
Algebraic and model-theoretic methods
in constraint satisfaction

3rd session

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7

Funded by FWF grant I836-N23

Doc-Course, Charles University Prague

2014

Constraint Satisfaction Michael Pinsker



Outline reminder

Part I: CSPs / dividing the world /
pp definitions, polymorphism clones, ω-categoricity

Part II: pp interpretations / topological clones

Part III: Canonical functions, Ramsey structures / Graph-SAT

Part IV: Model-complete cores / The infinite tractability conjecture

Constraint Satisfaction Michael Pinsker



Summary of last session

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Polymorphism clone Pol(Γ): algebraic and topological structure.

ξ : Pol(Γ)→ Pol(∆) clone homomorphism iff
preserves arities, sends projections to same projections
commutes with composition

If Γ,∆ are ω-categorical, ξ : Pol(Γ)→ Pol(∆) continuous onto
homomorphism, then CSP(∆) is polynomial-time reducible to CSP(Γ).

Reason: HSPfin / pp interpretations.

Constraint Satisfaction Michael Pinsker



Summary of last session

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Polymorphism clone Pol(Γ): algebraic and topological structure.

ξ : Pol(Γ)→ Pol(∆) clone homomorphism iff
preserves arities, sends projections to same projections
commutes with composition

If Γ,∆ are ω-categorical, ξ : Pol(Γ)→ Pol(∆) continuous onto
homomorphism, then CSP(∆) is polynomial-time reducible to CSP(Γ).

Reason: HSPfin / pp interpretations.

Constraint Satisfaction Michael Pinsker



Summary of last session

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Polymorphism clone Pol(Γ)

: algebraic and topological structure.

ξ : Pol(Γ)→ Pol(∆) clone homomorphism iff
preserves arities, sends projections to same projections
commutes with composition

If Γ,∆ are ω-categorical, ξ : Pol(Γ)→ Pol(∆) continuous onto
homomorphism, then CSP(∆) is polynomial-time reducible to CSP(Γ).

Reason: HSPfin / pp interpretations.

Constraint Satisfaction Michael Pinsker



Summary of last session

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Polymorphism clone Pol(Γ): algebraic and topological structure.

ξ : Pol(Γ)→ Pol(∆) clone homomorphism iff
preserves arities, sends projections to same projections
commutes with composition

If Γ,∆ are ω-categorical, ξ : Pol(Γ)→ Pol(∆) continuous onto
homomorphism, then CSP(∆) is polynomial-time reducible to CSP(Γ).

Reason: HSPfin / pp interpretations.

Constraint Satisfaction Michael Pinsker



Summary of last session

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Polymorphism clone Pol(Γ): algebraic and topological structure.

ξ : Pol(Γ)→ Pol(∆) clone homomorphism iff

preserves arities, sends projections to same projections
commutes with composition

If Γ,∆ are ω-categorical, ξ : Pol(Γ)→ Pol(∆) continuous onto
homomorphism, then CSP(∆) is polynomial-time reducible to CSP(Γ).

Reason: HSPfin / pp interpretations.

Constraint Satisfaction Michael Pinsker



Summary of last session

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Polymorphism clone Pol(Γ): algebraic and topological structure.

ξ : Pol(Γ)→ Pol(∆) clone homomorphism iff
preserves arities, sends projections to same projections

commutes with composition

If Γ,∆ are ω-categorical, ξ : Pol(Γ)→ Pol(∆) continuous onto
homomorphism, then CSP(∆) is polynomial-time reducible to CSP(Γ).

Reason: HSPfin / pp interpretations.

Constraint Satisfaction Michael Pinsker



Summary of last session

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Polymorphism clone Pol(Γ): algebraic and topological structure.

ξ : Pol(Γ)→ Pol(∆) clone homomorphism iff
preserves arities, sends projections to same projections
commutes with composition

If Γ,∆ are ω-categorical, ξ : Pol(Γ)→ Pol(∆) continuous onto
homomorphism, then CSP(∆) is polynomial-time reducible to CSP(Γ).

