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Summary of last session

Let I be a structure in a finite relational language 7.
Definition
CSP(T') is the decision problem:

INPUT: variables xq, ..., x, and atomic r-statements about them.
QUESTION: is there a satisfying assignment h: {xq,...,xp} = ?

Polymorphism clone Pol(I"): algebraic and topological structure.
&: Pol(I') — Pol(A) clone homomorphism iff

m preserves arities, sends projections to same projections

m commutes with composition
If ', A are w-categorical, ¢: Pol(I") — Pol(A) continuous onto
homomorphism, then CSP(A) is polynomial-time reducible to CSP(I").
Reason: HSP" / pp interpretations.
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Cool hardness proofs
1...clone of projections on {0, 1}.

Corollary

Let I' be w-categorical. TFAE:
m ({0,1};{(1,0,0),(0,1,0),(0,0,1)}) has a pp-interpretation in I
m there exists a continuous homomorphism from Pol(I") onto 1
m all finite structures have a pp-interpretation in I'.

Example: I := (Q; {(x,y,2) €eQ® | x <y <z V z<y<x})
CSP(T) is called Betweenness problem.
Let f € Pol(T") of arity k. There is a unique i € {1, ..., k} such that:
m VX, yeTh: (VX #£y) AXxi <yi)= f(x) <f(y),or
m VX, y e Th: (VX £ y) A X < yi) = f(x) > f(y).
Set {(f) to be the i-th k-ary projection in 1.
Straightforward: ¢ : Pol(I') — 1 is continuous homomorphism.
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Proof of Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky+MP '12)
Let A, I be w-categorical or finite. TFAE:
m Pol(A) = HSPfin(Pol(T"));
m there exists a continuous onto homomorphism
&: Pol(l) — Pol(A).
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Proof of Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky+MP ’12)
Let A, I be w-categorical or finite. TFAE:
m Pol(A) = HSPfin(Pol(T"));
m there exists a continuous onto homomorphism
&: Pol(l) — Pol(A).

Blackboard
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Fraissé’s theorem

Theorem (Fraissé)
TFAE:

m Classes of finite relational structures closed under substructures
which have amalgamation.

m Homogeneous relational structures.

A homogeneous < for all finite A, B C A, for all isomorphisms
i : A — Bthere exists a € Aut(A) extending i.
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CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.
Let C be a Fraissé class of structures in finite language.
Let A be its Fraissé limit on domain D.

Letl = (D; Ry,..., Ry be areduct of A
(i.e. R; has first-order definition in A with quantifier-free formula ;).

CSP(I) is called a A-SAT problem.

It asks whether a given conjunction using ¥4, ...,%n
is satisfiable in some member of C.

Examples: Graph-SAT and Temp-SAT always in P / NP-complete.
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Graph-SAT classification
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Clones of reducts

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)

Let A be w-categorical, and let I be a structure on the same domain.
TFAE:

m [ is a reduct of A;
m Aut(l) 2 Aut(A);
m Pol(l") D Aut(A).

To classify CSPs of reducts of A: have to understand
closed function clones D Aut(A).

Find the border tractable / NP-hard.
Closed function clones on fixed domain form complete lattice:
m Intersection of function clones is function clone

m Intersection of closed sets is closed.

Constraint Satisfaction Michael Pinsker
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Minimal clones

What are the minimal polymorphism clones O Aut(A)?
Let I be a reduct of A which has a polymorphism that is not in Aut(A).
What can we say about Pol(I")?

Theorem (Thomas ’96)
Let G be the random graph, let M O Aut(G) be a closed monoid.
Then M is the monoid of self-embeddings of G,
or M contains one of the following:
m a constant function
m an injective function flipping edges and non-edges

m an injective function flipping edges and non-edges
relative to a vertex

m an injective function whose image is a clique
m an injective function whose image is an independent set.
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Canonical functions

Definition
Let A be a structure.

f: A" — A is canonical iff

for all tuples tq, ..., t, of the same length
the orbit of f(, ..., ty) only depends on
the orbits of the tuples ¢, ..., .

Examples on the random graph

m self-embeddings;

m flipping edges and non-edges;

m injections onto a clique / independent set;
m binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c € G
not canonical on G, but canonical on (G, ¢).

