# Algebraic and model-theoretic methods in constraint satisfaction

4th and last session

#### **Michael Pinsker**

# Technische Universität Wien / Université Diderot - Paris 7

Funded by FWF grant I836-N23

Doc-Course, Charles University Prague

2014

**Constraint Satisfaction** 

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT
- Part IV: Model-complete cores / The infinite tractability conjecture



#### Part IV:

Model-complete cores / The infinite tractability conjecture

| Constr | aint | Sati | sfac | tion |
|--------|------|------|------|------|
|        |      |      |      |      |



**Constraint Satisfaction** 

**Constraint Satisfaction** 

Only reduction method so far:

Only reduction method so far:

pp interpretations = HSP<sup>fin</sup> = clone homomorphisms

Only reduction method so far:

```
pp interpretations = HSP<sup>fin</sup> = clone homomorphisms
```

Method of analysis / proving tractability:

Only reduction method so far:

pp interpretations = HSP<sup>fin</sup> = clone homomorphisms

Method of analysis / proving tractability:

**Canonical functions** 

Only reduction method so far:

pp interpretations = HSP<sup>fin</sup> = clone homomorphisms

Method of analysis / proving tractability:

**Canonical functions** 

Other reduction method:

Only reduction method so far:

pp interpretations = HSP<sup>fin</sup> = clone homomorphisms

Method of analysis / proving tractability:

**Canonical functions** 

Other reduction method:

Definition

 $\tau$ -structures  $\Gamma$ ,  $\Delta$  are homomorphically equivalent iff  $\Gamma$  maps homomorphically into  $\Delta$  and vice-versa.

Only reduction method so far:

pp interpretations = HSP<sup>fin</sup> = clone homomorphisms

Method of analysis / proving tractability:

**Canonical functions** 

Other reduction method:

#### Definition

 $\tau$ -structures  $\Gamma$ ,  $\Delta$  are homomorphically equivalent iff  $\Gamma$  maps homomorphically into  $\Delta$  and vice-versa.

Note: Homomorphically equivalent structures have equal CSPs.

Only reduction method so far:

pp interpretations = HSP<sup>fin</sup> = clone homomorphisms

Method of analysis / proving tractability:

**Canonical functions** 

Other reduction method:

#### Definition

 $\tau$ -structures  $\Gamma$ ,  $\Delta$  are homomorphically equivalent iff  $\Gamma$  maps homomorphically into  $\Delta$  and vice-versa.

Note: Homomorphically equivalent structures have equal CSPs.

Could possibly obtain hard structure  $\Delta$  by pp interpretations + homomorphic equivalence, but not by pp interpretations only.

**Constraint Satisfaction** 

Let  $\Gamma$  be structure with endomorphism *e*.

Let  $\Gamma$  be structure with endomorphism *e*.

 $e[\Gamma]$  induces a "smaller" homomorphically equivalent structure in  $\Gamma$ .

Let  $\Gamma$  be structure with endomorphism *e*.

 $e[\Gamma]$  induces a "smaller" homomorphically equivalent structure in  $\Gamma$ .

Idea: repeat to obtain "smallest" homomorphically equivalent structure.

Let  $\Gamma$  be structure with endomorphism *e*.

 $e[\Gamma]$  induces a "smaller" homomorphically equivalent structure in  $\Gamma$ .

Idea: repeat to obtain "smallest" homomorphically equivalent structure.

#### Definition

A countable  $\omega$ -categorical structure  $\Delta$  is a model-complete core iff Aut( $\Delta$ ) is dense in End( $\Delta$ ).

Let  $\Gamma$  be structure with endomorphism *e*.

 $e[\Gamma]$  induces a "smaller" homomorphically equivalent structure in  $\Gamma$ .

Idea: repeat to obtain "smallest" homomorphically equivalent structure.

#### Definition

A countable  $\omega$ -categorical structure  $\Delta$  is a model-complete core iff Aut( $\Delta$ ) is dense in End( $\Delta$ ).

Mc cores cannot be further simplified:

its endomorphisms are elementary, i.e., preserve first-order formulas.

