Permutations on the random permutation

Julie Linman¹ Michael Pinsker²

¹University of Colorado at Boulder

²Université Diderot, Paris 7

BLAST 2015

Table of Contents

2 The random permutation

3 Ramsey structures and canonical functions

Definition

A relational structure Δ is homogeneous iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ .

Definition

A relational structure Δ is homogeneous iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ .

Definition

A relational structure Δ is homogeneous iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ .

Definition

A relational structure Δ is homogeneous iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ .

- $\blacktriangleright (\mathbb{Q};<)$
- random graph

Definition

A relational structure Δ is homogeneous iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ .

- $\blacktriangleright (\mathbb{Q};<)$
- random graph
- random poset

Theorem (Fraïssé)

Let $\ensuremath{\mathcal{C}}$ be a class of finite relational structures which

Theorem (Fraïssé)

Let $\ensuremath{\mathcal{C}}$ be a class of finite relational structures which

is closed under isomorphism

Theorem (Fraïssé)

Let $\ensuremath{\mathcal{C}}$ be a class of finite relational structures which

- is closed under isomorphism
- is closed under taking induced substructures

Theorem (Fraïssé)

Let \mathcal{C} be a class of finite relational structures which

- is closed under isomorphism
- is closed under taking induced substructures
- has countably many members up to isomorphism

Theorem (Fraïssé)

Let \mathcal{C} be a class of finite relational structures which

- is closed under isomorphism
- is closed under taking induced substructures
- has countably many members up to isomorphism
- ▶ has the amalgamation property: for all A, B, C ∈ C and embeddings f : A → B, g : A → C there exist D ∈ C and embeddings f' : B → D, g' : C → D such that f' ∘ f = g' ∘ g.

Theorem (Fraïssé)

Let \mathcal{C} be a class of finite relational structures which

- is closed under isomorphism
- is closed under taking induced substructures
- has countably many members up to isomorphism
- ▶ has the amalgamation property: for all $A, B, C \in C$ and embeddings $f : A \to B, g : A \to C$ there exist $D \in C$ and embeddings $f' : B \to D, g' : C \to D$ such that $f' \circ f = g' \circ g$.

Then there exists a unique (up to isomorphism) countable homogeneous structure Δ whose age is C.

Such a structure is called the Fraïssé limit of C.

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

$$\blacktriangleright (\mathbb{Q};=)$$

► (Q; Btw)

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

- $\blacktriangleright (\mathbb{Q};=)$
- ► (Q; Btw)
- ► (ℚ; Cyc)

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

- $\blacktriangleright (\mathbb{Q};=)$
- ► (Q; Btw)
- ► (Q; Cyc)
- ► (Q; Sep)

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

- ► $(\mathbb{Q};=)$
- ► (Q; Btw)
- ► (Q; Cyc)
- ► (Q; Sep)

Problem

Classify the reducts of a homogeneous structure up to first-order interdefinability, existential-positive interdefinability, etc.

Why look at reducts?

Why look at reducts?

 understand first-order theory and symmetries of a structure

Why look at reducts?

- understand first-order theory and symmetries of a structure
- Conjecture (Simon Thomas, 1991): If Δ is a countable relational structure which is homogeneous in a finite language, then Δ has only finitely many reducts, up to first-order interdefinability.

Why look at reducts?

- understand first-order theory and symmetries of a structure
- Conjecture (Simon Thomas, 1991): If Δ is a countable relational structure which is homogeneous in a finite language, then Δ has only finitely many reducts, up to first-order interdefinability.
- classifying computational complexity of constraint satisfaction problems

Closed groups

A permutation group $G \leq \text{Sym}(X)$ is closed iff $h \in G$ whenever for all finite $A \subseteq X$ there exists $g \in G$ which agrees with h on A.