Reason: HSPfin / pp interpretations.

Constraint Satisfaction Michael Pinsker



Summary of last session

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Polymorphism clone Pol(Γ): algebraic and topological structure.

ξ : Pol(Γ)→ Pol(∆) clone homomorphism iff
preserves arities, sends projections to same projections
commutes with composition

If Γ,∆ are ω-categorical, ξ : Pol(Γ)→ Pol(∆) continuous onto
homomorphism, then CSP(∆) is polynomial-time reducible to CSP(Γ).

Reason: HSPfin / pp interpretations.

Constraint Satisfaction Michael Pinsker



Summary of last session

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Polymorphism clone Pol(Γ): algebraic and topological structure.

ξ : Pol(Γ)→ Pol(∆) clone homomorphism iff
preserves arities, sends projections to same projections
commutes with composition

If Γ,∆ are ω-categorical, ξ : Pol(Γ)→ Pol(∆) continuous onto
homomorphism, then CSP(∆) is polynomial-time reducible to CSP(Γ).

Reason: HSPfin / pp interpretations.
Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})

CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k .

There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:

∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or

∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).
Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.

Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Cool hardness proofs

1. . . clone of projections on {0,1}.

Corollary
Let Γ be ω-categorical. TFAE:

({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) has a pp-interpretation in Γ

there exists a continuous homomorphism from Pol(Γ) onto 1
all finite structures have a pp-interpretation in Γ.

Example: Γ := (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is called Betweenness problem.

Let f ∈ Pol(Γ) of arity k . There is a unique i ∈ {1, . . . , k} such that:
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) < f (y), or
∀x , y ∈ Γk : ((∀j xj 6= yj) ∧ xi < yi)⇒ f (x) > f (y).

Set ξ(f ) to be the i-th k -ary projection in 1.
Straightforward: ξ : Pol(Γ)→ 1 is continuous homomorphism.

Constraint Satisfaction Michael Pinsker



Proof of Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky+MP ’12)

Let ∆, Γ be ω-categorical or finite. TFAE:
Pol(∆) = HSPfin(Pol(Γ));
there exists a continuous onto homomorphism
ξ : Pol(Γ)→ Pol(∆).

Blackboard

Constraint Satisfaction Michael Pinsker



Proof of Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky+MP ’12)

Let ∆, Γ be ω-categorical or finite. TFAE:
Pol(∆) = HSPfin(Pol(Γ));
there exists a continuous onto homomorphism
ξ : Pol(Γ)→ Pol(∆).

Blackboard

Constraint Satisfaction Michael Pinsker



Proof of Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky+MP ’12)

Let ∆, Γ be ω-categorical or finite. TFAE:
Pol(∆) = HSPfin(Pol(Γ));
there exists a continuous onto homomorphism
ξ : Pol(Γ)→ Pol(∆).

Blackboard

Constraint Satisfaction Michael Pinsker



Part III:

Canonical functions, Ramsey structures / Graph-SAT

Constraint Satisfaction Michael Pinsker



Canonical functions and Ramsey structures

Constraint Satisfaction Michael Pinsker



Fraïssé’s theorem

Theorem (Fraïssé)
TFAE:

Classes of finite relational structures closed under substructures
which have amalgamation.
Homogeneous relational structures.

A

D

CB

∆ homogeneous↔ for all finite A,B ⊆ ∆, for all isomorphisms
i : A→ B there exists α ∈ Aut(∆) extending i .

Constraint Satisfaction Michael Pinsker



Fraïssé’s theorem

Theorem (Fraïssé)
TFAE:

Classes of finite relational structures closed under substructures
which have amalgamation.
Homogeneous relational structures.

A

D

CB

∆ homogeneous↔ for all finite A,B ⊆ ∆, for all isomorphisms
i : A→ B there exists α ∈ Aut(∆) extending i .

Constraint Satisfaction Michael Pinsker



Fraïssé’s theorem

Theorem (Fraïssé)
TFAE:

Classes of finite relational structures closed under substructures
which have amalgamation.
Homogeneous relational structures.