Let  $\Gamma$  be structure with endomorphism *e*.

 $e[\Gamma]$  induces a "smaller" homomorphically equivalent structure in  $\Gamma$ .

Idea: repeat to obtain "smallest" homomorphically equivalent structure.

#### Definition

A countable  $\omega$ -categorical structure  $\Delta$  is a model-complete core iff Aut( $\Delta$ ) is dense in End( $\Delta$ ).

Mc cores cannot be further simplified: its endomorphisms are elementary, i.e., preserve first-order formulas.

The unary functions in  $Pol(\Delta)$  are essentially automorphisms.

Let  $\Gamma$  be structure with endomorphism *e*.

 $e[\Gamma]$  induces a "smaller" homomorphically equivalent structure in  $\Gamma$ .

Idea: repeat to obtain "smallest" homomorphically equivalent structure.

#### Definition

A countable  $\omega$ -categorical structure  $\Delta$  is a model-complete core iff Aut( $\Delta$ ) is dense in End( $\Delta$ ).

Mc cores cannot be further simplified: its endomorphisms are elementary, i.e., preserve first-order formulas.

The unary functions in  $Pol(\Delta)$  are essentially automorphisms.

**Note:** Property of the topological clone  $Pol(\Delta)$ .

**Constraint Satisfaction** 

#### Theorem (Bodirsky + Hils + Martin '10)

Every finite or  $\omega$ -categorical structure is homomorphically equivalent to an  $\omega$ -categorical model complete core  $\Delta$ .

#### Theorem (Bodirsky + Hils + Martin '10)

Every finite or  $\omega$ -categorical structure is homomorphically equivalent to an  $\omega$ -categorical model complete core  $\Delta$ .

 $\Delta$  is unique up to isomorphism.

#### Theorem (Bodirsky + Hils + Martin '10)

Every finite or  $\omega$ -categorical structure is homomorphically equivalent to an  $\omega$ -categorical model complete core  $\Delta$ .

 $\Delta$  is unique up to isomorphism.

#### Examples

#### Theorem (Bodirsky + Hils + Martin '10)

Every finite or  $\omega$ -categorical structure is homomorphically equivalent to an  $\omega$ -categorical model complete core  $\Delta$ .

 $\Delta$  is unique up to isomorphism.

#### Examples

mc core of random graph (V; E): countably infinite clique

#### Theorem (Bodirsky + Hils + Martin '10)

Every finite or  $\omega$ -categorical structure is homomorphically equivalent to an  $\omega$ -categorical model complete core  $\Delta$ .

 $\Delta$  is unique up to isomorphism.

#### Examples

mc core of random graph (V; E): countably infinite clique

■ mc core of (*V*; *E*, *N*): (*V*; *E*, *N*)

#### Theorem (Bodirsky + Hils + Martin '10)

Every finite or  $\omega$ -categorical structure is homomorphically equivalent to an  $\omega$ -categorical model complete core  $\Delta$ .

 $\Delta$  is unique up to isomorphism.

#### Examples

- mc core of random graph (V; E): countably infinite clique
- mc core of (*V*; *E*, *N*): (*V*; *E*, *N*)
- mc core of  $(\mathbb{Q}; \leq)$ : one-element poset.



#### The infinite tractability conjecture

**Constraint Satisfaction** 

**Constraint Satisfaction** 

**Fun fact:** When  $\Gamma$  is an  $\omega$ -categorical mc core and  $c \in \Gamma$ , then adding the relation  $\{c\}$  to  $\Gamma$  does not increase the complexity of the CSP.

**Fun fact:** When  $\Gamma$  is an  $\omega$ -categorical mc core and  $c \in \Gamma$ , then adding the relation  $\{c\}$  to  $\Gamma$  does not increase the complexity of the CSP.

Conjecture (Bulatov + Jeavons + Krokhin '05; Barto + Kozik '10) Let  $\Gamma$  be finite. Let  $\Delta$  be its mc core expanded by all constants. Then:

**Fun fact:** When  $\Gamma$  is an  $\omega$ -categorical mc core and  $c \in \Gamma$ , then adding the relation  $\{c\}$  to  $\Gamma$  does not increase the complexity of the CSP.

