Algebraic and model-theoretic methods in constraint satisfaction

2nd session

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7

Funded by FWF grant I836-N23

Doc-Course, Charles University Prague

2014

Constraint Satisfaction

Michael Pinsker

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT
- Part IV: Model-complete cores / The infinite tractability conjecture

Constraint Satisfaction

Michael Pinsker

Let Γ be a structure in a finite relational language τ .

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

■ *n*-colorability, graph acyclicity, diophantine

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

■ *n*-colorability, graph acyclicity, diophantine

■ Boolean-SAT, Graph-SAT, C-SAT

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \rightarrow \Gamma$?

- *n*-colorability, graph acyclicity, diophantine
- Boolean-SAT, Graph-SAT, C-SAT

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

- *n*-colorability, graph acyclicity, diophantine
- Boolean-SAT, Graph-SAT, C-SAT

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Γ is ω -categorical iff action of Aut(Γ) on Γ^{*n*} has finitely many orbits $\forall n$.

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

- *n*-colorability, graph acyclicity, diophantine
- Boolean-SAT, Graph-SAT, C-SAT

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Γ is ω -categorical iff action of Aut(Γ) on Γ^{*n*} has finitely many orbits $\forall n$.

For ω -categorical Γ : if $Pol(\Gamma) \subseteq Pol(\Gamma')$,

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

- *n*-colorability, graph acyclicity, diophantine
- Boolean-SAT, Graph-SAT, C-SAT

 $\mathsf{Pol}(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Γ is ω -categorical iff action of Aut(Γ) on Γ^{*n*} has finitely many orbits $\forall n$.

For ω -categorical Γ : if Pol(Γ) \subseteq Pol(Γ '), then CSP(Γ ') is polynomial-time reducible to CSP(Γ). Theorem (Bodirsky + Nešetřil '03) Let Γ be a countable ω-categorical structure. A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ. Theorem (Bodirsky + Nešetřil '03) Let Γ be a countable ω-categorical structure. A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ.

Blackboard

Part II:

pp interpretations / topological clones

Constraint Satisfaction

Michael Pinsker

pp interpretations

Constraint Satisfaction

Michael Pinsker

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every clone of this form \rightarrow can see Pol(Γ) as term clone.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone: in particular, subalgebras, congruence relations.

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone: in particular, subalgebras, congruence relations.

Can apply algebraic constructions *independently of signature*:

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone: in particular, subalgebras, congruence relations.

Can apply algebraic constructions *independently of signature*:

Homomorphic images / factors

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone: in particular, subalgebras, congruence relations.

Can apply algebraic constructions *independently of signature*:

- Homomorphic images / factors
- Subalgebras

Let $\mathfrak{A} = (A; (f_i)_{i \in I})$ be an algebra, and τ its signature.

Term functions of \mathfrak{A} form function clone $Clo(\mathfrak{A})$.

Every clone of this form \rightarrow can see Pol(Γ) as term clone.

Can see $Pol(\Gamma)$ as a polymorphism algebra by giving it a signature.

Arbitrary, but many properties of an algebra depend only on its clone: in particular, subalgebras, congruence relations.

Can apply algebraic constructions *independently of signature*:

- Homomorphic images / factors
- Subalgebras
- finite Powers.

Constraint Satisfaction

Michael Pinsker

For a function clone $\ensuremath{\textbf{C}}$:

For a function clone C:

H(**C**)... function clones obtained by factoring by congruence.

For a function clone **C**:

- H(C)... function clones obtained by factoring by congruence.
- S(C) ... function clones obtained by restriction to subalgebra.

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- S(C) ... function clones obtained by restriction to subalgebra.
- \blacksquare P^{fin}(**C**)... function clones obtained by taking finite power.

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- $\blacksquare P^{fin}(\textbf{C}) \dots$ function clones obtained by taking finite power.

Proposition (Bodirsky + MP '12)

Let Γ be ω -categorical. If Pol(Δ) contains a function clone which can be obtained from Pol(Γ) by H, S, P^{fin}, then

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(**C**) ... function clones obtained by taking finite power.

Proposition (Bodirsky + MP '12)

Let Γ be ω -categorical. If Pol(Δ) contains a function clone which can be obtained from Pol(Γ) by H, S, P^{fin}, then

• Δ is ω -categorical and Pol(Δ) contains a clone in HSP^{fin}(Pol(Γ));

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(**C**) ... function clones obtained by taking finite power.