A

D

CB

∆ homogeneous↔ for all finite A,B ⊆ ∆, for all isomorphisms
i : A→ B there exists α ∈ Aut(∆) extending i .

Constraint Satisfaction Michael Pinsker



Fraïssé’s theorem

Theorem (Fraïssé)
TFAE:

Classes of finite relational structures closed under substructures
which have amalgamation.
Homogeneous relational structures.

A

D

CB

∆ homogeneous↔ for all finite A,B ⊆ ∆, for all isomorphisms
i : A→ B there exists α ∈ Aut(∆) extending i .

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let C be a Fraïssé class of structures in finite language.

Let ∆ be its Fraïssé limit on domain D.

Let Γ = (D; R1, . . . ,Rn) be a reduct of ∆
(i.e. Ri has first-order definition in ∆ with quantifier-free formula ψi ).

CSP(Γ) is called a ∆-SAT problem.

It asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Examples: Graph-SAT and Temp-SAT always in P / NP-complete.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let C be a Fraïssé class of structures in finite language.

Let ∆ be its Fraïssé limit on domain D.

Let Γ = (D; R1, . . . ,Rn) be a reduct of ∆
(i.e. Ri has first-order definition in ∆ with quantifier-free formula ψi ).

CSP(Γ) is called a ∆-SAT problem.

It asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Examples: Graph-SAT and Temp-SAT always in P / NP-complete.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let C be a Fraïssé class of structures in finite language.

Let ∆ be its Fraïssé limit on domain D.

Let Γ = (D; R1, . . . ,Rn) be a reduct of ∆
(i.e. Ri has first-order definition in ∆ with quantifier-free formula ψi ).

CSP(Γ) is called a ∆-SAT problem.

It asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Examples: Graph-SAT and Temp-SAT always in P / NP-complete.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let C be a Fraïssé class of structures in finite language.

Let ∆ be its Fraïssé limit on domain D.

Let Γ = (D; R1, . . . ,Rn) be a reduct of ∆
(i.e. Ri has first-order definition in ∆ with quantifier-free formula ψi ).

CSP(Γ) is called a ∆-SAT problem.

It asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Examples: Graph-SAT and Temp-SAT always in P / NP-complete.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let C be a Fraïssé class of structures in finite language.

Let ∆ be its Fraïssé limit on domain D.

Let Γ = (D; R1, . . . ,Rn) be a reduct of ∆
(i.e. Ri has first-order definition in ∆ with quantifier-free formula ψi ).

CSP(Γ) is called a ∆-SAT problem.

It asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Examples: Graph-SAT and Temp-SAT always in P / NP-complete.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let C be a Fraïssé class of structures in finite language.

Let ∆ be its Fraïssé limit on domain D.

Let Γ = (D; R1, . . . ,Rn) be a reduct of ∆
(i.e. Ri has first-order definition in ∆ with quantifier-free formula ψi ).

CSP(Γ) is called a ∆-SAT problem.

It asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Examples: Graph-SAT and Temp-SAT always in P / NP-complete.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let C be a Fraïssé class of structures in finite language.

Let ∆ be its Fraïssé limit on domain D.

Let Γ = (D; R1, . . . ,Rn) be a reduct of ∆
(i.e. Ri has first-order definition in ∆ with quantifier-free formula ψi ).

CSP(Γ) is called a ∆-SAT problem.

It asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Examples: Graph-SAT and Temp-SAT always in P / NP-complete.

Constraint Satisfaction Michael Pinsker



CSPs of reducts of homogeneous structures

Examples: Graphs, linear orders, posets, ordered graphs.

Let C be a Fraïssé class of structures in finite language.

Let ∆ be its Fraïssé limit on domain D.

Let Γ = (D; R1, . . . ,Rn) be a reduct of ∆
(i.e. Ri has first-order definition in ∆ with quantifier-free formula ψi ).

CSP(Γ) is called a ∆-SAT problem.

It asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Examples: Graph-SAT and Temp-SAT always in P / NP-complete.

