Algebraic and model-theoretic methods in constraint satisfaction

1st session

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7

Funded by FWF grant I836-N23

Doc-Course, Charles University Prague

2014

Constraint Satisfaction

Michael Pinsker

Part I: CSPs / dividing the world / pp definitions, polymorphism clones, *ω*-categoricity

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT
- Part IV: Model-complete cores / The infinite tractability conjecture

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT
- Part IV: Model-complete cores / The infinite tractability conjecture
- Model theory, Universal algebra, Ramsey theory, Topological dynamics \rightarrow Theoretical computer science

- **Part I:** CSPs / dividing the world / pp definitions, polymorphism clones, ω-categoricity
- Part II: pp interpretations / topological clones
- Part III: Canonical functions, Ramsey structures / Graph-SAT
- Part IV: Model-complete cores / The infinite tractability conjecture
- Model theory, Universal algebra, Ramsey theory, Topological dynamics \rightarrow Theoretical computer science

Building new dimension out of two smaller

Most statements in this presentation are imprecise / false.



Part I:

CSPs / pp definitions / polymorphism clones / ω -categoricity

Constra	int Sat	isfac	tion

Michael Pinsker

Constraint Satisfaction

Michael Pinsker

Let Γ be a structure in a finite relational language τ .

Let Γ be a structure in a finite relational language τ .

Definition $CSP(\Gamma)$ is the decision problem:

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or can see it as pp sentence (existentially quantified conjunction).

Let Γ be a structure in a finite relational language τ .

Definition CSP(Γ) is the decision problem: INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them. QUESTION: is there a satisfying assignment $h: \{x_1, \ldots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or can see it as pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite. But language finite.

Homomorphism problems

Constraint Satisfaction

Michael Pinsker

Homomorphism problems

Let Γ be a structure in a finite relational language τ .

Homomorphism problems

Let Γ be a structure in a finite relational language τ .

Definition $HOM(\Gamma)$ is the decision problem:

Definition HOM(Γ) is the decision problem: INPUT: a *finite* τ -structure Δ.

Definition HOM(Γ) is the decision problem: INPUT: a *finite* τ -structure Δ. QUESTION: is there a homomorphism $h: \Delta \to \Gamma$?

Definition HOM(Γ) is the decision problem: INPUT: a *finite* τ -structure Δ. QUESTION: is there a homomorphism $h: \Delta \rightarrow \Gamma$?

Finite τ -structures \leftrightarrow pp τ -sentences.

Definition HOM(Γ) is the decision problem: INPUT: a *finite* τ -structure Δ. QUESTION: is there a homomorphism $h: \Delta \rightarrow \Gamma$?

Finite τ -structures \leftrightarrow pp τ -sentences.

HOM(Γ) and CSP(Γ) are equivalent.

Constraint Satisfaction

Michael Pinsker

Digraph acyclicity

Input: A finite directed graph (D; E)Question: Is (D; E) acyclic?

Digraph acyclicity

Input: A finite directed graph (D; E) Question: Is (D; E) acyclic? Is CSP: template ($\mathbb{Q}; <$)

Digraph acyclicity

Input: A finite directed graph (D; E) Question: Is (D; E) acyclic? Is CSP: template ($\mathbb{Q}; <$)

Betweenness

Input: A finite set of triples of variables Question: Is there a linear order on the variables such that for each triple (x, y, z) either x < y < z or z < y < x?

Digraph acyclicity

Input: A finite directed graph (D; E) Question: Is (D; E) acyclic? Is CSP: template ($\mathbb{Q}; <$)

Betweenness

Input: A finite set of triples of variables Question: Is there a linear order on the variables such that for each triple (x, y, z) either x < y < z or z < y < x? Is CSP: template $(\mathbb{Q}; \{(x, y, z) \mid (x < y < z) \lor (z < y < x)\})$

Constraint Satisfaction

Michael Pinsker

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ?

