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Abstract. We prove that an ω-categorical core structure primitively positively interprets
all finite structures with parameters if and only if some stabilizer of its polymorphism clone
has a homomorphism to the clone of projections, and that this happens if and only if its poly-
morphism clone does not contain operations α, β, s satisfying the identity αs(x, y, x, z, y, z) ≈
βs(y, x, z, x, z, y).

This establishes an algebraic criterion equivalent to the conjectured borderline between
P and NP-complete CSPs over reducts of finitely bounded homogenous structures, and ac-
complishes one of the steps of a proposed strategy for reducing the infinite domain CSP
dichotomy conjecture to the finite case.

Our theorem is also of independent mathematical interest, characterizing a topological
property of any ω-categorical core structure (the existence of a continuous homomorphism
of a stabilizer of its polymorphism clone to the projections) in purely algebraic terms (the
failure of an identity as above).

1. Introduction and Main Results

The Constraint Satisfaction Problem (CSP) over a relational structure A in a finite lan-
guage, denoted by CSP(A), is the problem of deciding whether or not a given primitive
positive (pp-) sentence in the language of A holds in A. An alternative, combinatorial defini-
tion of the CSP is also popular in the literature: CSP(A) is the problem of deciding whether
a given finite relational structure in the same language as A maps homomorphically into A.

For CSPs over certain structures, including all finite ones, a computational complexity clas-
sification has been conjectured, separating NP-hard problems from polynomial-time solvable
ones. In the following, we shall state and discuss this conjecture, and subsequently present
an improvement thereof which follows from our results.

In order to keep the presentation compact, we postpone most definitions to Section 2, and
refer also to the survey [6] as well as to the shorter [1] for the basics of the finite domain CSP
and to the monograph [12] and the shorter [38] for the infinite. As a reference for standard
notions from model theory and universal algebra, we point to the textbooks [34, 9].

All structures in the present article are implicitly assumed to be finite or countable.
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1.1. The tractability conjecture. The CSP over a structure with finite domain is clearly
contained in the class NP. Some well-known NP-complete problems, such as variants of 3-
SAT or 3-COLORING, can be formulated as CSPs over suitable finite structures, as well as
some problems solvable in polynomial time, such us 2-SAT, HORN-SAT, or systems of linear
equations over finite fields. In fact, it was conjectured in [29] that CSPs over finite structures
enjoy a dichotomy in the sense that every such CSP is either NP-complete, or tractable,
i.e., solvable in polynomial time. A large amount of attention was brought to confirming or
refuting this conjecture; a precise borderline between NP-complete and tractable CSPs was
delineated [28] and thenceforth referred to as the tractability conjecture or also the algebraic
dichotomy conjecture, since most of the equivalent formulations are algebraic. In a recent turn
of events, the tractability conjecture was confirmed independently by Andrei Bulatov [27] and
Dmitriy Zhuk [41].

When we allow the domain of A to be infinite, the situation changes drastically: every
computational decision problem is polynomial-time equivalent to CSP(A) for some A [14]!
A reasonable assumption on A which sends the CSP back to the class NP, and which still
allows to cover many interesting computational problems which cannot be modeled as the
CSP of a finite structure, is that A is a reduct of a finitely bounded homogeneous structure.
Substantial results for such CSPs include the full complexity classification of the CSPs over
the reducts of (Q;<) in [16] (classifying the complexity of problems previously called temporal
constraint satisfaction problems), the reducts of the random graph [21] (generalizing Schaefer’s
theorem for Boolean CSPs to what can be called the propositional logic for graphs), and
the reducts of the binary branching C-relation [15] (classifying the complexity of problems
known as phylogeny CSPs). The methods here include the algebraic methods from the finite,
but in addition tools from model theory and Ramsey theory [20]. Moreover, topological
considerations have played a significant role in the development of the theory [22], and indeed
seem inevitable in a sense, although paradoxically it was believed or at least hoped that
they would ultimately turn out inutile in a general complexity classification. On the other
hand, due to the fact that the investigation of infinite domain CSPs is more recent, and the
additional technical complications which are to be expected when passing from the finite to
the infinite, the purely algebraic theory as known in the finite is still quite undeveloped in
the infinite; the present work can be seen as the first purely algebraic result for such CSPs.

A generalization of the finite domain tractability conjecture has been formulated by Manuel
Bodirsky and the second author of the present article. To state it, we first recall several
basic facts. When B has a primitive positive (pp-)interpretation without parameters in A,
then CSP(B) reduces to CSP(A). When A is an ω-categorical core, then this statement is
even true for pp-interpretations with parameters. By [11], every ω-categorical structure, in
particular every reduct of a finitely bounded homogeneous structure, is homomorphically
equivalent to an ω-categorical core, which is unique up to isomorphism. Moreover, the CSPs
over any two structures which are homomorphically equivalent are equal, and so passing from
an ω-categorical structure to its core does not result in any loss of information concerning the
CSP.

These facts imply that the CSP over an ω-categorical structure is NP-hard whenever its
core pp-interprets with parameters some structure whose CSP is NP-hard, such as

K3 = ({1, 2, 3}; 6=)
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whose CSP is the 3-coloring problem, or

L = ({0, 1};R000, R001, R011, R111), Rabc = {0, 1}3 \ {(a, b, c)}
whose CSP is the 3-SAT problem, or

M = ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)})
whose CSP is the positive 1-in-3-SAT problem. In fact, these three structures not only pp-
interpret each other, they pp-interpret all finite structures. The infinite domain tractability
conjecture postulates, as does the corresponding conjecture for finite structures, that pp-
interpreting all finite structures with parameters in the core is the only source of hardness for
CSPs over reducts of finitely bounded homogeneous structures.