Proposition (Bodirsky + MP '12)

Let Γ be ω -categorical. If Pol(Δ) contains a function clone which can be obtained from Pol(Γ) by H, S, P^{fin}, then

- Δ is ω -categorical and Pol(Δ) contains a clone in HSP^{fin}(Pol(Γ));
- **CSP**(Δ) is polynomial-time reducible to CSP(Γ).

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(C) ... function clones obtained by taking finite power.

Proposition (Bodirsky + MP '12)

Let Γ be ω -categorical. If Pol(Δ) contains a function clone which can be obtained from Pol(Γ) by H, S, P^{fin}, then

- Δ is ω -categorical and Pol(Δ) contains a clone in HSP^{fin}(Pol(Γ));
- $CSP(\Delta)$ is polynomial-time reducible to $CSP(\Gamma)$.

Proof sketch
CSP and HSP^{fin}

For a function clone **C**:

- **H(C)**...function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(**C**) ... function clones obtained by taking finite power.

Proposition (Bodirsky + MP '12)

Let Γ be ω -categorical. If Pol(Δ) contains a function clone which can be obtained from Pol(Γ) by H, S, P^{fin}, then

- Δ is ω -categorical and Pol(Δ) contains a clone in HSP^{fin}(Pol(Γ));
- **CSP**(Δ) is polynomial-time reducible to CSP(Γ).

Proof sketch

Subuniverses, congruence relations are pp-definable;

CSP and HSP^{fin}

For a function clone **C**:

- \blacksquare H(C)... function clones obtained by factoring by congruence.
- \blacksquare S(C) ... function clones obtained by restriction to subalgebra.
- P^{fin}(**C**) ... function clones obtained by taking finite power.

Proposition (Bodirsky + MP '12)

Let Γ be ω -categorical. If Pol(Δ) contains a function clone which can be obtained from Pol(Γ) by H, S, P^{fin}, then

- Δ is ω -categorical and Pol(Δ) contains a clone in HSP^{fin}(Pol(Γ));
- **CSP**(Δ) is polynomial-time reducible to CSP(Γ).

Proof sketch

- Subuniverses, congruence relations are pp-definable;
- Δ can be simulated ("pp interpreted") on pp-definable factor of pp-definable subset of finite power of Γ.

Constraint Satisfaction

Michael Pinsker

Function clones carry natural structure:

Function clones carry natural structure:

algebraic (composition / equations)

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let **C**, **D** be function clones. ξ : **C** \rightarrow **D** is a (clone) homomorphism iff

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let **C**, **D** be function clones. ξ : **C** \rightarrow **D** is a (clone) homomorphism iff

it preserves arities;

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

- it preserves arities;
- sends every projection in C to the corresponding projection in D;

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let C, D be function clones. $\xi : C \to D$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

• $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let C, D be function clones. $\xi : C \to D$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

• $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.

Topological structure:

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

 $= \xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n)) \text{ for all } f,g_1,\ldots,g_n \in \mathbf{C}.$

Topological structure:

Pointwise convergence on functions $f: D^n \to D$.

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

 $= \xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n)) \text{ for all } f,g_1,\ldots,g_n \in \mathbf{C}.$

Topological structure:

Pointwise convergence on functions $f: D^n \to D$. D...discrete; D^{D^n} product topology.

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

• $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.

Topological structure:

Pointwise convergence on functions $f: D^n \to D$.

D... discrete; D^{D^n} product topology.

 $(f_i)_{i \in \omega}$ converges to f iff the f_i eventually agree with f on every finite set.

Function clones carry natural structure:

- algebraic (composition / equations)
- topological (pointwise convergence)

Like topological groups / monoids: topological clones.

Algebraic structure:

Let \mathbf{C}, \mathbf{D} be function clones. $\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

it preserves arities;

sends every projection in **C** to the corresponding projection in **D**;

• $\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$ for all $f,g_1,\ldots,g_n \in \mathbf{C}$.

Topological structure:

Pointwise convergence on functions $f: D^n \to D$. D... discrete; D^{D^n} product topology. $(f_i)_{i\in\omega}$ converges to f iff the f_i eventually agree with f on every finite set. Set of all finitary functions $\bigcup_n D^{D^n}...$ sum space.

Topological remarks

Constraint Satisfaction

Michael Pinsker

Topological remarks

If *D* countable: $\bigcup_n D^{D^n}$ is homeomorphic to the Baire space $\mathbb{N}^{\mathbb{N}}$.

Complete metric separable (=Polish) space!

Complete metric separable (=Polish) space!

Polymorphism clones \leftrightarrow closed function clones.

Complete metric separable (=Polish) space!

Polymorphism clones \leftrightarrow closed function clones.

Why?

Complete metric separable (=Polish) space!

Polymorphism clones \leftrightarrow closed function clones.

