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Most statements in this presentation are imprecise / false.
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Part I:

CSPs / pp definitions / polymorphism clones / ω-categoricity
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Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment h : {x1, . . . , xn} → Γ?

Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or can see it as pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite. But language finite.
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Homomorphism problems

Let Γ be a structure in a finite relational language τ .

Definition
HOM(Γ) is the decision problem:

INPUT: a finite τ -structure ∆.
QUESTION: is there a homomorphism h : ∆→ Γ?

Finite τ -structures ↔ pp τ -sentences.

HOM(Γ) and CSP(Γ) are equivalent.
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Examples

Digraph acyclicity
Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic?
Is CSP: template (Q;<)

Betweenness
Input: A finite set of triples of variables

Question: Is there a linear order on the variables such that
for each triple (x , y , z) either x < y < z or z < y < x?

Is CSP: template (Q; {(x , y , z) | (x < y < z) ∨ (z < y < x)})
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Examples

Diophantine
Input: A finite system of equations using =,+, ·,1

Question: Is there a solution in Z?
Is CSP: template (Z; 1,+, ·,=)

n-colorability
Input: A finite undirected graph

Question: Is it n-colorable?
Is a CSP: template Kn
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Dividing the world
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The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?
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Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.
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Graph formulas and reducts of the random graph

Let G = (V ; E) be the random graph:
the unique countably infinite graph which is

(ultra-)homogeneous:
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal: contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.
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For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.

Constraint Satisfaction Michael Pinsker



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

Graph-SAT(Ψ) = CSP(ΓΨ).

Could have used any universal graph?

Graph-SAT problems↔ CSPs of reducts of the random graph.
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The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A finite set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Boolean-SAT(Ψ) tractable?
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Boolean-SAT as CSP

For a Boolean formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ {0,1}n : ψ(a1, . . . ,an)}.

For a set Ψ of Boolean formulas, define a structure

ΓΨ := ({0,1}; (Rψ : ψ ∈ Ψ)).

An instance
W = {w1, . . . ,wm}
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of Boolean-SAT(Ψ) has a positive solution↔
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Boolean-SAT: Example

Γ = ({0,1}; {(1,0,0), (0,1,0), (0,0,1)})
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Temporal constraints

Let < be a binary relation symbol.
(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free {<}-formulas.

Computational problem: Temp-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a linear order?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Temp-SAT(Ψ) tractable?
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Temporal formulas and reducts of (Q;<)

Let (Q;<) denote the order of the rationals.

Every {<}-formula ψ(x1, . . . , xn) defines relation Rψ on Q.

Every set Ψ of {<}-formulas defines a reduct ΓΨ of (Q;<).

Temp-SAT(Ψ) = CSP(ΓΨ).

Could have used any infinite linear order?
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Three classification theorems

Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are
either in P or NP-complete, for all Ψ.

Given Ψ, we can decide in which class the problem falls.

Boolean-SAT: Schaefer (’78)

Temp-SAT: Bodirsky+Kára (’07)

Graph-SAT: Bodirsky+MP (’10) (Schaefer’s theorem for graphs)
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Homogeneous structures

Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Temp-SAT(Ψ): Is there a linear order such that...

The classes of finite graphs and linear orders are
amalgamation classes.

A

D

CB
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Fraïssé’s theorem

Theorem (Fraïssé)
TFAE:

Classes of relational structures closed under substructures which
have amalgamation.
Homogeneous relational structures.

Further amalgamation classes.

Partial orders
Lattices (Jónsson), Distributive lattices (Pierce),
Trivial lattices (Day, Ježek)
Boolean algebras
Metric spaces with rational distances
Tournaments
Henson digraphs (forbidden tournaments)

Homogeneous digraphs classified by Cherlin.
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CSPs of reducts of homogeneous structures

Let C be a Fraïssé class of structures in finite language.

Let ∆ be its Fraïssé limit.

Let Γ = (D; Rψ1 , . . . ,Rψn ) be a reduct of ∆.

CSP(Γ) is called a ∆-SAT problem.

It asks whether a given conjunction using ψ1, . . . , ψn
is satisfiable in some member of C.

Note: This type of CSP cannot be modeled by finite templates.
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Dividing the world

Classifications

All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

Finite template: in NP. Dichotomy conjecture (Feder+Vardi ’93)
Infinite template: can be undecidable
Up to polyn. time, all complexities appear (Grohe+Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky+MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.
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Up to polyn. time, all complexities appear (Grohe+Bodirsky ’08)
If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky+MP ’11)
Let C be a Fraïssé class which is finitely bounded
(i.e., given by finitely many forbidden substructures).
Then C-SAT is always in P or NP-complete.
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pp definitions, polymorphism clones, ω-categoricity
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Primitive positive definitions

A τ -formula is primitive positive (pp) iff it is of the form

∃x1 · · · ∃xn ψ1 ∧ · · · ∧ ψm,

where ψi are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation y = 2x is pp definable in (Z; +, ·,1)
(Matiyasevich+Robinson).

Observation (Bulatov+Krokhin+Jeavons ’00)
Expanding Γ by pp definable relations
increases the complexity of the CSP by at most polynomial-time.
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Polymorphism clones

Let Γ be a structure.

Pol(Γ) is the set of all homomorphisms f : Γn → Γ, where 1 ≤ n < ω.

So f (x1, . . . , xn) ∈ Pol(Γ) iff f (r1, . . . , rn) ∈ R
for all r1, . . . , rn ∈ R and all relations R of Γ.

The elements of Pol(Γ) are called polymorphisms of Γ.

Pol(Γ) is a function clone:

closed under composition
contains projections.

Observe: Pol(Γ) ⊇ End(Γ) ⊇ Aut(Γ).
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Function clones and pp definitions

Theorem (Bodirsky+Nešetřil ’03)
Let Γ be a countable ω-categorical structure.
A relation is pp definable over Γ iff
it is preserved by all polymorphisms of Γ.

Hence, the complexity of CSP(Γ) only depends on Pol(Γ):

Corollary
Let Γ be ω-categorical.
If Pol(Γ) ⊆ Pol(Γ′),
then CSP(Γ′) is polynomial-time reducible to CSP(Γ).
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ω-categoricity

Let G be a permutation group acting on a countable set D.
For all n ≥ 1, G acts on Dn componentwise.

Definition
G is oligomorphic iff its action on Dn has finitely many orbits for all n.

Aut(N;<)?

Aut(Z;<)?

Aut(Q;<)?

Homogeneous structures?

Theorem (Ryll-Nardzewski, Engeler, Svenonius)
Let Γ be countable. TFAE:

Aut(Γ) is oligomorphic;
Γ is ω-categorical: the only countable model of its theory.
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Graph-SAT classification
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Until the moment when I placed my mouth in his World,
he had not heard anything
except confused sounds beating against –

what I called his side,
but what he called his INSIDE or STOMACH.

Part II: November 3rd
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