *m*-ary relation on *n* vertices without loops (NAE).

Non-trivial; weakest of its dimension & number of variables.

Theorem (Olšák '16)

Let **A** be idempotent and equationally non-trivial. Then **A** satisfies the K_2^3 -loop condition:

$$t(x, y, y, y, x, x) = t(y, x, y, x, y, x) = t(y, y, x, x, x, y).$$

Loop conditions

Michael Pinsker

Proposition

For all $m \ge 2$, for all $n \ge 4$ the conditions K_n^m and K_{n+1}^m are equivalent.

Proposition

For all $m \ge 2$, for all $n \ge 4$ the conditions K_n^m and K_{n+1}^m are equivalent.

Proof. Simple pp definition.

Proposition

For all $m \ge 2$, for all $n \ge 4$ the conditions K_n^m and K_{n+1}^m are equivalent.

Proof. Simple pp definition.

Proposition

For all $m \ge 2$, for all $n \ge 4$ the conditions K_n^m and K_{n+1}^m are equivalent.

Proof. Simple foggy pp definition.

Proposition

For all $m \ge 2$, for all $n \ge 4$ the conditions K_n^m and K_{n+1}^m are equivalent.

Proof. Simple foggy pp definition.

Proposition

Let **A** be idempotent, equationally non-trivial. Then it satisfies K_n^3 for some *n*.

Proposition

For all $m \ge 2$, for all $n \ge 4$ the conditions K_n^m and K_{n+1}^m are equivalent.

Proof. Simple foggy pp definition.

Proposition

Let **A** be idempotent, equationally non-trivial. Then it satisfies K_n^3 for some *n*.

Proof.

Let *t* be a *k*-ary Taylor term of **A**. Take t * t * t and distribute n := 2k variables well among its variables.

Proposition

For all $m \ge 2$, for all $n \ge 4$ the conditions K_n^m and K_{n+1}^m are equivalent.

Proof. Simple foggy pp definition.

Proposition

Let **A** be idempotent, equationally non-trivial. Then it satisfies K_n^3 for some *n*.

Proof.

Let t be a k-ary Taylor term of **A**.

Take t * t * t and distribute n := 2k variables well among its variables.

Corollary

 K_4^3 holds in all idempotent equationally non-trivial algebras. (along with Olšák's K_2^3).

Loop conditions

Michael Pinsker

We lose:

We lose:

Finiteness.

We lose:

Finiteness. OK.

We lose:

- Finiteness. OK.
- Idempotency! (There is always a big permutation group in the algebra.)

We lose:

- Finiteness. OK.
- Idempotency! (There is always a big permutation group in the algebra.)

Good news:

Marcin Kozik's talk on loop conditions in finite non-idempotent algebras.

ω -categoricity

Loop conditions

Michael Pinsker
Evidence: Non-triviality does not imply satisfaction of loop conditions.

Evidence: Non-triviality does not imply satisfaction of loop conditions.

Example: Algebra of all "injective" functions on ω .

Evidence: Non-triviality does not imply satisfaction of loop conditions. **Example:** Algebra of all "injective" functions on ω .

Theorem (Barto + P. '16)

Let **A** be the polymorphism algebra of an ω -categorical structure.

Evidence: Non-triviality does not imply satisfaction of loop conditions. **Example:** Algebra of all "injective" functions on ω .

Theorem (Barto + P. '16)

Let **A** be the polymorphism algebra of an ω -categorical structure. If **A** satisfies non-trivial h1 identities locally (= on every finite set),

Evidence: Non-triviality does not imply satisfaction of loop conditions. **Example:** Algebra of all "injective" functions on ω .

Theorem (Barto + P. '16)

Let **A** be the polymorphism algebra of an ω -categorical structure. If **A** satisfies non-trivial h1 identities locally (= on every finite set), then **A** satisfies

$$e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y)$$
.

Evidence: Non-triviality does not imply satisfaction of loop conditions. **Example:** Algebra of all "injective" functions on ω .

Theorem (Barto + P. '16)

Let **A** be the polymorphism algebra of an ω -categorical structure. If **A** satisfies non-trivial h1 identities locally (= on every finite set), then **A** satisfies

$$e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y)$$
.

Above situation is the tractability condition of the infinite dichotomy conjecture (see Michael Kompatscher's talk).

Evidence: Non-triviality does not imply satisfaction of loop conditions. **Example:** Algebra of all "injective" functions on ω .

Theorem (Barto + P. '16)

Let **A** be the polymorphism algebra of an ω -categorical structure. If **A** satisfies non-trivial h1 identities locally (= on every finite set), then **A** satisfies

$$e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y)$$
.

- Above situation is the tractability condition of the infinite dichotomy conjecture (see Michael Kompatscher's talk).
- Proof uses pseudoloop lemma.

Evidence: Non-triviality does not imply satisfaction of loop conditions. **Example:** Algebra of all "injective" functions on ω .