Conjecture 1.1 (Bodirsky + Pinsker 2011; cf. [23]). Let B be a reduct of a finitely bounded
homogeneous structure and let A be the core of B. Then

• A pp-interprets all finite structures with parameters (and thus CSP(B) is NP-complete),
or
• CSP(B) is solvable in polynomial time.

In the present article, we show that the failure of the first condition of this conjecture is
witnessed by a certain algebraic fact that could, similarly to the finite setting, potentially be
exploited for proving tractability of the CSP. We now make the notion of an algebraic witness
more precise.

1.2. The algebraic approach. The algebraic approach to finite domain CSPs is based on
the fact that pp-interpretability strength of a finite structure A is determined by its set of
compatible operations, the so-called polymorphism clone of A, denoted by Pol(A). Namely,
by classical universal algebraic results, a finite structure A pp-interprets a finite structure B
if and only if there exists a clone homomorphism from Pol(A) to Pol(B), that is, a mapping
which preserves arities and identities (universally quantified equations). This fact implies that
the complexity of CSP(A) only depends on the identities satisfied by operations in Pol(A)
and leads to an algebraic reformulation of the first item of Conjecture 1.1 for finite structures.
The following notation is used: the stabilizer of Pol(A) by finitely many constants c1, . . . , cn
is denoted Pol(A, c1, . . . , cn); its elements are those polymorphisms of A which preserve all
unary relations {ci}. The clones Pol(L), Pol(M), as well as Pol(K, 0, 1, 2) are trivial, i.e., they
contain only projections. Let us denote the clone of projections on a 2-element set by P. The
clone of projections on any other set of at least 2 elements is isomorphic to P.

Theorem 1.2 ([31, 25, 10], cf. [12]). The following are equivalent for a finite relational
structure A with domain A = {c1, . . . , cn}.

• A pp-interprets all finite structures with parameters.
• There exists a clone homomorphism from Pol(A, c1, . . . , cn) to P.

For the second, algebraic statement of Theorem 1.2 numerous equivalent algebraic criteria
have been obtained within the setting of finite structures [40, 33, 28, 36, 39, 3], making
in particular the failure of the condition more easily verifiable: this failure is then usually
witnessed by the satisfaction of particular identities in Pol(A, c1, . . . , cn) which cannot be
satisfied in P.

Some of the above-mentioned facts about finite domain CSPs have analogues for ω-categorical
structures. The complexity of CSP(A) still only depends on the polymorphism clone Pol(A)
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[19], and there is an analogue of Theorem 1.2, which however takes into consideration the
natural topological structure of Pol(A).

Theorem 1.3 ([22]). The following are equivalent for an ω-categorical structure A with do-
main A.

• A pp-interprets all finite structures with parameters.
• There exists a continuous clone homomorphism from Pol(A, c1, . . . , cn) to P, for some

elements c1, . . . , cn ∈ A.

More generally, the complexity of CSP(A) for ω-categorical structures provably only de-
pends on the structure of Pol(A) as a topological clone [22]. A natural, yet unresolved
problem when comparing the finite with the ω-categorical setting then is whether the topo-
logical structure of the polymorphism clone is really essential in the infinite, or whether the
abstract algebraic structure, i.e., the identities that hold in Pol(A), is sufficient to determine
the complexity of the CSP. This problem motivates, in particular, the related concept of re-
construction of the topology of a clone from its algebraic structure introduced in [24], which
has its own purely mathematical interest.

1.3. The result. We show that the borderline proposed in Conjecture 1.1 is purely algebraic.
In particular, if the conjecture is true, then the complexity of CSPs over structures concerned
by the conjecture only depends on the identities which hold in the polymorphism clone of
their core, rather than the additional topological structure thereof. Moreover, the borderline
is characterized by a single simple identity generalizing that of [39]. We show the following.

Theorem 1.4. The following are equivalent for an ω-categorical core structure A with domain
A.

(i) There exists no continuous clone homomorphism Pol(A, c1, . . . , cn) → P, for any
c1, . . . , cn ∈ A.

(ii) There exists no clone homomorphism Pol(A, c1, . . . , cn)→ P, for any c1, . . . , cn ∈ A.
(iii) Pol(A) contains a pseudo-Siggers operation, i.e., a 6-ary operation s such that

αs(x, y, x, z, y, z) ≈ βs(y, x, z, x, z, y)

for some unary operations α, β ∈ Pol(A).

Consequently, the missing piece for proving Conjecture 1.1 can now be stated in purely
algebraic terms.

Conjecture 1.5. Let A be the core of a reduct of a finitely bounded homogeneous structure.
If Pol(A) contains a pseudo-Siggers operation, then CSP(A) is solvable in polynomial time.

In a proposed strategy [38] for solving Conjecture 1.1, the first step asked to prove that
for an ω-categorical structure A, the existence of a clone homomorphism Pol(A) → P im-
plies the existence of a continuous such homomorphism (cf. [23]). If this was true, then the
failure of the first item of Conjecture 1.1 would have an algebraic witness, i.e., a non-trivial
system of identities holding in some polymorphism clone Pol(A, c1, . . . , cn). The idea then is,
roughly speaking, to use Ramsey theory to “lift” the algorithm for finite structures whose
polymorphism clone satisfy this identity to show that CSP(A) is tractable.

While we do not answer this question, Theorem 1.4 gives an answer for the variant which
is actually relevant for the CSP: for an ω-categorical core structure A, the existence of a clone
homomorphism Pol(A)→ P implies the existence of a continuous clone homomorphism from
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some stabilizer of Pol(A) to P. Taking into account the existence of non-continuous clone
homomorphisms Pol(A)→ P [23], even for ω-categorical A, as well as the recent discovery of
ω-categorical structures A,A′ whose polymorphism clones are isomorphic algebraically, but
not topologically [13], it might very well turn out that the answer to the original question is
negative, but, as we could then conclude a posteriori, irrelevant for CSPs.