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ? Is CSP: template (\mathbb{Z} ; 1, +, ·, =)

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ? Is CSP: template (\mathbb{Z} ; 1, +, \cdot , =)

n-colorability

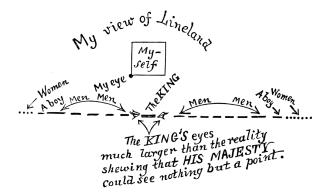
Input: A finite undirected graph Question: Is it *n*-colorable?

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$ Question: Is there a solution in \mathbb{Z} ? Is CSP: template (\mathbb{Z} ; 1, +, \cdot , =)

n-colorability

Input: A finite undirected graph Question: Is it *n*-colorable? Is a CSP: template K_n



Dividing the world

Constraint Satisfaction

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free {*E*}-formulas.

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free {*E*}-formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a graph?

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free {*E*}-formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a graph?

Computational complexity depends on Ψ . Always in NP.

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free {*E*}-formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a graph?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Graph-SAT(Ψ) tractable?

Constraint Satisfaction

Constraint Satisfaction

Example 1 Let Ψ_1 only contain

$$\psi_1(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) .$$

Example 1 Let Ψ_1 only contain

$$\psi_1(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) .$$

Graph-SAT(Ψ_1) is NP-complete.

Example 1 Let Ψ_1 only contain

$$\psi_1(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) .$$

Graph-SAT(Ψ_1) is NP-complete.

Example 2 Let Ψ_2 only contain

$$\psi_{2}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) \\ \lor (E(x, y) \land E(y, z) \land E(x, z)) .$$

Example 1 Let Ψ_1 only contain

$$\psi_1(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) .$$

Graph-SAT(Ψ_1) is NP-complete.

Example 2 Let Ψ_2 only contain

$$\psi_{2}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z)) \\ \lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)) \\ \lor (E(x, y) \land E(y, z) \land E(x, z)) .$$

Graph-SAT(Ψ_2) is in P.

Constraint Satisfaction

Let G = (V; E) be the random graph: the unique countably infinite graph which is

Let G = (V; E) be the random graph: the unique countably infinite graph which is

(ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending *i*.

Let G = (V; E) be the random graph: the unique countably infinite graph which is

(ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending *i*.

■ universal: contains all finite (even countable) graphs.

Let G = (V; E) be the random graph: the unique countably infinite graph which is

(ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending *i*.

■ universal: contains all finite (even countable) graphs.

For a graph formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in V^n : \psi(a_1,\ldots,a_n)\}.$$

Let G = (V; E) be the random graph: the unique countably infinite graph which is

(ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending *i*.

■ universal: contains all finite (even countable) graphs.

For a graph formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in V^n : \psi(a_1,\ldots,a_n)\}.$$

For a set Ψ of graph formulas, define a structure

$$\Gamma_{\Psi} := (V; (R_{\psi} : \psi \in \Psi)).$$

Let G = (V; E) be the random graph: the unique countably infinite graph which is

(ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending *i*.

■ universal: contains all finite (even countable) graphs.

For a graph formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in V^n : \psi(a_1,\ldots,a_n)\}.$$

For a set Ψ of graph formulas, define a structure

$$\Gamma_{\Psi} := (V; (R_{\psi} : \psi \in \Psi)).$$

 Γ_{Ψ} is a *reduct of* the random graph, i.e., a structure with a first-order definition in *G*.

Constraint Satisfaction

Constraint Satisfaction

An instance

$$W = \{w_1, \dots, w_m\}$$
$$\phi_1, \dots, \phi_n$$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

An instance

$$W = \{w_1, \dots, w_m\}$$
$$\phi_1, \dots, \phi_n$$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

Graph-SAT(Ψ) = CSP(Γ_{Ψ}).

An instance

$$W = \{w_1, \dots, w_m\}$$
$$\phi_1, \dots, \phi_n$$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

```
Graph-SAT(\Psi) = CSP(\Gamma_{\Psi}).
```

Could have used any universal graph?

An instance

$$W = \{w_1, \dots, w_m\}$$
$$\phi_1, \dots, \phi_n$$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

```
Graph-SAT(\Psi) = CSP(\Gamma_{\Psi}).
```

Could have used any universal graph?

