Algebraic and model-theoretic methods in constraint satisfaction

3rd session

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7

Funded by FWF grant I836-N23

Doc-Course, Charles University Prague

2014

Constraint Satisfaction

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω -categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT
- Part IV: Model-complete cores / The infinite tractability conjecture

Constraint Satisfaction

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

Polymorphism clone $Pol(\Gamma)$

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

Polymorphism clone $Pol(\Gamma)$: algebraic and topological structure.

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

Polymorphism clone $Pol(\Gamma)$: algebraic and topological structure.

 $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta)$ clone homomorphism iff

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

Polymorphism clone $Pol(\Gamma)$: algebraic and topological structure.

- $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta)$ clone homomorphism iff
 - preserves arities, sends projections to same projections

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

Polymorphism clone $Pol(\Gamma)$: algebraic and topological structure.

- $\xi \colon \operatorname{Pol}(\Gamma) \to \operatorname{Pol}(\Delta)$ clone homomorphism iff
 - preserves arities, sends projections to same projections
 - commutes with composition

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

Polymorphism clone $Pol(\Gamma)$: algebraic and topological structure.

- $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta)$ clone homomorphism iff
 - preserves arities, sends projections to same projections
 - commutes with composition

If Γ, Δ are ω -categorical, $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta)$ continuous onto homomorphism, then $\mathsf{CSP}(\Delta)$ is polynomial-time reducible to $\mathsf{CSP}(\Gamma)$.

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

Polymorphism clone $Pol(\Gamma)$: algebraic and topological structure.

- $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta)$ clone homomorphism iff
 - preserves arities, sends projections to same projections
 - commutes with composition

If Γ, Δ are ω -categorical, $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta)$ continuous onto homomorphism, then $\mathsf{CSP}(\Delta)$ is polynomial-time reducible to $\mathsf{CSP}(\Gamma)$.

Reason: HSP^{fin} / pp interpretations.

Constraint Satisfaction

1... clone of projections on $\{0, 1\}$.

1... clone of projections on $\{0, 1\}$.

Corollary

Let Γ be ω -categorical. TFAE:

■ $({0,1}; {(1,0,0), (0,1,0), (0,0,1)})$ has a pp-interpretation in Γ

- **u** there exists a continuous homomorphism from $Pol(\Gamma)$ onto **1**
- all finite structures have a pp-interpretation in Γ.

1... clone of projections on $\{0, 1\}$.

Corollary

Let Γ be ω -categorical. TFAE:

■ $({0,1}; {(1,0,0), (0,1,0), (0,0,1)})$ has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1

all finite structures have a pp-interpretation in Γ.

Example:
$$\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$$

1... clone of projections on $\{0, 1\}$.

Corollary

Let Γ be ω -categorical. TFAE:

■ $({0,1}; {(1,0,0), (0,1,0), (0,0,1)})$ has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1

all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is called *Betweenness problem*.

1... clone of projections on $\{0, 1\}$.

Corollary

Let Γ be ω -categorical. TFAE:

■ $({0,1}; {(1,0,0), (0,1,0), (0,0,1)})$ has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1

all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is called *Betweenness problem*.

Let $f \in Pol(\Gamma)$ of arity k.

1... clone of projections on $\{0, 1\}$.

Corollary

Let Γ be ω -categorical. TFAE:

■ $({0,1}; {(1,0,0), (0,1,0), (0,0,1)})$ has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1

all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is called *Betweenness problem*.

Let $f \in Pol(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that:

1... clone of projections on $\{0, 1\}$.

Corollary

Let Γ be ω -categorical. TFAE:

■ $({0,1}; {(1,0,0), (0,1,0), (0,0,1)})$ has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1

all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that: $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or

1... clone of projections on $\{0, 1\}$.

Corollary

Let Γ be ω -categorical. TFAE:

• $(\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\})$ has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1

all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that: $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) > f(y)$.

1... clone of projections on $\{0, 1\}$.