Constraint Satisfaction Michael Pinsker



Graph-SAT classification

balanced 
max

sw

constant

eE

E-
constant

NP-complete

in P

-

E-dom 
max

E-dom 
p1 balanced 

p1 E-semi-
dom p1

majority
hp balanced 

p1

minority
hp balanced 

p1

majority
hp E-

constant

minority
hp xnor E-

dom

majority
hp E-dom 

max

minority 
hp E-dom p1

Pol(H1)

Pol(H2)

Pol(H'1)

Pol(E6)

12,13:

14,15:
6:

7,8:

11:
9,10:

16,17:

2,3:

1:

4,5:

Pol(H'2)

Constraint Satisfaction Michael Pinsker



Clones of reducts

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)
Let ∆ be ω-categorical, and let Γ be a structure on the same domain.
TFAE:

Γ is a reduct of ∆;
Aut(Γ) ⊇ Aut(∆);
Pol(Γ) ⊇ Aut(∆).

To classify CSPs of reducts of ∆: have to understand
closed function clones ⊇ Aut(∆).

Find the border tractable / NP-hard.

Closed function clones on fixed domain form complete lattice:

Intersection of function clones is function clone
Intersection of closed sets is closed.

Constraint Satisfaction Michael Pinsker



Clones of reducts

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)
Let ∆ be ω-categorical, and let Γ be a structure on the same domain.
TFAE:

Γ is a reduct of ∆;
Aut(Γ) ⊇ Aut(∆);
Pol(Γ) ⊇ Aut(∆).

To classify CSPs of reducts of ∆: have to understand
closed function clones ⊇ Aut(∆).

Find the border tractable / NP-hard.

Closed function clones on fixed domain form complete lattice:

Intersection of function clones is function clone
Intersection of closed sets is closed.

Constraint Satisfaction Michael Pinsker



Clones of reducts

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)
Let ∆ be ω-categorical, and let Γ be a structure on the same domain.
TFAE:

Γ is a reduct of ∆;
Aut(Γ) ⊇ Aut(∆);
Pol(Γ) ⊇ Aut(∆).

To classify CSPs of reducts of ∆: have to understand
closed function clones ⊇ Aut(∆).

Find the border tractable / NP-hard.

Closed function clones on fixed domain form complete lattice:

Intersection of function clones is function clone
Intersection of closed sets is closed.

Constraint Satisfaction Michael Pinsker



Clones of reducts

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)
Let ∆ be ω-categorical, and let Γ be a structure on the same domain.
TFAE:

Γ is a reduct of ∆;
Aut(Γ) ⊇ Aut(∆);
Pol(Γ) ⊇ Aut(∆).

To classify CSPs of reducts of ∆: have to understand
closed function clones ⊇ Aut(∆).

Find the border tractable / NP-hard.

Closed function clones on fixed domain form complete lattice:

Intersection of function clones is function clone
Intersection of closed sets is closed.

Constraint Satisfaction Michael Pinsker



Clones of reducts

Theorem (follows from Ryll-Nardzewski, Engeler, Svenonius)
Let ∆ be ω-categorical, and let Γ be a structure on the same domain.
TFAE:

Γ is a reduct of ∆;
Aut(Γ) ⊇ Aut(∆);
Pol(Γ) ⊇ Aut(∆).

To classify CSPs of reducts of ∆: have to understand
closed function clones ⊇ Aut(∆).

Find the border tractable / NP-hard.

Closed function clones on fixed domain form complete lattice:

Intersection of function clones is function clone
Intersection of closed sets is closed.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique
an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique
an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique
an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique
an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique
an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique
an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function

an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique
an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges

an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique
an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex

an injective function whose image is a clique
an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique

an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Minimal clones

What are the minimal polymorphism clones ⊇ Aut(∆)?

Let Γ be a reduct of ∆ which has a polymorphism that is not in Aut(∆).

What can we say about Pol(Γ)?

Theorem (Thomas ’96)

Let G be the random graph, let M ⊇ Aut(G) be a closed monoid.