Graph-SAT problems \leftrightarrow CSPs of reducts of the random graph.

Constraint Satisfaction

Let Ψ be a finite set of propositional formulas.

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ) INPUT:

- A finite set W of propositional variables, and
- statements ϕ_1, \ldots, ϕ_n about the variables in *W*, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ) INPUT:

- A finite set W of propositional variables, and
- statements ϕ_1, \ldots, ϕ_n about the variables in *W*, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Computational complexity depends on Ψ . Always in NP.

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ) INPUT:

- A finite set W of propositional variables, and
- statements ϕ_1, \ldots, ϕ_n about the variables in *W*, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Boolean-SAT(Ψ) tractable?

Constraint Satisfaction

For a Boolean formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{ (a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n) \}.$$

For a Boolean formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{ (a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n) \}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi}: \psi \in \Psi)).$$

For a Boolean formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{ (a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n) \}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi}: \psi \in \Psi)).$$

An instance

•
$$W = \{w_1, ..., w_m\}$$

• $\phi_1, ..., \phi_n$

of Boolean-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

For a Boolean formula $\psi(x_1, \ldots, x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi}: \psi \in \Psi)).$$

An instance

•
$$W = \{w_1, ..., w_m\}$$

• $\phi_1, ..., \phi_n$

of Boolean-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

Boolean-SAT(Ψ) = CSP(Γ_{Ψ}).

$\Gamma = (\{0,1\};\{(1,0,0),(0,1,0),(0,0,1)\})$

Temporal constraints

Constraint Satisfaction

Temporal constraints

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Temporal constraints

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Computational problem: Temp-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a linear order?

Temporal constraints

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Computational problem: Temp-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a linear order?

Computational complexity depends on Ψ . Always in NP.

Temporal constraints

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Computational problem: Temp-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a linear order?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Temp-SAT(Ψ) tractable?

Constraint Satisfaction

Michael Pinsker

Temporal formulas and reducts of $(\mathbb{Q}; <)$

Temporal formulas and reducts of $(\mathbb{Q}; <)$

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

- Let $(\mathbb{Q}; <)$ denote the order of the rationals.
- Every {<}-formula $\psi(x_1, \ldots, x_n)$ defines relation R_{ψ} on \mathbb{Q} .

- Let $(\mathbb{Q}; <)$ denote the order of the rationals.
- Every {<}-formula $\psi(x_1, \ldots, x_n)$ defines relation R_{ψ} on \mathbb{Q} .

Every set Ψ of $\{<\}$ -formulas defines a reduct Γ_{Ψ} of $(\mathbb{Q}; <)$.

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

Every {<}-formula $\psi(x_1, \ldots, x_n)$ defines relation R_{ψ} on \mathbb{Q} .

Every set Ψ of $\{<\}$ -formulas defines a reduct Γ_{Ψ} of $(\mathbb{Q}; <)$.

Temp-SAT(Ψ) = CSP(Γ_{Ψ}).

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

Every $\{<\}$ -formula $\psi(x_1, \ldots, x_n)$ defines relation R_{ψ} on \mathbb{Q} .

Every set Ψ of $\{<\}$ -formulas defines a reduct Γ_{Ψ} of $(\mathbb{Q}; <)$.

```
Temp-SAT(\Psi) = CSP(\Gamma_{\Psi}).
```

Could have used any infinite linear order?

Three classification theorems

Constraint Satisfaction

Michael Pinsker

Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are either in P or NP-complete, for all Ψ .

Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are either in P or NP-complete, for all Ψ .

Given Ψ , we can decide in which class the problem falls.

Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are either in P or NP-complete, for all Ψ .

Given Ψ , we can decide in which class the problem falls.