Constraint Satisfaction Michael Pinsker
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Ramsey structures

Definition (Ramsey structure A)

For all finite substructures P, H of A:
Whenever we color the copies of P in A with 2 colors
then there is a monochromatic copy of H in A.

Theorem (NeSetfil + Rodl)
The random ordered graph is Ramsey.
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Proposition (Bodirsky + MP + Tsankov '11)
Let

m A be ordered Ramsey homogeneous finite relational language
mf:A"5 A
HCi,...,Ck € A.
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Proposition (Bodirsky + MP + Tsankov ’11)
Let

m A be ordered Ramsey homogeneous finite relational language
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HCi,...,Ck € A.

Then
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Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

m A be ordered Ramsey homogeneous finite relational language
mf:A"S A
HCi,...,Ck € A.

Then

{B(f(ar(x1), ..., an(xn))) | B, i € Aut(A)}
contains a function which
m is canonical as a function on (A, ¢y, ..., Ck)
m is identical with fon {c1, ..., ck}".

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic '05).

Constraint Satisfaction Michael Pinsker
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Using canonical functions

m If a closed function clone D Aut(A) has a non-embedding,
then it also has a canonical non-embedding.
m If a closed function clone 2 Aut(A)

has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.
Two canonical functions f, g have the same behavior iff
f(t,...,th) and g(t,. .., ty) have equal orbit for all tuples t;,.

ot

If A is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.
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Using canonical functions

m If a closed function clone D Aut(A) has a non-embedding,
then it also has a canonical non-embedding.
m If a closed function clone 2 Aut(A)

has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f, g have the same behavior iff
f(t,...,th) and g(t,. .., ty) have equal orbit for all tuples t, ..., t,.

If A is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.

Conclusion: We only care about canonical functions in a function
clone (in fact they are dense in the clone).
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Graph-SAT

Constraint Satisfaction Michael Pinsker



Complexity of CSP for reducts of G
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Complexity of CSP for reducts of G

Theorem (Bodirsky + MP ’10)
Let I' be a reduct of the random graph. Then:

m Either ' has one out of 17 canonical polymorphisms,
and CSP(I) is tractable,

m or CSP(I') is NP-complete.
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Complexity of CSP for reducts of G

Theorem (Bodirsky + MP ’10)
Let I' be a reduct of the random graph. Then:

m Either ' has one out of 17 canonical polymorphisms,
and CSP(I) is tractable,

m or CSP(IN) is NP-complete.

Theorem (Bodirsky + MP ’10)
Let I be a reduct of the random graph. Then:

m Either I pp-defines one out of 5 hard relations,
and CSP(I') is NP-complete,

m or CSP(I) is tractable.
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Graph-SAT classification

12,13: 11:
9,10:

minority

majority hp balanced
hp E-dom
max
B ‘minority
majority

hp balanced

P1
7.8:
majority
hp E-
onstan

NP-complete
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Theorem

The following 17 distinct clones are precisely the minimal tractable closed function
clones containing Aut(G):

Bl The clone generated by a constant operation.

B The clone generated by a balanced binary injection of type max.

Kl The clone generated by a balanced binary injection of type min.

B The clone generated by an E-dominated binary injection of type max.
EH The clone generated by an N-dominated binary injection of type min.

A The clone generated by a function of type majority which is hyperplanely
balanced and of type projection.

The clone generated by a function of type majority which is hyperplanely
E-constant.

Bl The clone generated by a function of type majority which is hyperplanely
N-constant.

El The clone generated by a function of type majority which is hyperplanely of type
max and E-dominated.

il The clone generated by a function of type majority which is hyperplanely of type

min and N-dominated.
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The Meta Problem

Meta-Problem of Graph-SAT (V)
INPUT: A finite set W of graph formulas.

QUESTION: Is Graph-SAT (V) in P?
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The Meta Problem

Meta-Problem of Graph-SAT (V)
INPUT: A finite set W of graph formulas.

QUESTION: Is Graph-SAT (V) in P?

Theorem (Bodirsky + MP ’10)
The Meta-Problem of Graph-SAT (V) is decidable.
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From dreams | proceed to facts.

Part IV: In 10 minutes
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