Theorem (Barto + P. '16)

Let **A** be the polymorphism algebra of an ω -categorical structure. If **A** satisfies non-trivial h1 identities locally (= on every finite set), then **A** satisfies

$$e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y)$$
.

- Above situation is the tractability condition of the infinite dichotomy conjecture (see Michael Kompatscher's talk).
- Proof uses pseudoloop lemma.
- Proof is horrible.

Loop conditions

Michael Pinsker

Higher dimensional pseudo fun fact

Higher dimensional pseudo fun fact

Let ${\bf A}$ be the polymorphism algebra of an $\omega\text{-categorical structure}$

Higher dimensional pseudo fun fact

Let **A** be the polymorphism algebra of an ω -categorical structure which is a model-complete core (\sim locally idempotent).

Higher dimensional pseudo fun fact

Let **A** be the polymorphism algebra of an ω -categorical structure which is a model-complete core (\sim locally idempotent). TFAE:

• A has terms e_i and t satisfying $e_1 \circ t(...) = \cdots = e_m \circ t(...)$.

Higher dimensional pseudo fun fact

Let **A** be the polymorphism algebra of an ω -categorical structure which is a model-complete core (\sim locally idempotent). TFAE:

- A has terms e_i and t satisfying $e_1 \circ t(...) = \cdots = e_m \circ t(...)$.
- For all $n \ge 1$, whenever $H \le (\mathbf{A}^n)^m$ and $R_t \to H$, then H has a pseudoloop.

(= constant tuple modulo the large permutation group within A).

Higher dimensional pseudo fun fact

Let **A** be the polymorphism algebra of an ω -categorical structure which is a model-complete core (\sim locally idempotent). TFAE:

- A has terms e_i and t satisfying $e_1 \circ t(...) = \cdots = e_m \circ t(...)$.
- For all n ≥ 1, whenever H ≤ (Aⁿ)^m and R_t → H, then H has a pseudoloop.
 (= constant tuple modulo the large permutation group within A).

■ Call the second statement the *R*_t-pseudoloop condition.

Higher dimensional pseudo fun fact

Let **A** be the polymorphism algebra of an ω -categorical structure which is a model-complete core (\sim locally idempotent). TFAE:

- A has terms e_i and t satisfying $e_1 \circ t(...) = \cdots = e_m \circ t(...)$.
- For all n ≥ 1, whenever H ≤ (Aⁿ)^m and R_t → H, then H has a pseudoloop.
 (= constant tuple modulo the large permutation group within A).
- Call the second statement the R_t -pseudoloop condition.

Example: K_3^2 -pseudoloop condition means satisfaction of $e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y)$.

Higher dimensional pseudo fun fact

Let **A** be the polymorphism algebra of an ω -categorical structure which is a model-complete core (\sim locally idempotent). TFAE:

- A has terms e_i and t satisfying $e_1 \circ t(...) = \cdots = e_m \circ t(...)$.
- For all n ≥ 1, whenever H ≤ (Aⁿ)^m and R_t → H, then H has a pseudoloop.
 (= constant tuple modulo the large permutation group within A).
- Call the second statement the R_t -pseudoloop condition.
- **Example:** K_3^2 -pseudoloop condition means satisfaction of $e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y)$.
- Barto P. prove this condition holds assuming the tractability condition of the dichotomy conjecture.

Loop conditions

Michael Pinsker

Sad proposition

For all $n \ge 4$ the K_n^2 - and K_{n+1}^2 -pseudoloop conditions are equivalent.

Sad proposition

For all $n \ge 4$ the K_n^2 - and K_{n+1}^2 -pseudoloop conditions are equivalent.

Proof indirect (no explicit pp definition).

Sad proposition

For all $n \ge 4$ the K_n^2 - and K_{n+1}^2 -pseudoloop conditions are equivalent.

- Proof indirect (no explicit pp definition).
- Does not work for higher dimensions.

Loop conditions

Michael Pinsker

Are all non-bipartite pseudoloop conditions equivalent?

- Are all non-bipartite pseudoloop conditions equivalent?
- Can we reprove Barto-P. by deriving the K²₃₄₂₉₈₇₄₅₆₃₀-pseudoloop condition?

- Are all non-bipartite pseudoloop conditions equivalent?
- Can we reprove Barto-P. by deriving the K²₃₄₂₉₈₇₄₅₆₃₀-pseudoloop condition?
- Find local arguments in infinite algebras:
 When non-trivial h1 equations hold on every finite set of size *s*, derive that the K²₃₄₂₉₈₇₄₅₆₃₀-pseudoloop condition holds for H ≤ (A^{log s})².

- Are all non-bipartite pseudoloop conditions equivalent?
- Can we reprove Barto-P. by deriving the K²₃₄₂₉₈₇₄₅₆₃₀-pseudoloop condition?
- Find local arguments in infinite algebras:
 When non-trivial h1 equations hold on every finite set of size *s*, derive that the K²₃₄₂₉₈₇₄₅₆₃₀-pseudoloop condition holds for H ≤ (A^{log s})².
- Find methods for separating (pseudo-) loop conditions.

Thank you!