Why?

For finite function clones: topology discrete.

Constraint Satisfaction

Michael Pinsker

Theorem ("Topological Birkhoff" Bodirsky + MP '12)

Let Δ , Γ be ω -categorical or finite. TFAE:

 $\blacksquare \operatorname{Pol}(\Delta) = \operatorname{HSP^{fin}}(\operatorname{Pol}(\Gamma));$

there exists a continuous onto homomorphism

 $\xi \colon \mathsf{Pol}(\Gamma) \to \mathsf{Pol}(\Delta).$

Theorem ("Topological Birkhoff" Bodirsky + MP '12)

Let Δ , Γ be ω -categorical or finite. TFAE:

 $\blacksquare \operatorname{Pol}(\Delta) = \operatorname{HSP^{fin}}(\operatorname{Pol}(\Gamma));$

• there exists a continuous onto homomorphism $\xi: \operatorname{Pol}(\Gamma) \to \operatorname{Pol}(\Delta).$

Corollary

Let Δ , Γ be ω -categorical or finite. If $Pol(\Delta) \cong Pol(\Gamma)$, then $CSP(\Delta)$ and $CSP(\Gamma)$ are polynomial-time equivalent.

Theorem ("Topological Birkhoff" Bodirsky + MP '12)

Let Δ , Γ be ω -categorical or finite. TFAE:

 $\blacksquare \operatorname{Pol}(\Delta) = \operatorname{HSP^{fin}}(\operatorname{Pol}(\Gamma));$

• there exists a continuous onto homomorphism $\xi: \operatorname{Pol}(\Gamma) \to \operatorname{Pol}(\Delta).$

Corollary

Let Δ , Γ be ω -categorical or finite. If $Pol(\Delta) \cong Pol(\Gamma)$, then $CSP(\Delta)$ and $CSP(\Gamma)$ are polynomial-time equivalent.

Theorem (Bodirsky + MP '12)

Let Δ , Γ be ω -categorical or finite. TFAE:

- Δ has a pp interpretation in Γ ;
- there exists a continuous homomorphism ξ : Pol(Γ) → Pol(Δ) whose image is dense in an oligomorphic function clone.

Constraint Satisfaction

Michael Pinsker

Let $\Pi:=(\{0,1\};\{(1,0,0),(0,1,0),(0,0,1)\}).$

Let $\Pi := (\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}).$ CSP(Π) NP-complete.

Let $\Pi := (\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\}).$

CSP(Π) NP-complete.

 $Pol(\Pi)$ contains only projections.

Let $\Pi := (\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\}).$

 $CSP(\Pi)$ NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Let $\Pi := (\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\}).$

 $CSP(\Pi)$ NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Theorem (Bodirsky + MP '12) Let Γ be ω-categorical. TFAE:

Let $\Pi := (\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\}).$

CSP(Π) NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Theorem (Bodirsky + MP '12)

Let Γ be ω -categorical. TFAE:

Π has a pp interpretation in Γ;

Let $\Pi := (\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}).$

 $CSP(\Pi)$ NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Theorem (Bodirsky + MP '12)

Let Γ be ω -categorical. TFAE:

- **\square** In has a pp interpretation in Γ ;
- there exists a continuous clone homomorphism ξ : Pol(Γ) \rightarrow 1;
The worst of the bad

Let $\Pi := (\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}).$

 $CSP(\Pi)$ NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Theorem (Bodirsky + MP '12)

Let Γ be ω -categorical. TFAE:

- Π has a pp interpretation in Γ;
- there exists a continuous clone homomorphism ξ : Pol(Γ) \rightarrow 1;
- there exists a continuous clone homomorphism $\xi: \operatorname{Pol}(\Gamma) \to \operatorname{Pol}(\Gamma')$ for any finite Γ' ;

The worst of the bad

Let $\Pi := (\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}).$

CSP(Π) NP-complete.

 $Pol(\Pi)$ contains only projections. Denote this clone by **1**.

Theorem (Bodirsky + MP '12)

Let Γ be ω -categorical. TFAE:

- Π has a pp interpretation in Γ;
- there exists a continuous clone homomorphism ξ : Pol(Γ) \rightarrow 1;
- there exists a continuous clone homomorphism $\xi: \operatorname{Pol}(\Gamma) \to \operatorname{Pol}(\Gamma')$ for any finite Γ' ;
- **all finite** Γ' have a pp interpretation in Γ .

"I am indeed, in a certain sense a Circle," replied the Voice, "and a more perfect Circle than any in Flatland; but to speak more accurately, I am many Circles in one."

Part III: November 6th