Corollary

Let Γ be ω -categorical. TFAE:

• $(\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\})$ has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1

all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that: $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) > f(y)$.

Set $\xi(f)$ to be the *i*-th *k*-ary projection in **1**.

1... clone of projections on $\{0, 1\}$.

Corollary

Let Γ be ω -categorical. TFAE:

■ $({0,1}; {(1,0,0), (0,1,0), (0,0,1)})$ has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1

all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$ CSP(Γ) is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, ..., k\}$ such that: $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) > f(y)$.

Set $\xi(f)$ to be the *i*-th *k*-ary projection in **1**.

Straightforward: ξ : Pol(Γ) \rightarrow **1** is continuous homomorphism.

Proof of Topological Birkhoff

Constraint Satisfaction

Proof of Topological Birkhoff

Theorem ("Topological Birkhoff" Bodirsky+MP '12)

Let Δ , Γ be ω -categorical or finite. TFAE:

 $\blacksquare \operatorname{Pol}(\Delta) = \operatorname{HSP}^{\operatorname{fin}}(\operatorname{Pol}(\Gamma));$

there exists a continuous onto homomorphism

 $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta).$

Proof of Topological Birkhoff

Theorem ("Topological Birkhoff" Bodirsky+MP '12)

Let Δ , Γ be ω -categorical or finite. TFAE:

 $\blacksquare \operatorname{Pol}(\Delta) = \operatorname{HSP}^{\operatorname{fin}}(\operatorname{Pol}(\Gamma));$

there exists a continuous onto homomorphism

 $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta).$

Blackboard

Part III:

Canonical functions, Ramsey structures / Graph-SAT

Constr	aint	Sati	sfac	tion

Canonical functions and Ramsey structures

Constraint Satisfaction

Theorem (Fraïssé)

TFAE:

- Classes of finite relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Theorem (Fraïssé)

TFAE:

- Classes of finite relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Theorem (Fraïssé)

TFAE:

- Classes of finite relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

 Δ homogeneous \leftrightarrow for all finite $A, B \subseteq \Delta$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(\Delta)$ extending *i*.

Constraint Satisfaction

Constraint Satisfaction

Examples: Graphs, linear orders, posets, ordered graphs.

Examples: Graphs, linear orders, posets, ordered graphs.

Let $\ensuremath{\mathbb{C}}$ be a Fraïssé class of structures in finite language.

Examples: Graphs, linear orders, posets, ordered graphs.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit on domain *D*.

Examples: Graphs, linear orders, posets, ordered graphs.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit on domain *D*.

Let $\Gamma = (D; R_1, ..., R_n)$ be a reduct of Δ (i.e. R_i has first-order definition in Δ with quantifier-free formula ψ_i).
CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit on domain *D*.

Let $\Gamma = (D; R_1, ..., R_n)$ be a reduct of Δ (i.e. R_i has first-order definition in Δ with quantifier-free formula ψ_i).

 $CSP(\Gamma)$ is called a Δ -SAT problem.

CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit on domain *D*.

Let $\Gamma = (D; R_1, ..., R_n)$ be a reduct of Δ (i.e. R_i has first-order definition in Δ with quantifier-free formula ψ_i).

CSP(Γ) is called a Δ -SAT problem.

It asks whether a given conjunction using ψ_1, \ldots, ψ_n is satisfiable in some member of C.

CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit on domain *D*.

Let $\Gamma = (D; R_1, ..., R_n)$ be a reduct of Δ (i.e. R_i has first-order definition in Δ with quantifier-free formula ψ_i).

 $CSP(\Gamma)$ is called a Δ -SAT problem.

It asks whether a given conjunction using ψ_1, \ldots, ψ_n is satisfiable in some member of \mathcal{C} .

Examples: Graph-SAT and Temp-SAT always in P / NP-complete.