Closed groups

A permutation group $G \leq \text{Sym}(X)$ is closed iff $h \in G$ whenever for all finite $A \subseteq X$ there exists $g \in G$ which agrees with h on A.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

If Δ is homogeneous in a finite relational language, then

{reducts of
$$\Delta$$
}/ $\sim \rightarrow$ {closed supergroups of $\operatorname{Aut}(\Delta)$ }
 $\Gamma/\sim \mapsto \operatorname{Aut}(\Gamma)$

is an antiisomorphism.

Let \leftrightarrow be a permutation of ${\mathbb Q}$ which reverses <.

Examples

Let \leftrightarrow be a permutation of ${\mathbb Q}$ which reverses <.

Let \bigcirc be a permutation of \mathbb{Q} which reverses < between $(-\infty, \pi)$ and (π, ∞) , for some irrational π , and preserves < otherwise.

Examples

Let \leftrightarrow be a permutation of ${\mathbb Q}$ which reverses <.

Let \bigcirc be a permutation of \mathbb{Q} which reverses < between $(-\infty, \pi)$ and (π, ∞) , for some irrational π , and preserves < otherwise.

Then

•
$$\operatorname{Aut}(\mathbb{Q};\operatorname{Btw}) = \langle \operatorname{Aut}(\mathbb{Q};<) \cup \{\leftrightarrow\} \rangle$$

Examples

Let \leftrightarrow be a permutation of \mathbb{Q} which reverses <.

Let \bigcirc be a permutation of \mathbb{Q} which reverses < between $(-\infty, \pi)$ and (π, ∞) , for some irrational π , and preserves < otherwise.

Then

•
$$\operatorname{Aut}(\mathbb{Q};\operatorname{Btw}) = \langle \operatorname{Aut}(\mathbb{Q};<) \cup \{\leftrightarrow\} \rangle$$

• $\operatorname{Aut}(\mathbb{Q}; \operatorname{Cyc}) = \langle \operatorname{Aut}(\mathbb{Q}; <) \cup \{ \circlearrowleft \} \rangle$

Examples

Let \leftrightarrow be a permutation of \mathbb{Q} which reverses <.

Let \bigcirc be a permutation of \mathbb{Q} which reverses < between $(-\infty, \pi)$ and (π, ∞) , for some irrational π , and preserves < otherwise.

Then

•
$$\operatorname{Aut}(\mathbb{Q};\operatorname{Btw}) = \langle \operatorname{Aut}(\mathbb{Q};<) \cup \{\leftrightarrow\} \rangle$$

•
$$\operatorname{Aut}(\mathbb{Q};\operatorname{Cyc}) = \langle \operatorname{Aut}(\mathbb{Q};<) \cup \{\circlearrowleft\} \rangle$$

 $\blacktriangleright \operatorname{Aut}(\mathbb{Q};\operatorname{Sep}) = \langle \operatorname{Aut}(\mathbb{Q};<) \cup \{\leftrightarrow,\circlearrowleft\} \rangle$

Closed supergroups of $Aut(\mathbb{Q}; <)$

Closed supergroups of $Aut(\mathbb{Q}; <)$

Theorem (Cameron, 1976)

The closed supergroups of $\operatorname{Aut}(\mathbb{Q};<)$ are

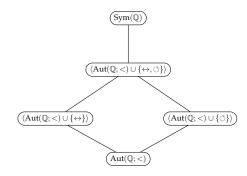
- $\operatorname{Aut}(\mathbb{Q}; <)$
- $\blacktriangleright \langle \operatorname{Aut}(\mathbb{Q}; <) \cup \{\leftrightarrow\} \rangle$
- $\blacktriangleright \langle \operatorname{Aut}(\mathbb{Q}; <) \cup \{ \circlearrowleft \} \rangle$
- $\blacktriangleright \langle \operatorname{Aut}(\mathbb{Q};<) \cup \{\leftrightarrow,\circlearrowleft\}\rangle$
- ► Sym(ℚ)

Closed supergroups of $Aut(\mathbb{Q}; <)$

Theorem (Cameron, 1976)