Let us also remark that Theorem 1.4 is, by the fact that every ω-categorical structure
has a unique ω-categorical core, a statement about all ω-categorical structures, rather than
only the structures concerned by Conjecture 1.1. Theorem 1.4 is therefore remarkable in
that non-trivial statements about the class of all ω-categorical structures, other than the
fundamental theorem of Ryll-Nardzewski, Engeler, and Svenonius characterizing them, are
practically non-existent.

1.4. Outline and proof strategy. The strategy for proving Theorem 1.4 is similar to the
finite analogue of Theorem 1.4 proved in [39] (see also [35]). Siggers’s reasoning is based on a
“loop lemma” from Bulatov’s work in [26] that refines the CSP dichotomy theorem for finite
undirected graphs [32].

After providing definitions and notation in Section 2, we start our proof in Section 3 with
a generalization of the loop lemma, the pseudoloop lemma, using some of the ideas from [26].
Instead of finite graphs we work with infinite objects which we call graph-group-systems,
and which consist of a permutation group acting on the vertex set of an infinite graph while
preserving its edge relation. In our case, the action of the group will have finitely many orbits
in its componentwise action on finite tuples of fixed length, so that in some sense the graph
becomes finite modulo the group action. It might be some people’s cup of tea to imagine
such systems as fuzzy finite graphs, whereas others will be inclined to draw lines between
“potatoes” in order to achieve an appropriate visualization. In the second part of Section 3,
we discuss possible generalizations of our pseudoloop lemma inspired by facts about finite
graphs, and provide some evidence for the possibility of such generalizations.

Theorem 1.4 is derived from the pseudoloop lemma in Section 4 basically using a standard
universal algebra technique, albeit adapted to the ω-categorical setting via a compactness
argument. Again, we disicuss possible extensions of our main theorem.

Section 5 contains further discussion on clone morphisms in the light of other recent results,
in particular from the wonderland of reflections [7]. In particular, one of our examples there
provides the answer to a question in [23].

We conclude our work with suggestions for research in Section 6.

2. Definitions and Notation

Relational structures are denoted by blackboard bold letters, such as A, and their domain
by the same letter in the plain font, such as A. By a graph we mean a relational structure
with a single symmetric binary relation.

2.1. The range of the infinite CSP conjecture. A relational structure B is homogeneous
if every isomorphism between finite induced substructures extends to an automorphism of
the entire structure B. In that case, B is uniquely determined, up to isomorphism, by its age,
i.e., the class of its finite induced substructures up to isomorphism. B is finitely bounded if its
signature is finite and its age is given by a finite set F of forbidden finite substructures, i.e., the
age consists precisely of those finite structures in its signature which do not (isomorphically)
embed any member of F . A reduct of a structure B is a structure A on the same domain which
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is first-order definable without parameters in B. Reducts A of finitely bounded homogeneous
structures are ω-categorical, i.e., the up to isomorphism unique countable model of their first-
order theory. Equivalently, their automorphism groups are oligomorphic: they have finitely
many orbits in their action on n-tuples over A, for every finite n ≥ 1.

2.2. pp-formulas and interpretations. A formula is primitive positive, in short pp, if it
contains only equalities, existential quantifiers, conjunctions, and atomic formulas – in our
case, relational symbols. A pp-formula with parameters over a structure A can contain, in
addition, elements of the domain of A.

A pp-interpretation is a first-order interpretation in the sense of model theory where all the
involved formulas are primitive positive: a structure A pp-interprets B (with parameters) if
there exists a partial mapping f from a finite power An to B such that the domain of f , the
f -preimage of the equality relation and the f -preimage of every relation in B is pp-definable in
A (with parameters). In particular, A pp-interprets its substructures induced by pp-definable
subsets and also its quotients modulo a pp-definable equivalence relation.

2.3. Cores. An ω-categorical structure A is a core, also called model-complete core, if all of
its endomorphisms are elementary self-embeddings, i.e., preserve all first-order formulas over
A. This is the case if and only if its automorphism group is dense in its endomorphism monoid
with respect to the pointwise convergence topology on functions on A; cf. Section 2.5 for a
description of the latter. Two structures A,B are homomorphically equivalent if there exist
homomorphisms from A into B and vice-versa.

2.4. Clones. A function clone C is a set of finitary operations (also called functions) on a fixed
set C which contains all projections and which is closed under composition. A polymorphism
of a relational structure A is a finitary operation f(x1, . . . , xn) on A which preserves all
relations R of A: this means that for all r1, . . . , rn ∈ R we have that f(r1, . . . , rn), calculated
componentwise, is again contained in R. The polymorphism clone of A, denoted by Pol(A),
consists of all polymorphisms of A, and is always a function clone. Its unary operations are
precisely the endomorphisms of A, and its invertible unary operations (i.e., those which are
bijections and whose inverse is also a polymorphism) are precisely the automorphisms of A.

A clone homomorphism is a mapping from one function clone to another which preserves
arities, composition, and which sends every projection of its domain to the corresponding pro-
jection of its co-domain. Equivalently, a clone homomorphism is a mapping ξ that preserves
arities and identities, i.e., universally quantified equations over C: more precisely, whenever
an identity t ≈ s holds in C, where t and s are terms over the signature which has one func-
tional symbol for every element in C, then the identity obtained from t ≈ s by replacing each
occurence of f ∈ C by ξ(f) holds in D. See [7] for a more detailed exposition of connections
between various variants of clone homomorphisms and identities.