Graph-SAT classification

Constraint Satisfaction

Michael Pinsker

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)

Let Δ be ω -categorical, and let Γ be a structure on the same domain. TFAE:

- Γ is a reduct of Δ ;
- $\operatorname{Aut}(\Gamma) \supseteq \operatorname{Aut}(\Delta);$
- $\mathsf{Pol}(\Gamma) \supseteq \mathsf{Aut}(\Delta).$

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)

Let Δ be ω -categorical, and let Γ be a structure on the same domain. TFAE:

- \blacksquare Γ is a reduct of Δ ;
- $\operatorname{Aut}(\Gamma) \supseteq \operatorname{Aut}(\Delta);$
- $Pol(\Gamma) \supseteq Aut(\Delta)$.

To classify CSPs of reducts of Δ : have to understand closed function clones $\supseteq Aut(\Delta)$.

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)

Let Δ be ω -categorical, and let Γ be a structure on the same domain. TFAE:

- \blacksquare Γ is a reduct of Δ ;
- $\operatorname{Aut}(\Gamma) \supseteq \operatorname{Aut}(\Delta);$
- $Pol(\Gamma) \supseteq Aut(\Delta)$.

To classify CSPs of reducts of Δ : have to understand closed function clones $\supseteq Aut(\Delta)$.

Find the border tractable / NP-hard.

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)

Let Δ be ω -categorical, and let Γ be a structure on the same domain. TFAE:

- \blacksquare Γ is a reduct of Δ ;
- $\operatorname{Aut}(\Gamma) \supseteq \operatorname{Aut}(\Delta);$
- $Pol(\Gamma) \supseteq Aut(\Delta)$.

To classify CSPs of reducts of Δ : have to understand closed function clones $\supseteq Aut(\Delta)$.

Find the border tractable / NP-hard.

Closed function clones on fixed domain form complete lattice:

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)

Let Δ be ω -categorical, and let Γ be a structure on the same domain. TFAE:

- \blacksquare Γ is a reduct of Δ ;
- $\operatorname{Aut}(\Gamma) \supseteq \operatorname{Aut}(\Delta);$
- $Pol(\Gamma) \supseteq Aut(\Delta)$.

To classify CSPs of reducts of Δ : have to understand closed function clones $\supseteq Aut(\Delta)$.

Find the border tractable / NP-hard.

Closed function clones on fixed domain form complete lattice:

- Intersection of function clones is function clone
- Intersection of closed sets is closed.

Constraint Satisfaction

Michael Pinsker

What are the minimal polymorphism clones \supseteq Aut(Δ)?

What are the minimal polymorphism clones \supseteq Aut(Δ)?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ).

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in $\text{Aut}(\Delta).$

What can we say about $Pol(\Gamma)$?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

Then **M** is the monoid of self-embeddings of G, or **M** contains one of the following:

a constant function

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

- a constant function
- an injective function flipping edges and non-edges

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

- a constant function
- an injective function flipping edges and non-edges
- an injective function flipping edges and non-edges relative to a vertex

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

- a constant function
- an injective function flipping edges and non-edges
- an injective function flipping edges and non-edges relative to a vertex
- an injective function whose image is a clique

What are the minimal polymorphism clones $\supseteq Aut(\Delta)$?

Let Γ be a reduct of Δ which has a polymorphism that is not in Aut(Δ). What can we say about Pol(Γ)?

Theorem (Thomas '96)

Let *G* be the random graph, let $\mathbf{M} \supseteq \operatorname{Aut}(G)$ be a closed monoid.

- a constant function
- an injective function flipping edges and non-edges
- an injective function flipping edges and non-edges relative to a vertex
- an injective function whose image is a clique
- an injective function whose image is an independent set.