The closed supergroups of $\operatorname{Aut}(\mathbb{Q};<)$ are

- $\operatorname{Aut}(\mathbb{Q}; <)$
- $\blacktriangleright \langle \operatorname{Aut}(\mathbb{Q}; <) \cup \{\leftrightarrow\} \rangle$
- $\blacktriangleright \langle \operatorname{Aut}(\mathbb{Q}; <) \cup \{ \circlearrowleft \} \rangle$
- $\blacktriangleright \langle \operatorname{Aut}(\mathbb{Q};<) \cup \{\leftrightarrow,\circlearrowleft\} \rangle$
- ► Sym(ℚ)



Any permutation on a finite set A may be regarded as

Any permutation on a finite set A may be regarded as

• a bijection $A \rightarrow A$

Any permutation on a finite set A may be regarded as

- a bijection $A \rightarrow A$
- a relational structure $(A; <_1, <_2)$

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the Fraïssé limit of the class of all finite permutations.

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the Fraïssé limit of the class of all finite permutations.

Equivalently,

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the Fraïssé limit of the class of all finite permutations.

Equivalently,

II is the unique (up to isomorphism) countable structure with two linear orders which is homogeneous and contains all finite permutations

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the Fraïssé limit of the class of all finite permutations.

Equivalently,

- II is the unique (up to isomorphism) countable structure with two linear orders which is homogeneous and contains all finite permutations
- II appears with probability 1 in the random process that constructs both orders independently

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the Fraïssé limit of the class of all finite permutations.

Equivalently,

- II is the unique (up to isomorphism) countable structure with two linear orders which is homogeneous and contains all finite permutations
- II appears with probability 1 in the random process that constructs both orders independently

Question (Cameron, 2002)

What are the closed supergroups of $Aut(\Pi)$?

Definition

Let $D \subseteq \mathbb{Q}^2$ be

Definition

Let $D \subseteq \mathbb{Q}^2$ be

► dense

Definition

Let $D \subseteq \mathbb{Q}^2$ be

- dense
- independent: for distinct $(x_1, x_2), (y_1, y_2) \in D, x_i \neq y_i$

Definition

Let $D \subseteq \mathbb{Q}^2$ be

- dense
- independent: for distinct $(x_1, x_2), (y_1, y_2) \in D, x_i \neq y_i$

For i = 1, 2 define linear orders on *D*:

Definition

Let $D \subseteq \mathbb{Q}^2$ be

- dense
- independent: for distinct $(x_1, x_2), (y_1, y_2) \in D, x_i \neq y_i$

For i = 1, 2 define linear orders on *D*:

 $(x_1, x_2) <_i (y_1, y_2) \Leftrightarrow x_i < y_i$

Definition

Let $D \subseteq \mathbb{Q}^2$ be

- dense
- independent: for distinct $(x_1, x_2), (y_1, y_2) \in D, x_i \neq y_i$

For i = 1, 2 define linear orders on *D*:

 $(x_1, x_2) <_i (y_1, y_2) \Leftrightarrow x_i < y_i$

Then $(D; <_1, <_2) \cong \Pi$.

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

•
$$\binom{id}{rev}$$
: reverses <2 and preserves <1

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

- ► (^{id}_{rev}): reverses <₂ and preserves <₁
- $\binom{id}{t}$: turns <₂ about some irrational π and preserves <₁

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

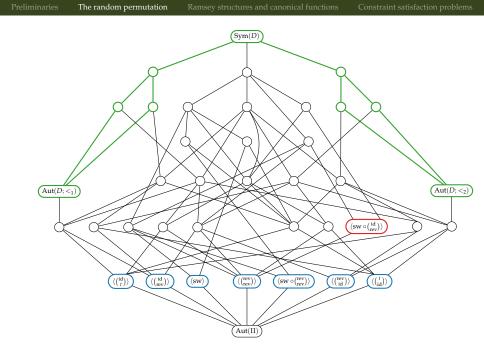
- ► (^{id}_{rev}): reverses <₂ and preserves <₁
- $\binom{\text{id}}{t}$: turns <2 about some irrational π and preserves <1
- ▶ sw: switches the orders <₁ and <₂

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $Aut(\Pi)$.

