Equations in algebras induced by beautiful first-order structures

Michael Pinsker

Technische Universität Wien

and

Univerzita Karlova v Praze

Funded by Austrian Science Fund (FWF) grant P27600 and GAČR grant 18-20123S

Prague Gathering of Logicians / Beauty of Logic 2018

Algebras from beautiful structures

Outline

- I: Equations in algebras
- **II:** Algebras as invariants of first-order structures
- **III:** Compact is the new beautiful?
- IV: The future

I: Equations in finite algebras

Equations / identities

Algebra:
$$\mathbf{A} = (A, (f_i)_{i \in I})$$
; each $f_i \colon A^{n_i} \to A$.

Equation / identity:

Formal expression $s \approx t$, for abstract *terms* s, t over some functional language τ , e.g.

$$g(g(x,y),z) \approx g(x,g(y,z))$$
.

Equation *is satisfied* in **A** if *g* can be assigned a *term function* **g** over **A** such that

$$\mathbf{A} \models \forall x \forall y \forall z \ \mathbf{g}(\mathbf{g}(x, y), z) = \mathbf{g}(x, \mathbf{g}(y, z)) \ .$$

Independent of language of A.

Examples.

- The above equation satisfied in any **A** by a projection.
- The equations s(y, y, x) = s(x, y, y) = x are satisfied in any group (A, +, -). [Set s(x, y, z) := x - y + z].

Clones

Universal Algebra: Equations satisfied in $A \iff structure$ of A. **Examples:** Congruences of A.

- A satisfies $s(x, y, y) \approx s(y, y, x) \approx x \implies$ A has permuting congruences (CP)(+ all algebras in *variety* of A). Example: groups (A, +, -). (Mal'cev '54)
- A satisfies near unanimity (nu) equations

$$n(x,\ldots,x,y) \approx n(x,\ldots,x,y,x) \approx \cdots \approx n(y,x,\ldots,x) = x$$

 \implies **A** (+ its variety) is congruence distributive (CD). Example: lattices. Equivalent to CD: *Jónsson '68 equations*.

Term clone Clo(A) of algebra A: smallest set of functions on A

- containing fundamental operations, projections
- closed under composition.

Goal: Structure of $A \Leftrightarrow$ composition structure of Clo(A).

Clone homomorphisms

 $Clo(\mathbf{A}) \subseteq Clo(\mathbf{B}) \implies \mathbf{B}$ has more structure.

More generally:

Definition

- $\xi \colon \operatorname{Clo}(\mathbf{A}) \to \operatorname{Clo}(\mathbf{B})$ is a *clone homomorphism* if it preserves
 - arities;
 - projections;
 - composition.

Quasiorder on algebras. The larger **A**, the more structure.

A smallest element: clone 0 of projections on set of \geq 2 elements.

Important question

Consequences for **A** when $Clo(A) \not\rightarrow 0$? Draw picture. Say why.

Non-triviality + Idempotency

Definition

A is *idempotent* if $t(x, ..., x) \approx x$ holds for all $t \in Clo(A)$.

Why idempotent? Practical + Philosophical reasons + Evidence.

Theorem (Olšák '16)

Let **A** be idempotent, and $Clo(\mathbf{A}) \not\rightarrow \mathbf{0}$. Then **A** satisfies

 $t(xyy, yxx) \approx t(yxy, xyx) \approx t(yyx, xxy).$

Theorem (Maróti + McKenzie '08)

Let **A** be idempotent, in *locally finite variety*, $Clo(\mathbf{A}) \not\rightarrow \mathbf{0}$. Then **A** satisfies for some arity $n \ge 2$

$$w(x,\ldots,x,y) \approx w(x,\ldots,x,y,x) \approx \cdots \approx w(y,x,\ldots,x)$$

(weak near unanimity term)

Non-triviality + Idempotency + finiteness

Theorem (Siggers '11; Kearnes + Marković + McKenzie '14)

Let ${\bf A}$ be idempotent, in locally finite variety, and ${\rm Clo}({\bf A})\not\to {\bf 0}.$ Then ${\bf A}$ satisfies

$$s(x, y, x, z, y, z) \approx s(y, x, z, x, z, y)$$
.

and

$$q(a, r, e, a) \approx q(r, a, r, e)$$
.

(6-ary and 4-ary Siggers terms)

Theorem (Barto + Kozik '11)

Let **A** be idempotent, *finite*, and $Clo(A) \not\rightarrow 0$. Then **A** satisfies

$$c(x_1,\ldots,x_n)pprox c(x_2,\ldots,x_n,x_1) \quad ext{for some } n\geq 2 \; .$$

(Cyclic term)

Algebras from beautiful structures

- Equations of Clo(A) ⇔ Structure of A (e.g. congrucences)
- Idempotency + any equations (Clo(\mathbf{A}) \neq $\mathbf{0}$) \Rightarrow Structure
- Add finiteness conditions ⇒ More structure

II: Algebras from first-order structures

Clones as symmetries

Let $\mathbb{A} = (A, (R_i)_{i \in I})$ be a first-order structure with relations R_i (wlog). Symmetries:

■ Aut(\mathbb{A}) ⊆ Sym(A)... automorphism group of \mathbb{A} ;

• End(\mathbb{A}) $\subseteq A^A$... endomorphism monoid of \mathbb{A} ;

■ $Pol(\mathbb{A}) \subseteq \bigcup_{n \ge 1} A^{A^n} \dots$ polymorphism clone of \mathbb{A} .