Conjecture (Bulatov + Jeavons + Krokhin '05; Barto + Kozik '10)

Let  $\Gamma$  be finite. Let  $\Delta$  be its mc core expanded by all constants. Then:

 either Pol(Δ) has a homomorphism to 1 (and CSP(Γ) is NP-hard),

**Fun fact:** When  $\Gamma$  is an  $\omega$ -categorical mc core and  $c \in \Gamma$ , then adding the relation  $\{c\}$  to  $\Gamma$  does not increase the complexity of the CSP.

Conjecture (Bulatov + Jeavons + Krokhin '05; Barto + Kozik '10)

Let  $\Gamma$  be finite. Let  $\Delta$  be its mc core expanded by all constants. Then:

 either Pol(Δ) has a homomorphism to 1 (and CSP(Γ) is NP-hard),

• or  $Pol(\Delta)$  contains a cyclic operation *f* of arity n > 1, i.e.,

$$f(x_1,\ldots,x_n)=f(x_2,\ldots,x_n,x_1)$$

and  $CSP(\Gamma)$  is in P.

Theorem (Bodirsky + Kara '08, reformulated)

Let  $\Gamma$  be a reduct of  $(\mathbb{Q}; <)$ . Let  $\Delta$  be its mc core. Then:

#### Theorem (Bodirsky + Kara '08, reformulated)

Let  $\Gamma$  be a reduct of ( $\mathbb{Q}$ ; <). Let  $\Delta$  be its mc core. Then:

either there is an expansion Δ' of Δ by finitely many constants such that Pol(Δ') has a continuous homomorphism to 1 (and CSP(Γ) is NP-hard);

#### Theorem (Bodirsky + Kara '08, reformulated)

Let  $\Gamma$  be a reduct of ( $\mathbb{Q}$ ; <). Let  $\Delta$  be its mc core. Then:

- either there is an expansion Δ' of Δ by finitely many constants such that Pol(Δ') has a continuous homomorphism to 1 (and CSP(Γ) is NP-hard);
- or there are  $f(x_1, x_2) \in Pol(\Gamma)$  and  $\alpha, \beta \in Aut(\mathbb{Q}; <)$  such that

$$f(x_1, x_2) = \alpha(f(\beta x_2, \beta x_1))$$

and  $CSP(\Gamma)$  is in P.

### Reducts of the random graph G

**Constraint Satisfaction** 

### Reducts of the random graph G

Theorem (Bodirsky + Pinsker '11, reformulated)

Let  $\Gamma$  be a reduct of G. Then:

 either Pol(Γ) has a continuous homomorphism to 1 (and CSP(Γ) is NP-hard);

### Reducts of the random graph G

Theorem (Bodirsky + Pinsker '11, reformulated)

Let  $\Gamma$  be a reduct of G. Then:

- either Pol(Γ) has a continuous homomorphism to 1 (and CSP(Γ) is NP-hard);
- or there are  $f(x_1, x_2, x_3) \in Pol(\Gamma)$  and  $\alpha \in Aut(G)$  such that

$$f(x_1, x_2, x_3) = \alpha(f(x_3, x_1, x_2))$$

and  $CSP(\Gamma)$  is in P.

**Constraint Satisfaction** 

Identify relations R such that Pol(V; R) has a continuous homomorphism to 1.

- Identify relations R such that Pol(V; R) has a continuous homomorphism to 1.
- If none of those hard relations is pp definable in Γ, then there are functions in Pol(Γ) witnessing this.

- Identify relations R such that Pol(V; R) has a continuous homomorphism to 1.
- If none of those hard relations is pp definable in Γ, then there are functions in Pol(Γ) witnessing this.
- Using Ramsey theory we find canonical (='nice') such polymorphisms.

- Identify relations R such that Pol(V; R) has a continuous homomorphism to 1.
- If none of those hard relations is pp definable in Γ, then there are functions in Pol(Γ) witnessing this.
- Using Ramsey theory we find canonical (='nice') such polymorphisms.
- Canonical polymorphisms are essentially finite functions.