Then M is the monoid of self-embeddings of G,
or M contains one of the following:

a constant function
an injective function flipping edges and non-edges
an injective function flipping edges and non-edges
relative to a vertex
an injective function whose image is a clique
an injective function whose image is an independent set.

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the orbit of f (t1, . . . , tn) only depends on
the orbits of the tuples t1, . . . , tn.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique / independent set;
binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c ∈ G
not canonical on G, but canonical on (G, c).

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the orbit of f (t1, . . . , tn) only depends on
the orbits of the tuples t1, . . . , tn.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique / independent set;
binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c ∈ G
not canonical on G, but canonical on (G, c).

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the orbit of f (t1, . . . , tn) only depends on
the orbits of the tuples t1, . . . , tn.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique / independent set;
binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c ∈ G
not canonical on G, but canonical on (G, c).

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the orbit of f (t1, . . . , tn) only depends on
the orbits of the tuples t1, . . . , tn.

Examples on the random graph

self-embeddings;

flipping edges and non-edges;
injections onto a clique / independent set;
binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c ∈ G
not canonical on G, but canonical on (G, c).

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the orbit of f (t1, . . . , tn) only depends on
the orbits of the tuples t1, . . . , tn.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;

injections onto a clique / independent set;
binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c ∈ G
not canonical on G, but canonical on (G, c).

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the orbit of f (t1, . . . , tn) only depends on
the orbits of the tuples t1, . . . , tn.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique / independent set;

binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c ∈ G
not canonical on G, but canonical on (G, c).

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the orbit of f (t1, . . . , tn) only depends on
the orbits of the tuples t1, . . . , tn.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique / independent set;
binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c ∈ G
not canonical on G, but canonical on (G, c).

Constraint Satisfaction Michael Pinsker



Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the orbit of f (t1, . . . , tn) only depends on
the orbits of the tuples t1, . . . , tn.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique / independent set;
binary edge-max or edge-min.

Flipping edges and non-edges around a vertex c ∈ G
not canonical on G, but canonical on (G, c).

Constraint Satisfaction Michael Pinsker



Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.

Constraint Satisfaction Michael Pinsker



Ramsey structures

Definition (Ramsey structure ∆)

For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.

Constraint Satisfaction Michael Pinsker



Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.

Constraint Satisfaction Michael Pinsker



Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.

Constraint Satisfaction Michael Pinsker



Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil + Rödl)
The random ordered graph is Ramsey.

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite relational language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then
{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆)}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite relational language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then
{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆)}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite relational language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then
{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆)}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite relational language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then
{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆)}

contains a function which

is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite relational language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then
{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆)}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite relational language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then
{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆)}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05).

Constraint Satisfaction Michael Pinsker



Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite relational language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then
{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆)}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05).

Constraint Satisfaction Michael Pinsker



Using canonical functions

If a closed function clone ⊇ Aut(∆) has a non-embedding,
then it also has a canonical non-embedding.
If a closed function clone ⊇ Aut(∆)
has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal orbit for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.

Conclusion: We only care about canonical functions in a function
clone (in fact they are dense in the clone).

Constraint Satisfaction Michael Pinsker



Using canonical functions

If a closed function clone ⊇ Aut(∆) has a non-embedding,
then it also has a canonical non-embedding.

If a closed function clone ⊇ Aut(∆)
has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal orbit for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.

Conclusion: We only care about canonical functions in a function
clone (in fact they are dense in the clone).

Constraint Satisfaction Michael Pinsker



Using canonical functions

If a closed function clone ⊇ Aut(∆) has a non-embedding,
then it also has a canonical non-embedding.
If a closed function clone ⊇ Aut(∆)
has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal orbit for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.

Conclusion: We only care about canonical functions in a function
clone (in fact they are dense in the clone).

Constraint Satisfaction Michael Pinsker



Using canonical functions

If a closed function clone ⊇ Aut(∆) has a non-embedding,
then it also has a canonical non-embedding.
If a closed function clone ⊇ Aut(∆)
has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal orbit for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.