- ► (^{id}_{rev}): reverses <₂ and preserves <₁
- $\binom{\text{id}}{t}$: turns <2 about some irrational π and preserves <1
- ▶ sw: switches the orders <₁ and <₂
- \blacktriangleright (rev $_{id}$)

$$\blacktriangleright \begin{pmatrix} t \\ id \end{pmatrix}$$



Asymmetry in the roles of $\binom{id}{rev}$ and $\binom{id}{t}$

While \leftrightarrow and \bigcirc appear to play symmetric roles as generators of closed supergroups of Aut(\mathbb{Q} ; <), the corresponding permutations $\binom{\mathrm{id}}{\mathrm{rev}}$ and $\binom{\mathrm{id}}{t}$ of *D* do not.

Asymmetry in the roles of $\binom{id}{rev}$ and $\binom{id}{t}$

While \leftrightarrow and \bigcirc appear to play symmetric roles as generators of closed supergroups of Aut(\mathbb{Q} ; <), the corresponding permutations $\binom{\mathrm{id}}{\mathrm{rev}}$ and $\binom{\mathrm{id}}{t}$ of *D* do not.

There is a group consisting of all permutations which either preserve or reverse both orders simultaneously, but no corresponding simultaneous action of turns:

Asymmetry in the roles of $\binom{id}{rev}$ and $\binom{id}{t}$

While \leftrightarrow and \bigcirc appear to play symmetric roles as generators of closed supergroups of Aut(\mathbb{Q} ; <), the corresponding permutations $\binom{id}{rev}$ and $\binom{id}{t}$ of *D* do not.

There is a group consisting of all permutations which either preserve or reverse both orders simultaneously, but no corresponding simultaneous action of turns:

$$\langle \begin{pmatrix} \text{rev} \\ \text{rev} \end{pmatrix} \rangle = \langle \begin{pmatrix} \text{id} \\ \text{rev} \end{pmatrix} \circ \begin{pmatrix} \text{rev} \\ \text{id} \end{pmatrix} \rangle \subsetneq \langle \begin{pmatrix} \text{id} \\ \text{rev} \end{pmatrix}, \begin{pmatrix} \text{rev} \\ \text{id} \end{pmatrix} \rangle \\ \langle \begin{pmatrix} \text{id} \\ t \end{pmatrix} \circ \begin{pmatrix} t \\ \text{id} \end{pmatrix} \rangle = \langle \begin{pmatrix} \text{id} \\ t \end{pmatrix}, \begin{pmatrix} t \\ \text{id} \end{pmatrix} \rangle$$

Closed transformation monoids

Closed transformation monoids

Definition

A first-order formula is called existential-positive iff it is of the form

$$\exists x_1,\ldots,x_n\psi_1\wedge\cdots\wedge\psi_m,$$

where each ψ_i is a disjunction of atomic formulas.

Closed transformation monoids

Definition

A first-order formula is called existential-positive iff it is of the form

$$\exists x_1,\ldots,x_n\psi_1\wedge\cdots\wedge\psi_m,$$

where each ψ_i is a disjunction of atomic formulas.

Theorem (Bodirsky and Pinsker, 2012)

If Δ is countable and ω -categorical, then

 $\{ \mbox{reducts of } \Delta \}/{\sim} \to \{ \mbox{closed monoids containing } \operatorname{Aut}(\Delta) \}$ $\Gamma/{\sim} \mapsto \mbox{End}(\Gamma)$

is an antiisomorphism.

Closed transformation monoids containing $Aut(\Pi)$

Theorem (Linman, 2014)

Let \mathcal{M} be a closed transformation monoid containing Aut(Π). Then one of the following holds.

