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Homomorphic equivalcence

Only reduction method so far:

pp interpretations = HSPfin = clone homomorphisms

Method of analysis / proving tractability:

Canonical functions

Other reduction method:

Definition
τ -structures Γ,∆ are homomorphically equivalent iff
Γ maps homomorphically into ∆ and vice-versa.

Note: Homomorphically equivalent structures have equal CSPs.

Could possibly obtain hard structure ∆ by pp interpretations +
homomorphic equivalence, but not by pp interpretations only.
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Model-complete cores

Let Γ be structure with endomorphism e.

e[Γ] induces a “smaller” homomorphically equivalent structure in Γ.

Idea: repeat to obtain “smallest” homomorphically equivalent structure.

Definition
A countable ω-categorical structure ∆ is a model-complete core iff
Aut(∆) is dense in End(∆).

Mc cores cannot be further simplified:
its endomorphisms are elementary, i.e., preserve first-order formulas.

The unary functions in Pol(∆) are essentially automorphisms.

Note: Property of the topological clone Pol(∆).
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Obtaining mc cores

Theorem (Bodirsky + Hils + Martin ’10)
Every finite or ω-categorical structure is homomorphically equivalent to
an ω-categorical model complete core ∆.

∆ is unique up to isomorphism.

Examples

mc core of random graph (V ; E): countably infinite clique

mc core of (V ; E ,N): (V ; E ,N)

mc core of (Q;≤): one-element poset.
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The infinite tractability conjecture
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The tractability conjecture

Fun fact: When Γ is an ω-categorical mc core and c ∈ Γ, then adding
the relation {c} to Γ does not increase the complexity of the CSP.

Conjecture (Bulatov + Jeavons + Krokhin ’05; Barto + Kozik ’10)
Let Γ be finite. Let ∆ be its mc core expanded by all constants. Then:

either Pol(∆) has a homomorphism to 1
(and CSP(Γ) is NP-hard),
or Pol(∆) contains a cyclic operation f of arity n > 1, i.e.,

f (x1, . . . , xn) = f (x2, . . . , xn, x1)

and CSP(Γ) is in P.
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Reducts of (Q;<)

Theorem (Bodirsky + Kara ’08, reformulated)

Let Γ be a reduct of (Q;<). Let ∆ be its mc core. Then:

either there is an expansion ∆′ of ∆ by finitely many constants
such that Pol(∆′) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or there are f (x1, x2) ∈ Pol(Γ) and α, β ∈ Aut(Q;<) such that

f (x1, x2) = α(f (βx2, βx1))

and CSP(Γ) is in P.
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Reducts of the random graph G

Theorem (Bodirsky + Pinsker ’11, reformulated)
Let Γ be a reduct of G. Then:

either Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

or there are f (x1, x2, x3) ∈ Pol(Γ) and α ∈ Aut(G) such that

f (x1, x2, x3) = α(f (x3, x1, x2))

and CSP(Γ) is in P.
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Proof method

Identify relations R such that Pol(V ; R) has a continuous
homomorphism to 1.

If none of those hard relations is pp definable in Γ,
then there are functions in Pol(Γ) witnessing this.

Using Ramsey theory we find canonical (=‘nice’) such
polymorphisms.

Canonical polymorphisms are essentially finite functions.

So they allow for combinatorial analysis and algorithmic use, and
“should” satisfy equations.
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Finitely bounded homogeneous structures

Fact: There are homogeneous digraphs with undecidable CSP.

Definition
A structure with finite relational signature is finitely bounded iff
its age is determined by finitely many forbidden substructures.

Examples: (Q;<) and the random graph.

Fact: The CSP of any reduct of a finitely bounded structure is in NP.

Conjecture (Bodirsky + MP ’11)
Let Γ be a reduct of a finitely bounded homogeneous structure.
Then CSP(Γ) is in P or NP-complete.
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Infinite tractability conjecture

Let Γ be a reduct of a finitely bounded homogeneous structure.
Let ∆ be its model-complete core.

Conjecture (Bodirsky + MP ’13)

either there is an expansion Γ′ of Γ by finitely many constants
such that Pol(Γ′) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

Pol(Γ) satisfies a non-trivial equation, and CSP(Γ) is tractable.
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Future work
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Future work

Does every homogeneous structure in a finite relational language
have a homogeneous Ramsey expansion
by finitely many relation symbols?
(Bodirsky + MP + Tsankov, Decidability of definability)

If Pol(Γ) has a homomorphism to 1, does it also have a continuous
homomorphism?
(Bodirsky + MP + Pongrácz, Projective clone homomorphisms)

Clarify relationship between canonical functions and their finite
counterparts (algorithmic / equational).
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Distress not yourself if you cannot at first understand
the deeper mysteries of Spaceland.
By degrees they will dawn upon you.

Constraint Satisfaction Michael Pinsker