- Boolean-SAT: Schaefer ('78)
- **Temp-SAT:** Bodirsky+Kára ('07)
- Graph-SAT: Bodirsky+MP ('10) (Schaefer's theorem for graphs)

Constraint Satisfaction

Michael Pinsker

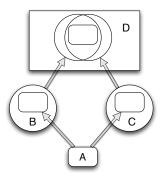
Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Graph-SAT(Ψ): Is there a finite graph such that... (constraints) **Temp-SAT**(Ψ): Is there a linear order such that...

Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Temp-SAT(Ψ): Is there a linear order such that...

The classes of finite graphs and linear orders are *amalgamation classes*.



Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Further amalgamation classes.

Partial orders

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)
- Boolean algebras

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances
- Tournaments

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances
- Tournaments
- Henson digraphs (forbidden tournaments)

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Further amalgamation classes.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce), Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances
- Tournaments
- Henson digraphs (forbidden tournaments)

Homogeneous digraphs classified by Cherlin.

Constraint Satisfaction

Michael Pinsker

Constraint Satisfaction

Michael Pinsker

Let $\ensuremath{\mathbb{C}}$ be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\ensuremath{\mathbb{C}}$ be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ .

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a \triangle -SAT problem.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a \triangle -SAT problem.

It asks whether a given conjunction using ψ_1, \ldots, ψ_n is satisfiable in some member of C.

Let $\ensuremath{\mathbb{C}}$ be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a \triangle -SAT problem.

It asks whether a given conjunction using ψ_1, \ldots, ψ_n is satisfiable in some member of C.

Note: This type of CSP cannot be modeled by finite templates.

Constraint Satisfaction

Michael Pinsker

Classifications

Classifications

■ All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

- Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)
- Infinite template: can be undecidable

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

- Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)
- Infinite template: can be undecidable
 Up to polyn. time, all complexities appear (Grohe+Bodirsky '08)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

- Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)
- Infinite template: can be undecidable
 Up to polyn. time, all complexities appear (Grohe+Bodirsky '08)
 If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

- Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)
- Infinite template: can be undecidable
 Up to polyn. time, all complexities appear (Grohe+Bodirsky '08)
 If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky+MP '11)

Let C be a Fraïssé class which is finitely bounded (i.e., given by finitely many forbidden substructures).

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

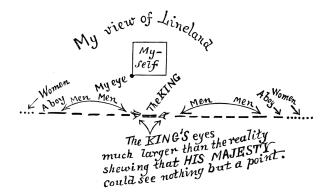
Complexity?

- Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)
- Infinite template: can be undecidable
 Up to polyn. time, all complexities appear (Grohe+Bodirsky '08)
 If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky+MP '11)

Let \mathbb{C} be a Fraïssé class which is finitely bounded (i.e., given by finitely many forbidden substructures).

Then C-SAT is always in P or NP-complete.



pp definitions, polymorphism clones, ω -categoricity

Constraint Satisfaction

Michael Pinsker

A τ -formula is primitive positive (pp) iff it is of the form

$$\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$$

where ψ_i are atomic.

A τ -formula is primitive positive (pp) iff it is of the form

$$\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$$

where ψ_i are atomic.

Note: the input of a CSP really is a pp sentence.

A τ -formula is primitive positive (pp) iff it is of the form

 $\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$

where ψ_i are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation $y = 2^x$ is pp definable in $(\mathbb{Z}; +, \cdot, 1)$ (Matiyasevich+Robinson).

A τ -formula is primitive positive (pp) iff it is of the form

 $\exists x_1 \cdots \exists x_n \psi_1 \wedge \cdots \wedge \psi_m,$

where ψ_i are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation $y = 2^x$ is pp definable in $(\mathbb{Z}; +, \cdot, 1)$ (Matiyasevich+Robinson).

Observation (Bulatov+Krokhin+Jeavons '00)

Expanding Γ by pp definable relations increases the complexity of the CSP by at most polynomial-time.

Constraint Satisfaction

Michael Pinsker

Let Γ be a structure.

Let Γ be a structure.

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Let Γ be a structure.

 $\mathsf{Pol}(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1, \ldots, x_n) \in \text{Pol}(\Gamma)$ iff $f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$ and all relations R of Γ .