2.5. Topology. Function clones carry a natural topology, the topology of pointwise conver-
gence, for which a subbasis is given by sets of functions which agree on a fixed finite tuple;
the functions of a fixed arity in a function clone form a clopen set. Equivalently, the domain
of a function clone is taken to be discrete, and the n-ary functions in the clone equipped with
the product topology, for every n ≥ 1; the whole clone is then the sum space of the spaces
of n-ary functions. The function clones which are topologically closed within the space of all
functions on their domain are precisely the polymorphism clones of relational structures.

We always understand continuity of clone homomorphisms with respect to this topology.
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2.6. Core clones and oligomorphicity. We say that a closed function clone is a core if it
is the polymorphism clone of a core.

A function clone C is oligomorphic if and only if the permutation group Gr(C) of unary
invertible elements of C is oligomorphic. When C is closed, then this is the case if and only
if it is the polymorphism clone of an ω-categorical structure, in which case Gr(C) consists of
the automorphisms of that structure.

Note that when C is a core, then the set of its unary operations is the closure of Gr(C).

2.7. Pseudo-Siggers operations. A 6-ary operation s in a function clone C is a pseudo-
Siggers operation if there exist unary α, β ∈ C such that the identity αs(x, y, x, z, y, z) ≈
βs(y, x, z, x, z, y) holds in C (i.e., equality holds for all values for the variables in C). We then
also say that s satisfies the pseudo-Siggers identity.

3. The Pseudoloop Lemma

The following definition is a generalization of finite graphs to the ω-categorical which is
suitable for our purposes.

Definition 3.1. A graph-group-system, for short gg-system, is a pair (G,G), where G is a
permutation group on a set G, and G = (G;R) an (undirected) graph which is invariant under
G. We also write (R,G) for the same gg-system.

The system is called oligomorphic if G is; in that case, G is ω-categorical, since its auto-
morphism group contains G and hence is oligomorphic.

The system pp-interprets (pp-defines) a structure B if G together with the orbits of G on
finite tuples does.

A pseudoloop of a gg-system (G,G) is an edge of G of the form (a, α(a)), where α ∈ G.

Note that R, as well as any relation that is first-order definable from a gg-system (G,G),
is invariant under the natural action of G on tuples. In particular, such relations are unions
of orbits of the action of G on tuples, and when G is oligomorphic, then there are only finite
many first-order definable relations of any fixed arity.

We are now ready to state our pseudoloop lemma for gg-systems.

Lemma 3.2 (The pseudoloop lemma). Let (G,G) be an oligomorphic gg-system, where G has
a subgraph isomorphic to K3. Then either it pp-interprets K3 with parameters, or it contains
a pseudoloop.

3.1. Proof of the pseudoloop lemma. We need the following auxiliary notation and def-
initions.

Definition 3.3. Let (G,G) be a gg-system. For a1, . . . , an ∈ G, we denote by O(a1, . . . , an)
the orbit of the tuple (a1, . . . , an) under G.

Definition 3.4. A pseudoloop-free gg-system (G,G) which that G contains (an isomorphic
copy of) K3 is minimal if

• it does not pp-define any proper subset S ( G and a binary symmetric relation R′ on
S such that R′ is pseudoloop-free and contains a K3, and
• it does not pp-define any non-trivial equivalence relation ∼⊆ G2 and a binary symmet-

ric relation R′ on the set G/ ∼ of its equivalence classes such that R′ is pseudoloop-free
and contains a K3.

We can now prove the pseudoloop lemma.
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Proof of Lemma 3.2. Assuming that a gg-system (G,G), where G = (G;R) contains a K3,
has no pseudoloop, we show that it pp-interprets K3 with parameters.

Step 0 : If (G,G) is not minimal, then we can replace it by a minimal gg-system as follows.
When (G,G) pp-defines a relation R′ on a pp-definable subset S ( G which contains no
pseudoloop but a K3, then we replace (G,G) by the system thus obtained on S, consisting of
R′ and the restriction of the action of G to S. If this is not the case, but (G,G) pp-defines a
relation on a proper pp-definable factor of G which contains no pseudoloop but a K3, then
we proceed similarly, replacing the original system by the system obtained on the factor set.
Iterating this procedure, it can only happen a finite number of times that we move to a system
on a subset, since this step strictly decreases the finite number of orbits of the system, and
since in factoring steps the number of orbits of the system does not increase either. Hence,
from some point in the iteration, only factoring steps occur. But two factoring steps could be
performed in a single step by combining the pp-definitions, and thus, since there exists only
a finite number of pp-definable equivalence relations in the system, all factoring steps can be
combined to a single step, after which the system cannot be further factored. The gg-system
thus obtained must therefore be minimal.

Notice that minimality implies that every vertex is contained in an edge: otherwise restric-
tion of R to the (pp-definable) subset of those vertices which are contained in an edge would
yield a smaller system.

Step 1 : R pp-defines a symmetric binary relation R′ with the property that every edge of R′

is contained in a K3, i.e., every element of R′ is contained in an induced subgraph of (G;R′)
isomorphic to K3, and which still shares our assumptions on R:

R′(x, y) :↔ ∃z R(x, y) ∧R(x, z) ∧R(y, z).

Hence, replacing R by R′, we henceforth assume that every edge of R is contained in a K3.

In the following, for n ≥ 1 we say that x, y ∈ G are n-diamond-connected, denoted by x ∼n y,
if there exist a1, b1, c1, d1, . . ., an, bn, cn, dn ∈ G such that, for every 1 ≤ i ≤ n, both ai, bi, ci
and bi, ci, di induce K3 in G, x = a1, d1 = a2, d2 = a3, . . . , dn−1 = an, and dn = y. They are
diamond-connected, denoted by x ∼ y, if they are n-diamond-connected for some n ≥ 1.