Theorem (Linman, 2014)

Let \mathcal{M} be a closed transformation monoid containing Aut(Π). Then one of the following holds.

• \mathcal{M} has a constant operation.

Theorem (Linman, 2014)

Let \mathcal{M} be a closed transformation monoid containing Aut(II). Then one of the following holds.

- \mathcal{M} has a constant operation.
- ► The permutations in *M* form a group which is a dense subset of *M* in *D^D*.

Theorem (Linman, 2014)

Let \mathcal{M} be a closed transformation monoid containing Aut(II). Then one of the following holds.

- \mathcal{M} has a constant operation.
- ► The permutations in *M* form a group which is a dense subset of *M* in *D^D*.

In other words, if Γ is a reduct of Π , either Γ has a constant endomorphism or all endomorphisms of Γ can be interpolated on finite sets by automorphisms of Γ .

Definition

A structure is model-complete iff every embedding between models of its theory preserves all first-order formulas.

Definition

A structure is model-complete iff every embedding between models of its theory preserves all first-order formulas.

Lemma (Bodirsky and Pinsker, 2012)

A countable ω -categorical structure Δ is model-complete iff Aut(Δ) is dense in Emb(Δ).

Definition

A structure is model-complete iff every embedding between models of its theory preserves all first-order formulas.

Lemma (Bodirsky and Pinsker, 2012)

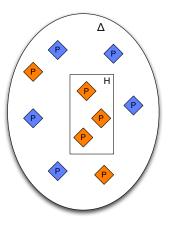
A countable ω -categorical structure Δ is model-complete iff Aut(Δ) is dense in Emb(Δ).

Corollary (Linman, 2014)

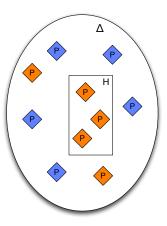
All reducts of Π are model-complete.

A structure Δ is a Ramsey structure iff for all finite $P, H \subseteq \Delta$ and all colorings of the copies of P in Δ with finitely many colors, there is a copy of H in Δ on which the coloring is constant.

A structure Δ is a Ramsey structure iff for all finite $P, H \subseteq \Delta$ and all colorings of the copies of P in Δ with finitely many colors, there is a copy of H in Δ on which the coloring is constant.



A structure Δ is a Ramsey structure iff for all finite $P, H \subseteq \Delta$ and all colorings of the copies of P in Δ with finitely many colors, there is a copy of H in Δ on which the coloring is constant.



Theorem (Böttcher and Foniok, 2011)

The random permutation is a Ramsey structure.

Definition

Let *a* be an *n*-tuple of elements in a structure Δ . The type of *a* in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for *a* in Δ .

Definition

Let *a* be an *n*-tuple of elements in a structure Δ . The type of *a* in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for *a* in Δ .

Definition

Let Δ , Γ be structures. A function $f : \Delta \to \Gamma$ is canonical iff it sends *n*-tuples of the same type in Δ to *n*-tuples of the same type in Γ .

Definition

Let *a* be an *n*-tuple of elements in a structure Δ . The type of *a* in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for *a* in Δ .

Definition

Let Δ , Γ be structures. A function $f : \Delta \to \Gamma$ is canonical iff it sends *n*-tuples of the same type in Δ to *n*-tuples of the same type in Γ .

Definition

Let *a* be an *n*-tuple of elements in a structure Δ . The type of *a* in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for *a* in Δ .

Definition

Let Δ , Γ be structures. A function $f : \Delta \to \Gamma$ is canonical iff it sends *n*-tuples of the same type in Δ to *n*-tuples of the same type in Γ .

Examples

embeddings

Definition

Let *a* be an *n*-tuple of elements in a structure Δ . The type of *a* in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for *a* in Δ .