Constraint Satisfaction

Michael Pinsker

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

Examples on the random graph

self-embeddings;

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

- self-embeddings;
- flipping edges and non-edges;

Definition

Let Δ be a structure.

```
f: \Delta^n \to \Delta is canonical iff
for all tuples t_1, \ldots, t_n of the same length
the orbit of f(t_1, \ldots, t_n) only depends on
the orbits of the tuples t_1, \ldots, t_n.
```

- self-embeddings;
- flipping edges and non-edges;
- injections onto a clique / independent set;

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

- self-embeddings;
- flipping edges and non-edges;
- injections onto a clique / independent set;
- binary edge-max or edge-min.

Definition

Let Δ be a structure.

 $f: \Delta^n \to \Delta$ is canonical iff for all tuples t_1, \ldots, t_n of the same length the orbit of $f(t_1, \ldots, t_n)$ only depends on the orbits of the tuples t_1, \ldots, t_n .

Examples on the random graph

- self-embeddings;
- flipping edges and non-edges;
- injections onto a clique / independent set;
- binary edge-max or edge-min.

Flipping edges and non-edges around a vertex $c \in G$ not canonical on G, but canonical on (G, c).

Constraint Satisfaction

Constraint Satisfaction

Michael Pinsker

Definition (Ramsey structure Δ)

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ : Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ : Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .

Definition (Ramsey structure Δ)

For all finite substructures P, H of Δ : Whenever we color the copies of P in Δ with 2 colors then there is a monochromatic copy of H in Δ .

Theorem (Nešetřil + Rödl)

The random ordered graph is Ramsey.

Constraint Satisfaction

Michael Pinsker

Canonizing functions on Ramsey structures

Constraint Satisfaction

Michael Pinsker

Canonizing functions on Ramsey structures

```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

- △ be ordered Ramsey homogeneous finite relational language
- $\blacksquare f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Canonizing functions on Ramsey structures

```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

 \blacksquare Δ be ordered Ramsey homogeneous finite relational language

- $\bullet f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Then

$$\overline{\{\beta(f(\alpha_1(x_1),\ldots,\alpha_n(x_n))) \mid \beta,\alpha_i \in \mathsf{Aut}(\Delta)\}}$$
```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

 \blacksquare Δ be ordered Ramsey homogeneous finite relational language

- $\blacksquare f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Then

$$\overline{\{\beta(f(\alpha_1(x_1),\ldots,\alpha_n(x_n))) \mid \beta,\alpha_i \in \mathsf{Aut}(\Delta)\}}$$

contains a function which

```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

 \blacksquare \triangle be ordered Ramsey homogeneous finite relational language

- $\blacksquare f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Then

$$\overline{\{\beta(f(\alpha_1(x_1),\ldots,\alpha_n(x_n))) \mid \beta,\alpha_i \in \mathsf{Aut}(\Delta)\}}$$

contains a function which

• is canonical as a function on $(\Delta, c_1, \dots, c_k)$

```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

 \blacksquare \triangle be ordered Ramsey homogeneous finite relational language

- $\blacksquare f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Then

$$\overline{\{\beta(f(\alpha_1(x_1),\ldots,\alpha_n(x_n))) \mid \beta,\alpha_i \in \mathsf{Aut}(\Delta)\}}$$

contains a function which

- is canonical as a function on $(\Delta, c_1, \ldots, c_k)$
- is identical with f on $\{c_1, \ldots, c_k\}^n$.