Observe that ∼n is a pp-definable relation from R (since our definition is in fact a pp-
definition). Also recall that there are only finitely many binary relations first-order definable
from R, and note that if x, y are n-diamond-connected, then they are m-diamond-connected
for all m ≥ n. Therefore, there exists an n ≥ 1 such that x, y are diamond-connected if and
only if they are n-diamond connected. In particular, the relation x ∼ y is pp-definable in G.
Note also that it is an equivalence relation on G: it is clearly transitive and symmetric, and
it is reflexive since every vertex is contained in a K3, by Steps 0 and 1.

Step 2 : We claim that if x, y ∈ G are n-diamond-connected for some n ≥ 1, then ¬R(x, y′)
for all y′ ∈ O(y). Otherwise, pick a counterexample x, y, y′ with minimal n ≥ 1.

Suppose first that n is odd and set k := n−1
2 . Let a be the ak+1 from the chain of diamonds

witnessing x ∼n y. Consider the following pp-definition over (G,G):

S(w) :↔ ∃u, v (u ∈ O(a) ∧ u ∼k v ∧R(v, w)) ;

in case that k = 0 we replace ∼k by the equality relation. Then clearly S(bn) and S(cn). But
we also have S(y), since S(y′) holds by virtue of a ∼k x and R(x, y′) and since y is in the same
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orbit as y′. Hence, since dn = y, we have S(dn) and so S contains a K3. By the minimality of
(G,G) (see Step 0), we must have that S holds for all elements of G. Let u, v ∈ G as in the
definition of S witness that S(x) holds. Then u ∼k v, but also u ∼k x

′ for some x′ ∈ O(x),
as a ∼k x, u ∈ O(a), and ∼k is invariant under G. Therefore, v ∼n−1 x

′, which together with
R(v, x) contradicts the minimality of n when n ≥ 3; when n = 1, this means that we have
discovered a pseudoloop of (G,G), again a contradiction.

Suppose now that n is even and denote k := n
2 − 1; the argument is similar. Let b, c

be the bk+1, ck+1 from the chain of diamonds witnessing x ∼n y. Consider the following
pp-definition:

S(w) :↔ ∃ub, uc, u, v ((ub, uc) ∈ O(b, c)∧
R(u, uc) ∧R(u, ub) ∧ u ∼k v ∧R(v, w)) .

Then as in the odd case, S(bn), S(cn), S(dn), and so the set defined by S contains a K3. By
the minimality of (G,G), it contains x; let ub, uc, u, v ∈ G as in the definition of S witness
this. Then u ∼k v, but also u ∼k+1 x

′ for some x′ ∈ O(y). Hence, v ∼n−1 x
′ and R(v, x)

contradict the minimality of n.

Step 3 : Defining

R′(x, y) :↔ ∃x′, y′ (x ∼ x′ ∧ y ∼ y′ ∧R(x′, y′))

we obtain a relation R′ ⊇ R which does not contain a pseudoloop. Indeed, if R′(x, y) is
witnessed by x′, y′ and x and y are in the same orbit, then x ∼ y′′ for some y′′ ∈ O(y′) since
y ∈ O(x) and since ∼ is invariant under G. Thus x′ ∼ y′′ and R(x′, y′), a contradiction with
Step 2. Moreover, every edge in R′ is contained in a K3: if z′ is so that {x′, y′, z′} induce a
K3 in R, then {x, y, z′} induce a K3 in R′, for z′ ∼ z′ and x ∼ x′ imply R′(x, z′), and R′(y, z′)
can be inferred similarly.

Step 4 : Note that R′ is in fact a relation between equivalence classes of ∼ and the naturally
defined quotient gg-system (Gq,Gq) on Gq = G/ ∼ contains no pseudoloops (by Step 3).
Moreover, every edge of Gq is still contained in a K3. By minimality, ∼ must therefore be
the equality relation. This means that R contains no diamonds, that is, there do not exist
distinct a, b, c, d ∈ G such that {a, b, c} and {b, c, d} both induce a K3.

Summarizing we now know that our gg-system (G,G) is minimal, pseudoloop-free, and
diamond-free; moreover, every edge and every vertex of G is contained in a K3.

Step 5 : For k ≥ 1, we denote the k-th power of K3 by Tk. By Lemma 3.5 shown below, if G
contains an induced subgraph isomorphic to Tk, where |Tk| exceeds the number of orbits of
G, then (G,G) pp-defines a symmetric relation R′ ) R without pseudoloops such that every
edge of R′ is still contained in a K3. Replacing R by R′, we obtain a minimal gg-system which
enjoys the properties summarized at the end of Step 4.

Iterating this process, by oligomorphicity we arrive after a finite number of steps at a gg-
system (G,G) with the additional property that G contains no induced subgraph isomorphic
to Tk for any k ≥ 1 such that |Tk| exceeds the number of orbits of G.

Step 6 : Recall that G contains T1 = K3. By Step 5, there exists a maximal k ≥ 1 such that
G contains an induced subgraph isomorphic to Tk. Let k be that number and let a1, . . . , al,
where l := |Tk| = 3k, denote the vertices of such an induced subgraph. We show that G
pp-defines the set A = {a1, . . . , al} with parameters a1, . . . , al.
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By [19], this is the case if each l-ary operation f in Pol(G, a1, . . . , al) preserves A. So,
suppose that such a function f does not preserve A. Now, f is a homomorphism Gl → G
and its restriction to A is a homomorphism f ′ from Tk to the diamond-free graph G whose
image, which contains A because f stabilizes each ai, is strictly larger than |Tk|. Then [26,
Claim 3, Subsection 3.2] shows that the image of f ′ induces a graph isomorphic to Tm for
some m > k, contradicting the maximality of k.