Let Γ be a structure.

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

```
So f(x_1, \ldots, x_n) \in \text{Pol}(\Gamma) iff f(r_1, \ldots, r_n) \in R
for all r_1, \ldots, r_n \in R and all relations R of \Gamma.
```

The elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

Let Γ be a structure.

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1, \ldots, x_n) \in \text{Pol}(\Gamma)$ iff $f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$ and all relations R of Γ .

The elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

 $Pol(\Gamma)$ is a function clone:

- closed under composition
- contains projections.

Let Γ be a structure.

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1, \ldots, x_n) \in \text{Pol}(\Gamma)$ iff $f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$ and all relations R of Γ .

The elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

 $Pol(\Gamma)$ is a function clone:

- closed under composition
- contains projections.

```
Observe: Pol(\Gamma) \supseteq End(\Gamma) \supseteq Aut(\Gamma).
```

Constraint Satisfaction

Michael Pinsker

Theorem (Bodirsky+Nešetřil '03) Let Γ be a countable ω -categorical structure. A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ.

Theorem (Bodirsky+Nešetřil '03) Let Γ be a countable ω-categorical structure. A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ.

Hence, the complexity of $CSP(\Gamma)$ only depends on $Pol(\Gamma)$:

Theorem (Bodirsky+Nešetřil '03) Let Γ be a countable ω-categorical structure. A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ.

Hence, the complexity of $CSP(\Gamma)$ only depends on $Pol(\Gamma)$:

Corollary Let Γ be ω -categorical. If $Pol(\Gamma) \subseteq Pol(\Gamma')$, then $CSP(\Gamma')$ is polynomial-time reducible to $CSP(\Gamma)$.

Constraint Satisfaction

Michael Pinsker

Let G be a permutation group acting on a countable set D.

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

 \mathcal{G} is oligomorphic iff its action on D^n has finitely many orbits for all n.

■ Aut(N; <)?

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

- Aut(N; <)?
- Aut(ℤ; <)?

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

- Aut(N; <)?
- Aut(ℤ; <)?
- Aut(Q; <)?</p>

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

- Aut(N; <)?
- Aut(Z; <)?</p>
- Aut(ℚ; <)?
- Homogeneous structures?

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

 \mathcal{G} is oligomorphic iff its action on D^n has finitely many orbits for all n.

- Aut(N; <)?
- Aut(Z; <)?</p>
- Aut(ℚ; <)?
- Homogeneous structures?

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

Let Γ be countable. TFAE:

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

 \mathcal{G} is oligomorphic iff its action on D^n has finitely many orbits for all n.

- Aut(N; <)?
- Aut(Z; <)?</p>
- Aut(ℚ; <)?
- Homogeneous structures?

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

Let Γ be countable. TFAE:

Aut(Γ) is oligomorphic;

Let \mathcal{G} be a permutation group acting on a countable set *D*. For all $n \ge 1$, \mathcal{G} acts on D^n componentwise.

Definition

 \mathcal{G} is oligomorphic iff its action on D^n has finitely many orbits for all n.

- Aut(N; <)?
- Aut(Z; <)?</p>
- Aut(ℚ; <)?
- Homogeneous structures?

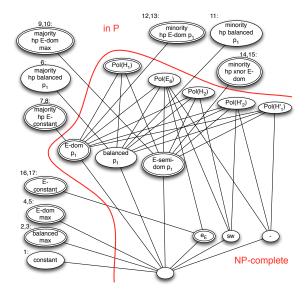
Theorem (Ryll-Nardzewski, Engeler, Svenonius)

Let Γ be countable. TFAE:

Aut(Γ) is oligomorphic;

\Box Γ *is* ω *-categorical: the only countable model of its theory.*

Graph-SAT classification



Constraint Satisfaction

Michael Pinsker

Until the moment when I placed my mouth in his World, he had not heard anything except confused sounds beating against –

what I called his side,

but what he called his INSIDE or STOMACH.

Part II: November 3rd

Constraint Satisfaction

Michael Pinsker