Conclusion: We only care about canonical functions in a function
clone (in fact they are dense in the clone).

Constraint Satisfaction Michael Pinsker



Using canonical functions

If a closed function clone ⊇ Aut(∆) has a non-embedding,
then it also has a canonical non-embedding.
If a closed function clone ⊇ Aut(∆)
has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal orbit for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.

Conclusion: We only care about canonical functions in a function
clone (in fact they are dense in the clone).

Constraint Satisfaction Michael Pinsker



Using canonical functions

If a closed function clone ⊇ Aut(∆) has a non-embedding,
then it also has a canonical non-embedding.
If a closed function clone ⊇ Aut(∆)
has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal orbit for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.

Conclusion: We only care about canonical functions in a function
clone (in fact they are dense in the clone).

Constraint Satisfaction Michael Pinsker



Using canonical functions

If a closed function clone ⊇ Aut(∆) has a non-embedding,
then it also has a canonical non-embedding.
If a closed function clone ⊇ Aut(∆)
has a function violating a given relation (e.g., a hard relation),
then it also has a canonical function doing so.

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal orbit for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions, for all n.

Canonical functions of same behavior belong to the same closed
clones.

Conclusion: We only care about canonical functions in a function
clone (in fact they are dense in the clone).

Constraint Satisfaction Michael Pinsker



Graph-SAT

Constraint Satisfaction Michael Pinsker



Complexity of CSP for reducts of G

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 5 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.

Constraint Satisfaction Michael Pinsker



Complexity of CSP for reducts of G

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 5 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.

Constraint Satisfaction Michael Pinsker



Complexity of CSP for reducts of G

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky + MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 5 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.

Constraint Satisfaction Michael Pinsker



Graph-SAT classification

balanced 
max

sw

constant

eE

E-
constant

NP-complete

in P

-

E-dom 
max

E-dom 
p1 balanced 

p1 E-semi-
dom p1

majority
hp balanced 

p1

minority
hp balanced 

p1

majority
hp E-

constant

minority
hp xnor E-

dom

majority
hp E-dom 

max

minority 
hp E-dom p1

Pol(H1)

Pol(H2)

Pol(H'1)

Pol(E6)

12,13:

14,15:
6:

7,8:

11:
9,10:

16,17:

2,3:

1:

4,5:

Pol(H'2)

Constraint Satisfaction Michael Pinsker



Theorem
The following 17 distinct clones are precisely the minimal tractable closed function
clones containing Aut(G):

1 The clone generated by a constant operation.

2 The clone generated by a balanced binary injection of type max.

3 The clone generated by a balanced binary injection of type min.

4 The clone generated by an E-dominated binary injection of type max.

5 The clone generated by an N-dominated binary injection of type min.

6 The clone generated by a function of type majority which is hyperplanely
balanced and of type projection.

7 The clone generated by a function of type majority which is hyperplanely
E-constant.

8 The clone generated by a function of type majority which is hyperplanely
N-constant.

9 The clone generated by a function of type majority which is hyperplanely of type
max and E-dominated.

10 The clone generated by a function of type majority which is hyperplanely of type
min and N-dominated.

11 The clone generated by a function of type minority which is hyperplanely
balanced and of type projection.

12 The clone generated by a function of type minority which is hyperplanely of type
projection and E-dominated.

13 The clone generated by a function of type minority which is hyperplanely of type
projection and N-dominated.

14 The clone generated by a function of type minority which is hyperplanely of type
xnor and E-dominated.

15 The clone generated by a function of type minority which is hyperplanely of type
xor and N-dominated.

16 The clone generated by a binary injection which is E-constant.

17 The clone generated by a binary injection which is N-constant.

Constraint Satisfaction Michael Pinsker



The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky + MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.

Constraint Satisfaction Michael Pinsker



The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky + MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.

Constraint Satisfaction Michael Pinsker



The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky + MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.

Constraint Satisfaction Michael Pinsker



From dreams I proceed to facts.

Part IV: In 10 minutes

Constraint Satisfaction Michael Pinsker