Step 7 : Step 6 implies that G pp-interprets Tk with parameters. But K3 can be pp-interpreted
in Tk with parameters by the final sentence of [26]. �

It remains to prove the lemma referred to in Step 5 of the proof of Lemma 3.2 above. It
might be worth noting that the essential conclusion of Step 5, namely that G can be assumed
not to contain an isomorphic copy of Tk for k large enough, is trivial in the proof of the finite
loop lemma in [26] for cardinality reasons: it is certainly true for all k such that |Tk| > |G|.
Lifting this statement to the ω-categorical setting seems to require a non-trivial combinatorial
argument rather than, for example, a simple compactness argument. This is accomplished in
the following lemma.

Lemma 3.5. Let (G,G), where G = (G;R), be a minimal (hence pseudoloop-free) oligomor-
phic gg-system. Assume moreover that

• every edge of G is contained in a K3, and
• G contains an induced subgraph isomorphic to Tk for some k ≥ 1 such that |Tk| = 3k

exceeds the number of orbits of G.

Then (G,G) pp-defines a symmetric relation R′ ) R without pseudoloops such that every edge
of R′ is contained in a K3.

Proof. Fix a copy of Tk in G, the elements of which we denote by tuples in {1, 2, 3}k. So,
two vertices in {1, 2, 3}k are adjacent if and only if they differ in every coordinate. From
the cardinality assumption, we can pick two elements a,a′ of the copy that belong to the
same orbit A. Let b, c in the copy be so that {a,b, c} induce a K3, and let B,C be their
orbits. Since (G,G) has no pseudoloops, the three orbits A,B,C are distinct. Without loss of
generality, assume a = 1k (i.e., the k tuple all of whose entries equal 1), b = 2k, and c = 3k.

Define a relation

S(u, v) :↔ ∃a′′, b′′, c′′, nA, nB, nC
(R(u, nA) ∧R(v, nA) ∧R(nA, a

′′) ∧ a′′ ∈ A ∧
R(u, nB) ∧R(v, nB) ∧R(nB, b

′′) ∧ b′′ ∈ B ∧
R(u, nC) ∧R(v, nC) ∧R(nC , c

′′) ∧ c′′ ∈ C) .

In words, u, v have common neighbors adjacent to elements in A,B, and C.
The relation S is obviously symmetric. It is also reflexive. To see this, it suffices to observe

that every element in G is a neighbor of a neighbor of an element in A, and similarly in B
and C. But the latter follows from the minimality of (G,G): otherwise, we could restrict R
to neighbors of neighbors of A, a set which contains A ∪ B ∪ C, and thus obtain a smaller
gg-system containing a K3, namely the one induced by {a,b, c}.

Observe that whenever S(u, v) holds, then every element of G is adjacent to a common
neighbor of O(u) and O(v): this follows as above from the minimality of (G,G) since the
elements of A ∪B ∪ C are adjacent to a common neighbor of O(u) and O(v).
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Set
Q(u, v) :↔ ∃s (R(u, s) ∧ S(s, v)) ∧ ∃t (S(u, t) ∧R(t, v)) .

Then Q ⊇ R: since S is reflexive, setting s = v and t = u in the above definition shows that
R(u, v) implies Q(u, v). Moreover, Q is symmetric by definition. Let R′ consist of those edges
of Q which are contained in a K3 with respect to Q. We still have that R′ ⊇ R.

We now show that (Q,G), and thus (R′,G), has no pseudoloop. To this end, it suffices to
show that whenever R(u, v) holds, then we cannot have S(u, v′) for any v′ ∈ O(v). Suppose to
the contrary that there exist such elements. The R-edge (u, v) is contained in a K3, induced
by {u, v, w}, for some w ∈ G. As observed above, each vertex, in particular the vertex w, is
adjacent to a common neighbor of O(u) and O(v′) = O(v). Therefore, there exists a common
neighbor z of O(u), O(v) and O(w). The set of neighbors of O(z) contains O(u), O(v), and
O(w); it is a proper subset of G since (G,G) has no pseudoloops; it is pp-definable in (G,G);
and finally, it contains a K3, contradicting the minimality of (G,G).

Using for the first time the copy of Tk in G, we now show that R is properly contained in
R′ by showing that a′, the second element of the copy of Tk in the orbit A of a, is related to
b and c via R′. Note that this is sufficient since in Tk, no two distinct elements are related
to both b and c. We show only R′(a′,b), the second claim is analogous. Reordering the
tuples when necessary, we may assume that a′i 6= 2 for all 1 ≤ i ≤ j, and a′i = 2 for all
j < i ≤ k. Since a′ 6= b, we have j ≥ 1. Observe that whenever u,v ∈ {1, 2, 3}k are of the
form (x, . . . , x, 2, . . . , 2) and (x, . . . , x, 3, . . . , 3), respectively, where the number of occurences
of x equals j, then S(u,v): this is witnessed by their common neighbor (y1, . . . , yj , 1, . . . , 1),
where yi /∈ {a′i, x} for all 1 ≤ i ≤ j, which is R-related to a′ ∈ A; their common neighbor
(z, . . . , z, 1, . . . , 1), starting with j occurrences of z /∈ {2, x}, which is R-related to b ∈ B; and
their common neighbor (w, . . . , w, 1, . . . , 1), starting with j occurrences of w /∈ {3, x}, which
is R-related to c ∈ C. But now we see that Q(a′, b) holds: setting t = (a′1, . . . , a

′
j , 3, . . . , 3),

we have S(a′, t) and R(t,b); on the other hand, setting s := (2, . . . , 2, 3, . . . , 3), with j
occurrences of 2, we have R(a′, s) and S(s,b). We can then conclude that R′(a′,b) holds,
since any two elements of {1, 2, 3}k, in particular a′ and b, have a common neighbor with
respect to R, and hence also with respect to Q, showing that the Q-edge (a′,b) is contained
in a K3 with respect to Q.