 $\mathsf{Pol}(\mathbb{A}) := \{ f \colon \mathbb{A}^n \to \mathbb{A} \mid f \text{ homomorphism} \}.$

Topology:

A...discrete, A^{A^n} ...product topology (pointwise convergence), $\bigcup_{n\geq 1} A^{A^n}$...sum space.

A permutation group / transformation monoid / term clone is of the form $Aut(\mathbb{A}) / End(\mathbb{A}) / Pol(\mathbb{A}) \Leftrightarrow$ it is *topologically closed*.

Galois-correspondence

The assignments

 $\mathbb{A} \mapsto \mathsf{Pol}(\mathbb{A})$ $\mathbf{A} \mapsto \mathsf{Inv}(\mathbf{A})$

define a Galois-correspondence (Inv(A)... invariant relations).

First-order structures \leftrightarrow algebras.

Roughly:

- Aut(\mathbb{A})... first-order structure of \mathbb{A} .
- Pol(A)... primitive positive structure of A (finer).

More conditions of beauty for $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$ via correspondence:

■ Finitely related, i.e., A finite + finite language.

• $\mathbb{A} \ \omega$ -categorical.

- A Ramsey.
- A definable in finitely bounded homogeneous structure...

Algebras from beautiful structures

Finitely related algebras (classical)

Conjecture (Valeriote)

Let **A** be in *congruence modular variety* + finitely related. Then the number of subalgebras of \mathbf{A}^n grows only exponentially with *n*.

Conjecture (Zádori)

Let **A** be in *congruence distributive variety* + finitely related. Then **A** satisfies near unanimity equations.

 $CSP(\mathbb{A})$: computational problem of deciding primitive positive theory of \mathbb{A} .

For \mathbbm{A} finite: in NP.

Conjecture (Feder + Vardi '92)

Let $\mathbb{A} = (A, R_1, \dots, R_n)$ be finite, with (wlog) idempotent Pol(\mathbb{A}). If Pol(\mathbb{A}) $\neq \mathbf{0}$, then CSP(\mathbb{A}) is polynomial-time solvable.

Finitely related algebras

Theorem (Barto '12)

Let **A** be in *congruence modular variety* + finitely related. Then the number of subalgebras of \mathbf{A}^n grows only exponentially with *n*.

Corollary (Barto '10)

Let **A** be in *congruence distributive variety* + finitely related. Then **A** satisfies near unanimity equations.

 $CSP(\mathbb{A})$: computational problem of deciding primitive positive theory of \mathbb{A} .

For \mathbbm{A} finite: in NP.

Theorem (Bulatov '17, Zhuk '17)

Let $\mathbb{A} = (A, R_1, \dots, R_n)$ be finite, with (wlog) idempotent Pol(\mathbb{A}). If Pol(\mathbb{A}) $\neq \mathbf{0}$, then CSP(\mathbb{A}) is polynomial-time solvable.

Summary of Part II

- Algebras ⇔ First-order structures
- Provides more notions of beauty
- Finitely related: works

III: Compact is the new finite

Beautiful structures: compactness

Let \mathbb{A} be countable ω -categorical.

 $\Leftrightarrow \mathbb{A}^n$ has finitely many first-order definable subsets for every $n \ge 1$ $\Leftrightarrow \operatorname{Aut}(\mathbb{A}) \frown A^n$ has finitely many orbits for every $n \ge 1$. $\Leftrightarrow: \operatorname{Aut}(\mathbb{A})$ is *oligomorphic*.

A "small", so Pol(A) "large" (not locally finite ...). But:

Observation

For $f, g \in Pol(\mathbb{A})$, set

$$f \sim g : \leftrightarrow f \in \overline{\{lpha \circ g \mid lpha \in \mathsf{Aut}(\mathbb{A})\}}$$

If \mathbb{A} is ω -categorical, then $\mathsf{Pol}(\mathbb{A})/_{\sim}$ is compact.

Factoring compatible with continuous clone homomorphisms $\text{Pol}(\mathbb{A}) \to \text{Pol}(\mathbb{B}).$

Topological Birkhoff

 $\mathsf{HSP}^{\mathsf{fin}}(\mathsf{Clo}(\mathbf{A}))$...all clones ("actions") obtained from $\mathsf{Clo}(\mathbf{A})$ by

- **\blacksquare** factoring the domain: Clo(**A**) \sim *A*/ \sim
- **\blacksquare** restricting the domain: $Clo(\mathbf{A}) \frown \mathbf{A}' \subseteq \mathbf{A}$
- **u** taking finite powers of the domain: $Clo(\mathbf{A}) \sim A^n$

Theorem (Birkhoff '35)

Let A be finite.