```
Proposition (Bodirsky + MP + Tsankov '11)
```

Let

 \blacksquare \triangle be ordered Ramsey homogeneous finite relational language

- $\bullet f: \Delta^n \to \Delta$
- $\blacksquare c_1,\ldots,c_k \in \Delta.$

Then

$$\overline{\{\beta(f(\alpha_1(x_1),\ldots,\alpha_n(x_n))) \mid \beta,\alpha_i \in \mathsf{Aut}(\Delta)\}}$$

contains a function which

- is canonical as a function on $(\Delta, c_1, \ldots, c_k)$
- is identical with *f* on $\{c_1, \ldots, c_k\}^n$.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic '05).

Constraint Satisfaction

If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.

- If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.
- If a closed function clone ⊇ Aut(∆) has a function violating a given relation (e.g., a hard relation), then it also has a canonical function doing so.

- If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.
- If a closed function clone ⊇ Aut(∆) has a function violating a given relation (e.g., a hard relation), then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff $f(t_1, \ldots, t_n)$ and $g(t_1, \ldots, t_n)$ have equal orbit for all tuples t_1, \ldots, t_n .

- If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.
- If a closed function clone ⊇ Aut(∆) has a function violating a given relation (e.g., a hard relation), then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff $f(t_1, \ldots, t_n)$ and $g(t_1, \ldots, t_n)$ have equal orbit for all tuples t_1, \ldots, t_n .

If Δ is homogeneous in a finite language, there are only finitely many behaviors of *n*-ary canonical functions, for all *n*.

- If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.
- If a closed function clone ⊇ Aut(∆) has a function violating a given relation (e.g., a hard relation), then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff $f(t_1, \ldots, t_n)$ and $g(t_1, \ldots, t_n)$ have equal orbit for all tuples t_1, \ldots, t_n .

If Δ is homogeneous in a finite language, there are only finitely many behaviors of *n*-ary canonical functions, for all *n*.

Canonical functions of same behavior belong to the same closed clones.

- If a closed function clone ⊇ Aut(∆) has a non-embedding, then it also has a canonical non-embedding.
- If a closed function clone ⊇ Aut(∆) has a function violating a given relation (e.g., a hard relation), then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff $f(t_1, \ldots, t_n)$ and $g(t_1, \ldots, t_n)$ have equal orbit for all tuples t_1, \ldots, t_n .

If Δ is homogeneous in a finite language, there are only finitely many behaviors of *n*-ary canonical functions, for all *n*.

Canonical functions of same behavior belong to the same closed clones.

Conclusion: We only care about canonical functions in a function clone (in fact they are dense in the clone).

Constraint Satisfaction

Graph-SAT

Constraint Satisfaction

Complexity of CSP for reducts of G

Constraint Satisfaction

Complexity of CSP for reducts of G

Theorem (Bodirsky + MP '10)

Let Γ be a reduct of the random graph. Then:

 Either Γ has one out of 17 canonical polymorphisms, and CSP(Γ) is tractable,

• or $CSP(\Gamma)$ is NP-complete.

Complexity of CSP for reducts of G

Theorem (Bodirsky + MP '10)

Let Γ be a reduct of the random graph. Then:

- Either Γ has one out of 17 canonical polymorphisms, and CSP(Γ) is tractable,
- or $CSP(\Gamma)$ is NP-complete.

Theorem (Bodirsky + MP '10)

Let Γ be a reduct of the random graph. Then:

- Either Γ pp-defines one out of 5 hard relations, and CSP(Γ) is NP-complete,
- or $CSP(\Gamma)$ is tractable.

Graph-SAT classification

Constraint Satisfaction

Theorem

The following 17 distinct clones are precisely the minimal tractable closed function clones containing Aut(G):

- The clone generated by a constant operation.
- 2 The clone generated by a balanced binary injection of type max.
- 3 The clone generated by a balanced binary injection of type min.
- The clone generated by an *E*-dominated binary injection of type max.
- The clone generated by an *N*-dominated binary injection of type min. 5
- 6 The clone generated by a function of type majority which is hyperplanely balanced and of type projection.
- 7 The clone generated by a function of type majority which is hyperplanely F-constant.
- 8 The clone generated by a function of type majority which is hyperplanely N-constant.
- The clone generated by a function of type majority which is hyperplanely of type max and E-dominated.

Constraint Satisfaction

The Meta Problem

Constraint Satisfaction

Meta-Problem of Graph-SAT(Ψ)

INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Meta-Problem of Graph-SAT(Ψ)

INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky + MP '10)

The Meta-Problem of Graph-SAT(Ψ) is decidable.

From dreams I proceed to facts.

Part IV: In 10 minutes

Constraint Satisfaction