�

3.2. Discussion of the pseudoloop lemma. The proof of the pseudoloop lemma presented
here draws on ideas from the proof in [26] of the loop lemma for finite undirected graphs [32,
26], which states that every finite non-bipartite graph either contains a loop (i.e., an edge of
the form (a, a)) or pp-interprets K3 with parameters. A generalization of the latter result,
which is useful in the theory of finite algebras and their applications to finite domain CSPs,
is its expansion from non-bipartite undirected graphs to certain directed graphs (digraphs).
We shall now state this generalization.

Recall that a digraph is smooth if each vertex has an incoming and an outgoing edge, and
that a digraph has algebraic length 1 if it contains a closed walk whose number of forward
edges exceeds its number of backward edges by 1. Note that graphs containing an induced
copy of K3 have algebraic length 1.

Theorem 3.6 ([5, 3]). Let G = (G;R) be a smooth digraph of algebraic length 1 without a
loop. Then G pp-interprets K3 with parameters.

We conjecture that the pseudoloop lemma can be generalized to such digraphs as well.
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Conjecture 3.7. Let (G,G) be an oligomorphic gg-system, where G = (G;R) is a smooth
digraph of algebraic length 1 without a pseudoloop. Then (G,G) pp-interprets K3 with param-
eters.

It is easy to reduce the loop lemma for finite non-bipartite undirected graphs to finite
undirected graphs containing a K3 (see [32]). For the infinite pseudo-version, even this special
case of Conjecture 3.7 is open. On the other hand, the generalization of the loop lemma for
finite non-bipartite undirected graphs to the digraphs of Theorem 3.6 requires completely
different techniques. It might be possible to circumvent the additional complications in the
infinite by reducing to the finite, as exemplified in the proof of the following proposition.

Proposition 3.8. Let (G,G) be an oligomorphic gg-system, where G = (G;R) is a smooth
connected digraph of algebraic length 1. Moreover, assume that

• G acts with three orbits on G, and
• G modulo the orbit equivalence on G is isomorphic to K3 (i.e., when U, V ⊆ G are

orbits of G, then there is an edge from some u ∈ U to some v ∈ V if and only if
U 6= V ).

Then (G,G) pp-interprets K3 with parameters.

Proof. We prove the claim in three steps. In Step 1, we construct an equivalence relation ∼
on G which is pp-definable from (G,G) and has the following properties.

(i) If a ∼ b, then O(a) = O(b).
(ii) If a ∼ b, R(a, a′), R(b, b′), and O(a′) = O(b′), then a′ ∼ b′.
(iii) If a ∼ b, R(a′, a), R(b′, b), and O(a′) = O(b′), then a′ ∼ b′.

In Step 2, we observe that G, factored by ∼, is a finite digraph and then, in Step 3, we use
Theorem 3.6 to finish the proof.

Before we start, we make a simple observation which will be used throughout the proof.
If A,B ⊆ G are distinct orbits of G and a ∈ A, then there exists b ∈ B such that R(a, b).
Indeed, since G modulo the orbits is isomorphic to K3, there are a′ ∈ A and b′ ∈ B such that
R(a′, b′), and so we can set b = α(a) for any α ∈ G with α(a′) = a. A similar statement holds,
of course, with the role of a and b reversed.

Step 1: For each pp-definable equivalence relation∼ onG satisfying (i) and elements a, a′, b, b′ ∈
G falsifying (ii) (or, similarly, (iii)) we are going to pp-define an equivalence relation ∼′ con-
taining ∼ which still satisfies (i), and such that a′ ∼′ b′. This is enough for achieving the goal
of Step 1 since the process of enlarging ∼ (starting with the smallest equivalence relation on
G) must stop after a finite number of steps due to oligomorphicity (recall the remark after
Definition 3.1).

We will only consider the situation where (ii) does not yet hold for ∼, the situation for (iii)
being completely analogous. So, let ∼ satisfy (i) and let a, a′, b, b′ ∈ G be as in (ii). Denote
U := O(a) = O(b) and V := O(a′) = O(b′), and the remaining orbit of G by W . Note that
U ∪ V can be pp-defined since x ∈ U ∪ V if and only if ∃y R(x, y) ∧ y ∈ W holds. Similarly,
U ∪W and V ∪W are pp-definable in (G,G).

We first construct a reflexive binary relation S := S1∩S2∩S3∩S4 on G which contains both
(a′, b′) and (b′, a′) and satisfies (i). Using S we define a symmetric and reflexive relation Q
which contains ∼ ∪{(a′, b′)} and which still satisfies (i), and finally set ∼′ to be the transitive
closure of Q.
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The relations Si are pp-defined as follows:

S1(x, y) :↔ ∃z1, z2 R(z1, x) ∧ z1 ∼ z2 ∧R(z2, y) ∧ z1 ∈ U ∪ V
S2(x, y) :↔ ∃z1, z2 R(z1, x) ∧ z1 ∼ z2 ∧R(z2, y) ∧ z1 ∈ U ∪W
S3(x, y) :↔ ∃z1, z2, z3, z4 R(z1, x) ∧ z1 ∼ z2 ∧R(z2, z3) ∧R(z4, z3) ∧R(z4, y)

∧ z1 ∈ U ∪ V ∧ z3 ∈ U ∪ V ∧ z4 ∈ V ∪W
S4(x, y) :↔ S3(y, x) .

We claim that each Si is reflexive. Each c ∈ G has an incoming R–edge from some d ∈ U ∪V .
The choice z1 = z2 = d then shows S1(c, c), proving that S1 is reflexive. Similarly, S2 is
reflexive as well. To prove the claim for S3, let c ∈ G arbitrary. If c ∈ U ∪ V then, for
any d ∈ U ∪ V, e ∈ V ∪W with R(d, c) and R(e, c), the choice (z1, z2, z3, z4) := (d, d, c, e)
shows S3(c, c); if c ∈ W , then we pick d ∈ V , e ∈ U such that R(d, c), R(d, e) and the choice
(z1, z2, z3, z4) = (d, d, e, d) works.