 $\mathsf{Clo}(\textbf{A}) \to \textbf{0} \ \Leftrightarrow \ \textbf{0} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Clo}(\textbf{A})).$

Theorem (Bodirsky + P. '11)

Let \mathbb{A} be ω -categorical.

 $\mathsf{Pol}(\mathbb{A}) \to \boldsymbol{0} \text{ continuously } \Leftrightarrow \ \boldsymbol{0} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\mathbb{A})).$

In this situation, \mathbb{A} is rich: All finite structures have a *primitive positive interpretation* in \mathbb{A} . CSP(\mathbb{A}) is NP-hard.

Algebras from beautiful structures

Topological non-triviality

Let $\mathbb A$ be $\omega\text{-categorical}, \operatorname{Pol}(\mathbb A)\not\to \mathbf 0$ continuously.

Wish to derive equations satisfied in $Pol(\mathbb{A})$.

Problem: anti-idempotency of $Pol(\mathbb{A})$ implied by ω -categoricity.

Approach I: Approximate idempotency.

Assume $\overline{\operatorname{Aut}(\mathbb{A})} = \operatorname{End}(\mathbb{A})$, consider *stabilizers* $\operatorname{Pol}(\mathbb{A}, a_0, \dots, a_n)$.

Theorem (Barto + P. '16)

Let \mathbb{A} be ω -categorical, $\overline{\operatorname{Aut}(\mathbb{A})} = \operatorname{End}(\mathbb{A})$. TFAE:

- No stabilizer of Pol(A) maps continuously to 0
- No stabilizer of Pol(A) maps to 0
- Pol(A) satisfies

$$e \circ s(x, y, x, z, y, z) \approx e' \circ s(y, x, z, x, z, y)$$

Remark. Compatible with CSP; interpretations with parameters.

Linear non-triviality

Approach I: Approximate idempotency.

Approach II: Ignore idempotency.

Based on observation that most interesting equations are *linear* (non-nested).

Consider *clonoid* homomorphisms $Clo(\mathbf{A}) \rightsquigarrow Clo(\mathbf{B})$ preserving only linear equations. Ignore unary functions! What if $Pol(\mathbb{A}) \not\rightsquigarrow \mathbf{0}$?

Theorem (Barto + Opršal + P. '16; Barto + P. '16; Pham '17)

Let \mathbb{A} be ω -categorical.

If $Pol(\mathbb{A}) \rightsquigarrow \mathbf{0}$ unif. continuous, then \mathbb{A} rich (e.g. $CSP(\mathbb{A})$ is NP-hard). If $Pol(\mathbb{A}) \not\rightsquigarrow \mathbf{0}$ unif. continuous, then $Pol(\mathbb{A})$ satisfies

$$e \circ s(x, y, x, z, y, z) \approx e' \circ s(y, x, z, x, z, y)$$
.

Orbit growth: extremely beautiful structures

Converse?

Theorem (Olšák + Barto + Kompatscher + Pham + P. '17)

There exists ω -categorical \mathbb{A} with $\overline{\operatorname{Aut}(\mathbb{A})} = \operatorname{End}(\mathbb{A})$ such that:

- Pol(A) satisfies $e \circ s(x, y, x, z, y, z) \approx e' \circ s(y, x, z, x, z, y)$
- $Pol(\mathbb{A}) \rightsquigarrow \mathbf{0}$ uniformly continuous.

Theorem (Olšák + Barto + Kompatscher + Pham + P. '17)

The above imply that $Aut(\mathbb{A})$ has doubly exponential orbit growth.

Hence, for \mathbb{A} with slower orbit growth: Pol(\mathbb{A}) \rightsquigarrow **0** uniformly cont. \Leftrightarrow no pseudo-Siggers equation.

IV: The future

Algebras from beautiful structures

Summary

Summary:

- Idempotent / locally finite / finite / finitely related: abundance of recent deep "equations structure" theorems
- ω-categoricity yields compactness: Work "modulo group" and obtain *"equations ⇔ structure"*.

Future:

- Role of topology: which structural properties are algebraic? $Pol(\mathbb{A}) \rightsquigarrow \mathbf{0} \Leftrightarrow Pol(\mathbb{A}) \rightsquigarrow \mathbf{0}$ unif. continuously?
- How far does compactness approach go?
 6-ary pseudo-Siggers => 4-ary pseudo-Siggers?
- Equations are "fixed points" of clone actions in lack of space. General dynamical / Ramsey theoretic principle behind this?
- News: 6-ary Siggers ⇒ 4-ary Siggers in general! (Olšák '18)

Gerhard von Graevenitz Regularity - Irregularity V

Algebras from beautiful structures