- Identify relations R such that Pol(V; R) has a continuous homomorphism to 1.
- If none of those hard relations is pp definable in Γ, then there are functions in Pol(Γ) witnessing this.
- Using Ramsey theory we find canonical (='nice') such polymorphisms.
- Canonical polymorphisms are essentially finite functions.
  So they allow for combinatorial analysis and algorithmic use, and "should" satisfy equations.

**Constraint Satisfaction** 

Fact: There are homogeneous digraphs with undecidable CSP.

Fact: There are homogeneous digraphs with undecidable CSP.

#### Definition

A structure with finite relational signature is finitely bounded iff its age is determined by finitely many forbidden substructures.

Fact: There are homogeneous digraphs with undecidable CSP.

#### Definition

A structure with finite relational signature is finitely bounded iff its age is determined by finitely many forbidden substructures.

**Examples:**  $(\mathbb{Q}; <)$  and the random graph.

Fact: There are homogeneous digraphs with undecidable CSP.

#### Definition

A structure with finite relational signature is finitely bounded iff its age is determined by finitely many forbidden substructures.

**Examples:**  $(\mathbb{Q}; <)$  and the random graph.

Fact: The CSP of any reduct of a finitely bounded structure is in NP.

Fact: There are homogeneous digraphs with undecidable CSP.

#### Definition

A structure with finite relational signature is finitely bounded iff its age is determined by finitely many forbidden substructures.

**Examples:**  $(\mathbb{Q}; <)$  and the random graph.

Fact: The CSP of any reduct of a finitely bounded structure is in NP.

#### Conjecture (Bodirsky + MP '11)

Let  $\Gamma$  be a reduct of a finitely bounded homogeneous structure. Then CSP( $\Gamma$ ) is in P or NP-complete.

### Infinite tractability conjecture

**Constraint Satisfaction** 

### Infinite tractability conjecture

Let  $\Gamma$  be a reduct of a finitely bounded homogeneous structure.

Let  $\Gamma$  be a reduct of a finitely bounded homogeneous structure. Let  $\Delta$  be its model-complete core. Let  $\Gamma$  be a reduct of a finitely bounded homogeneous structure. Let  $\Delta$  be its model-complete core.

#### Conjecture (Bodirsky + MP '13)

either there is an expansion Γ' of Γ by finitely many constants such that Pol(Γ') has a continuous homomorphism to 1 (and CSP(Γ) is NP-hard);

Let  $\Gamma$  be a reduct of a finitely bounded homogeneous structure. Let  $\Delta$  be its model-complete core.

#### Conjecture (Bodirsky + MP '13)

- either there is an expansion Γ' of Γ by finitely many constants such that Pol(Γ') has a continuous homomorphism to 1 (and CSP(Γ) is NP-hard);
- **Pol**( $\Gamma$ ) satisfies a non-trivial equation, and CSP( $\Gamma$ ) is tractable.



**Constraint Satisfaction** 

**Constraint Satisfaction** 

 Does every homogeneous structure in a finite relational language have a homogeneous Ramsey expansion by finitely many relation symbols?
 (Bodirsky + MP + Tsankov, *Decidability of definability*)

- Does every homogeneous structure in a finite relational language have a homogeneous Ramsey expansion by finitely many relation symbols?
   (Bodirsky + MP + Tsankov, *Decidability of definability*)
- If Pol(Γ) has a homomorphism to 1, does it also have a continuous homomorphism?

(Bodirsky + MP + Pongrácz, *Projective clone homomorphisms*)

- Does every homogeneous structure in a finite relational language have a homogeneous Ramsey expansion by finitely many relation symbols?
   (Bodirsky + MP + Tsankov, *Decidability of definability*)
- If Pol(Γ) has a homomorphism to 1, does it also have a continuous homomorphism?
  (Bodirsky + MP + Pongrácz, *Projective clone homomorphisms*)
- Clarify relationship between canonical functions and their finite counterparts (algorithmic / equational).

Distress not yourself if you cannot at first understand the deeper mysteries of Spaceland. By degrees they will dawn upon you.



**Constraint Satisfaction**