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Summary of last session

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

n-colorability, graph acyclicity, diophantine
Boolean-SAT, Graph-SAT, C-SAT

Pol(Γ) is the set of all homomorphisms f : Γn → Γ, where 1 ≤ n < ω.

Γ is ω-categorical iff action of Aut(Γ) on Γn has finitely many orbits ∀n.

For ω-categorical Γ: if Pol(Γ) ⊆ Pol(Γ′),
then CSP(Γ′) is polynomial-time reducible to CSP(Γ).
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Proof of the preservation theorem

Theorem (Bodirsky + Nešetřil ’03)
Let Γ be a countable ω-categorical structure.
A relation is pp definable over Γ iff
it is preserved by all polymorphisms of Γ.

Blackboard
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Part II:

pp interpretations / topological clones
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Algebraic constructions

Let A = (A; (fi)i∈I) be an algebra, and τ its signature.

Term functions of A form function clone Clo(A).

Every clone of this form→ can see Pol(Γ) as term clone.

Can see Pol(Γ) as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone:
in particular, subalgebras, congruence relations.

Can apply algebraic constructions independently of signature:
Homomorphic images / factors
Subalgebras
finite Powers.
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CSP and HSPfin

For a function clone C:

H(C). . . function clones obtained by factoring by congruence.
S(C) . . . function clones obtained by restriction to subalgebra.
Pfin(C) . . . function clones obtained by taking finite power.

Proposition (Bodirsky + MP ’12)

Let Γ be ω-categorical. If Pol(∆) contains a function clone
which can be obtained from Pol(Γ) by H, S, Pfin, then

∆ is ω-categorical and Pol(∆) contains a clone in HSPfin(Pol(Γ));
CSP(∆) is polynomial-time reducible to CSP(Γ).

Proof sketch
Subuniverses, congruence relations are pp-definable;
∆ can be simulated (“pp interpreted”) on pp-definable factor of
pp-definable subset of finite power of Γ.
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Topological clones

Function clones carry natural structure:
algebraic (composition / equations)
topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:
Let C,D be function clones. ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Topological structure:
Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
(fi)i∈ω converges to f iff the fi eventually agree with f on every finite set.
Set of all finitary functions

⋃
n DDn

. . . sum space.
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Topological remarks

If D countable:
⋃

n DDn
is homeomorphic to the Baire space NN.

Complete metric separable (=Polish) space!

Polymorphism clones↔ closed function clones.

Why?

For finite function clones: topology discrete.
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Topological Birkhoff

Theorem (“Topological Birkhoff” Bodirsky + MP ’12)

Let ∆, Γ be ω-categorical or finite. TFAE:
Pol(∆) = HSPfin(Pol(Γ));
there exists a continuous onto homomorphism
ξ : Pol(Γ)→ Pol(∆).

Corollary

Let ∆, Γ be ω-categorical or finite. If Pol(∆) ∼= Pol(Γ), then CSP(∆)
and CSP(Γ) are polynomial-time equivalent.

Theorem (Bodirsky + MP ’12)
Let ∆, Γ be ω-categorical or finite. TFAE:

∆ has a pp interpretation in Γ;
there exists a continuous homomorphism ξ : Pol(Γ)→ Pol(∆)
whose image is dense in an oligomorphic function clone.
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The worst of the bad

Let Π := ({0,1}; {(1,0,0), (0,1,0), (0,0,1)}).

CSP(Π) NP-complete.

Pol(Π) contains only projections. Denote this clone by 1.

Theorem (Bodirsky + MP ’12)
Let Γ be ω-categorical. TFAE:

Π has a pp interpretation in Γ;

there exists a continuous clone homomorphism ξ : Pol(Γ)→ 1;

there exists a continuous clone homomorphism
ξ : Pol(Γ)→ Pol(Γ′) for any finite Γ′;

all finite Γ′ have a pp interpretation in Γ.
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“I am indeed, in a certain sense a Circle," replied the Voice,
“and a more perfect Circle than any in Flatland;
but to speak more accurately,
I am many Circles in one."

Part III: November 6th

Constraint Satisfaction Michael Pinsker