Definition

Let Δ , Γ be structures. A function $f : \Delta \to \Gamma$ is canonical iff it sends *n*-tuples of the same type in Δ to *n*-tuples of the same type in Γ .

- embeddings
- constant functions

Definition

Let *a* be an *n*-tuple of elements in a structure Δ . The type of *a* in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for *a* in Δ .

Definition

Let Δ , Γ be structures. A function $f : \Delta \to \Gamma$ is canonical iff it sends *n*-tuples of the same type in Δ to *n*-tuples of the same type in Γ .

- embeddings
- constant functions
- $\binom{id}{rev}$ and sw are canonical from Π to Π

Definition

Let *a* be an *n*-tuple of elements in a structure Δ . The type of *a* in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for *a* in Δ .

Definition

Let Δ , Γ be structures. A function $f : \Delta \to \Gamma$ is canonical iff it sends *n*-tuples of the same type in Δ to *n*-tuples of the same type in Γ .

- embeddings
- constant functions
- $\binom{id}{rev}$ and sw are canonical from Π to Π
- $\binom{\text{id}}{t}$ is canonical from (Π, c) to Π

We say that $\mathcal{F} \subseteq D^D$ generates a function $g : D \to D$ iff for all finite $A \subseteq D$ there exist $f_1, \ldots, f_n \in \mathcal{F}$ such that $f_1 \circ \cdots \circ f_n$ agrees with g on A.

We say that $\mathcal{F} \subseteq D^D$ generates a function $g : D \to D$ iff for all finite $A \subseteq D$ there exist $f_1, \ldots, f_n \in \mathcal{F}$ such that $f_1 \circ \cdots \circ f_n$ agrees with g on A.

Theorem (Bodirsky, Pinsker, Tsankov, 2011)

Let Δ be a structure which is ordered Ramsey and homogeneous in a finite relational language. Let $c_1, \ldots, c_n \in \Delta$ and $f : \Delta \to \Delta$ be a function. Then $\{f\} \cup \operatorname{Aut}(\Delta)$ generates a function which

We say that $\mathcal{F} \subseteq D^D$ generates a function $g : D \to D$ iff for all finite $A \subseteq D$ there exist $f_1, \ldots, f_n \in \mathcal{F}$ such that $f_1 \circ \cdots \circ f_n$ agrees with g on A.

Theorem (Bodirsky, Pinsker, Tsankov, 2011)

Let Δ be a structure which is ordered Ramsey and homogeneous in a finite relational language. Let $c_1, \ldots, c_n \in \Delta$ and $f : \Delta \to \Delta$ be a function. Then $\{f\} \cup \operatorname{Aut}(\Delta)$ generates a function which

▶ is canonical as a function $(\Delta, c_1, \ldots, c_n) \rightarrow \Delta$

We say that $\mathcal{F} \subseteq D^D$ generates a function $g : D \to D$ iff for all finite $A \subseteq D$ there exist $f_1, \ldots, f_n \in \mathcal{F}$ such that $f_1 \circ \cdots \circ f_n$ agrees with g on A.

Theorem (Bodirsky, Pinsker, Tsankov, 2011)

Let Δ be a structure which is ordered Ramsey and homogeneous in a finite relational language. Let $c_1, \ldots, c_n \in \Delta$ and $f : \Delta \to \Delta$ be a function. Then $\{f\} \cup \operatorname{Aut}(\Delta)$ generates a function which

- ▶ is canonical as a function $(\Delta, c_1, \ldots, c_n) \rightarrow \Delta$
- agrees with f on $\{c_1, \ldots, c_n\}$

