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Summary of last session
Let I' be a structure in a finite relational language 7.

Definition

CSP(I') is the decision problem:

INPUT: variables xi, ..., x, and atomic 7-statements about them.
QUESTION: is there a satisfying assignment h: {xq,...,xp} = T?

m n-colorability, graph acyclicity, diophantine
m Boolean-SAT, Graph-SAT, C-SAT

Pol(I") is the set of all homomorphisms f: " — I, where 1 < n < w.
I is w-categorical iff action of Aut(I") on I'" has finitely many orbits Vn.

For w-categorical I': if Pol(I") C Pol(I'"),
then CSP(I"') is polynomial-time reducible to CSP(T').
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For a function clone C:

m H(C)...function clones obtained by factoring by congruence.
] S(C) ... function clones obtained by restriction to subalgebra.
m Pi"(C) ... function clones obtained by taking finite power.

Proposition (Bodirsky + MP '12)

Let I' be w-categorical. If Pol(A) contains a function clone

which can be obtained from Pol(I') by H, S, P", then
m A is w-categorical and Pol(A) contains a clone in HSP"(Pol(I"));
m CSP(A) is polynomial-time reducible to CSP(I").

Proof sketch
m Subuniverses, congruence relations are pp-definable;

m A can be simulated (“pp interpreted”) on pp-definable factor of
pp-definable subset of finite power of I'.
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Topological clones

Function clones carry natural structure:
m algebraic (composition / equations)
m topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let C, D be function clones. £: C — D is a (clone) homomorphism iff
m it preserves arities;
m sends every projection in C to the corresponding projection in D;
m(f(91,---,9n) =&(H(&(91),---,&(gn)) forall f,gq,...,9n € C.

Topological structure:

Pointwise convergence on functions f: D" — D.

D. . .discrete; DP" product topology.

(f))iew converges to f iff the f; eventually agree with f on every finite set.
Set of all finitary functions |J, DP". .. sum space.

Constraint Satisfaction Michael Pinsker



Topological remarks

Constraint Satisfaction Michael Pinsker



Topological remarks

If D countable: | J, D" is homeomorphic to the Baire space N.

Constraint Satisfaction Michael Pinsker



Topological remarks

If D countable: |, DP" is homeomorphic to the Baire space NV,

Complete metric separable (=Polish) space!

Constraint Satisfaction Michael Pinsker



Topological remarks

If D countable: |, DP" is homeomorphic to the Baire space NV,
Complete metric separable (=Polish) space!

Polymorphism clones «> closed function clones.

Constraint Satisfaction Michael Pinsker



Topological remarks

If D countable: |, DP" is homeomorphic to the Baire space NV,
Complete metric separable (=Polish) space!

Polymorphism clones «> closed function clones.

Why?

Constraint Satisfaction Michael Pinsker



Topological remarks

If D countable: |, DP" is homeomorphic to the Baire space NV,
Complete metric separable (=Polish) space!

Polymorphism clones «> closed function clones.
Why?

For finite function clones: topology discrete.
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Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky + MP ’12)
Let A, T be w-categorical or finite. TFAE:
m Pol(A) = HSPi"(Pol(I));
m there exists a continuous onto homomorphism
&: Pol(l") — Pol(A).

Corollary

Let A, T be w-categorical or finite. If Pol(A) = Pol(T"), then CSP(A)
and CSP(I) are polynomial-time equivalent.

Theorem (Bodirsky + MP ’12)
Let A, T be w-categorical or finite. TFAE:
m A has a pp interpretation in T;

m there exists a continuous homomorphism ¢&: Pol(I') — Pol(A)
whose image is dense in an oligomorphic function clone.
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Let M :=({0,1};{(1,0,0),(0,1,0),(0,0,1)}).
CSP(M) NP-complete.

Pol(M) contains only projections. Denote this clone by 1.

Theorem (Bodirsky + MP ’12)
Let I' be w-categorical. TFAE:

m [1 has a pp interpretation in T;
m there exists a continuous clone homomorphism ¢: Pol(l') — 1;

m there exists a continuous clone homomorphism
¢: Pol(T") — Pol(I") for any finite I';

m all finite [’ have a pp interpretation in I'.
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“l am indeed, in a certain sense a Circle," replied the Voice,
“and a more perfect Circle than any in Flatland;

but to speak more accurately,

I am many Circles in one."

Part lll: November 6th
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