Definition

Let *A* be a set. A clone on *A* is a set of finitary operations on *A* which

Definition

Let *A* be a set. A clone on *A* is a set of finitary operations on *A* which

is closed under composition

Definition

Let *A* be a set. A clone on *A* is a set of finitary operations on *A* which

- is closed under composition
- contains all projections

Definition

Let *A* be a set. A clone on *A* is a set of finitary operations on *A* which

- is closed under composition
- contains all projections

Definition

Let *A* be a set. A clone on *A* is a set of finitary operations on *A* which

- is closed under composition
- contains all projections

Examples

the projection clone

Definition

Let *A* be a set. A clone on *A* is a set of finitary operations on *A* which

- is closed under composition
- contains all projections

- the projection clone
- ► the polymorphism clone of a structure Δ: the set of homomorphisms Δⁿ → Δ, for all n ≥ 1

Closed clones

Closed clones

Definition

A first-order formula is called **primitive-positive** iff it is of the form

$$\exists x_1,\ldots,x_n\,\psi_1\wedge\cdots\wedge\psi_m,$$

where each ψ_i is an atomic formula.

Closed clones

Definition

A first-order formula is called **primitive-positive** iff it is of the form

$$\exists x_1,\ldots,x_n\,\psi_1\wedge\cdots\wedge\psi_m,$$

where each ψ_i is an atomic formula.

Theorem (Bodirsky and Nešetřil, 2006)

If Δ is countable and ω -categorical, then

 $\{ \mbox{reducts of } \Delta \}/\!\! \sim \to \{ \mbox{closed clones containing } \operatorname{Aut}(\Delta) \}$ $\Gamma/\!\! \sim \mapsto \operatorname{Pol}(\Gamma)$

is an antiisomorphism.

Definition

Let Γ be a structure in a finite relational language τ . CSP(Γ) is the computational problem of deciding whether a given primitive-positive τ -sentence holds in Γ .

Definition

Let Γ be a structure in a finite relational language τ . CSP(Γ) is the computational problem of deciding whether a given primitive-positive τ -sentence holds in Γ .

Theorem (Bulatov, Krokhin, Jeavons, 2000)

Let $\Gamma = (D; R_1, ..., R_n)$ be a structure and let *R* be a relation with a primitive-positive definition in Γ . Then $CSP(D; R_1, ..., R_n)$ and $CSP(D; R_1, ..., R_n, R)$ are polynomial-time equivalent.

Definition

Let Γ be a structure in a finite relational language τ . CSP(Γ) is the computational problem of deciding whether a given primitive-positive τ -sentence holds in Γ .

Theorem (Bulatov, Krokhin, Jeavons, 2000)

Let $\Gamma = (D; R_1, ..., R_n)$ be a structure and let *R* be a relation with a primitive-positive definition in Γ . Then $CSP(D; R_1, ..., R_n)$ and $CSP(D; R_1, ..., R_n, R)$ are polynomial-time equivalent.

Therefore, the complexity of $\text{CSP}(\Gamma)$ depends only on $\text{Pol}(\Gamma)$.

Definition

Let Γ be a structure in a finite relational language τ . CSP(Γ) is the computational problem of deciding whether a given primitive-positive τ -sentence holds in Γ .

Theorem (Bulatov, Krokhin, Jeavons, 2000)

Let $\Gamma = (D; R_1, ..., R_n)$ be a structure and let *R* be a relation with a primitive-positive definition in Γ . Then $CSP(D; R_1, ..., R_n)$ and $CSP(D; R_1, ..., R_n, R)$ are polynomial-time equivalent.

Therefore, the complexity of $\text{CSP}(\Gamma)$ depends only on $\text{Pol}(\Gamma)$.

Problem

Classify the computational complexity of $\text{CSP}(\Gamma)$ for all reducts Γ of $\Pi.$

► Can these results be extended to structures with *n* linear orders, for *n* ≥ 3?

- ► Can these results be extended to structures with *n* linear orders, for *n* ≥ 3?
- Does Thomas's conjecture hold for Ramsey structures?

- ► Can these results be extended to structures with *n* linear orders, for *n* ≥ 3?
- Does Thomas's conjecture hold for Ramsey structures?
- Does every structure which is homogeneous in a finite relational language have a homogeneous Ramsey expansion?

Thank you!