It is also easy to verify that (a′, b′) is contained in each Si: (a′, b′) ∈ S1∩S2 follows from the
choice (z1, z2) = (a, b). To see that (a′, b′) ∈ S3, set (z1, z2, z3, z4) = (a, b, b′, c), where c ∈ W
is such that R(c, b′). Finally, setting (z1, z2, z3, z4) = (b, a, a′, c) shows that (b′, a′) ∈ S3, and
(a′, b′) ∈ S4. Similarly, (b′, a′) is also contained in each Si.

Now we claim that S1 does not intersect U × V . Indeed, if x ∈ U , y ∈ G, and S1(x, y)
is witnessed by z1, z2 ∈ G via the defining formula, then z1 ∈ V , since x ∈ U , z1 ∈ U ∪ V ,
R(x, z1), and G has no pseudoloops. Thus, since ∼ satisfies (i) and z1 ∼ z2, we must also
have z2 ∈ V . Hence, we cannot have y ∈ V , since R(z2, y) and since G has no pseudoloops.
The same reasoning shows that S1 does not intersect V ×U , that S2 intersects neither U ×W
nor W × U , that S3 does not intersect V ×W , and that S4 does not intersect W × V . It
follows that S = S1 ∩ S2 ∩ S3 ∩ S4 satisfies (i).

In summary, S is reflexive, satisfies (i), and contains both (a′, b′) and (b′, a′). We now define
the relation Q by

Q(x, y) :↔ ∃s (x ∼ s ∧ S(s, y)) ∧ ∃t (S(t, x) ∧ t ∼ y).

By definition, Q is symmetric, and it satisfies (i) as both ∼ and S do. From the reflexivity of
S, it follows that Q contains ∼; in particular, it is itself reflexive. Moreover, the reflexivity
of ∼ together with (a′, b′), (b′, a′) ∈ S imply that (a′, b′) ∈ Q.

Finally, by repeatedly replacing Q by Q′(x, y) :↔ ∃z Q(x, z)∧Q(z, y) we obtain an increas-
ing chain of reflexive symmetric relations. Using again the oligomorphicity of G, this chain
stabilizes after finitely many steps and we get the transitive closure of the original Q – the
sought after equivalence relation ∼′.

Step 2: Let (Gq,Gq), where Gq = (Gq;Rq), be the quotient gg-system modulo ∼: that is, Gq

consists of the equivalence classes of ∼, Gq is the natural action of G on these classes, and
Rq(U, V ) holds for classes U, V if R(u, v) holds for some u ∈ U and v ∈ V .

Note that (G,G) pp-interprets Gq and that Gq is a connected smooth digraph of algebraic
length 1. Moreover, Gq has no pseudoloops since ∼ satisfies (i). From (ii) (or (iii)) it follows
that if Rq(U, V ) and Rq(U,W ) (or Rq(V,U) and Rq(W,U)) where V is in the same Gq-orbit
as W , then V = W .

We show that Gq is finite. Fix any vertex U ∈ Gq and consider any V,W ∈ Gq such
that (U, V ) is in the same Gq-orbit of pairs as (U,W ), say α(U, V ) = (U,W ), where α ∈ Gq.
Recall that Gq is connected and consider any oriented path U = U0, U1, . . . , Uk = V and its
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α–image U = α(U0), α(U1), . . . α(Uk) = W . Clearly, each Ui is in the same orbit as α(Ui)
and then, using the property of Rq from the previous paragraph, we obtain α(U1) = U1, . . . ,
α(Uk) = Uk, so V = W . We have proved that (U, V ) and (U,W ) are in different orbits of
pairs whenever V 6= W . Since Gq is oligomorphic, we conclude that Gq must be finite.

Step 3: Now Gq is a finite smooth digraph of algebraic length 1 without a loop (in fact, it
does not even have a pseudoloop). By Theorem 3.6, the quotient Gq pp-interprets K3 with
parameters. Since (G,G) pp-interprets Gq, the proof is complete. �

Some assumptions in Proposition 3.8 can be weakened. For example, the connectivity
assumption can be omitted and more quotient digraphs (other than K3) can be allowed. We
have decided to present the simplest version just to illustrate the general idea.

A theorem recently announced by Marcin Kozik suggests that even the following strength-
ening of Conjecture 3.7 might be true.
Conjecture 3.9. Let (G,G) be an oligomorphic gg-system such that the quotient of G modulo
the G-orbit equivalence is a smooth digraph of algebraic length 1 without a loop. Then (G,G)
pp-interprets K3 with parameters.

Kozik proved this conjecture in the finite case. The infinite version may be of use for, e.g.,
answering the original question about (continuous) homomorphisms to projections discussed
after Conjecture 1.5 — the implication (2) ⇒ (1) in Corollary 5.1.

4. The main result

We first prove Theorem 1.4 using the pseudoloop lemma, and then discuss the result and
related results about finite algebras.

4.1. Proof of the pseudo-Siggers theorem. In order to derive Theorem 1.4, we will
produce pseudo-Siggers operations locally using the pseudoloop lemma, and then derive a
global pseudo-Siggers operation via a compactness argument.

Definition 4.1. We say that a function clone C has local pseudo-Siggers operations if for
every finite A ⊆ C there exists a 6-ary s ∈ C and unary α, β ∈ C satisfying

αs(x, y, x, z, y, z) = βs(y, x, z, x, z, y)

for all x, y, z ∈ A.

Lemma 4.2. Let C be a closed oligomorphic function clone. If it has local pseudo-Siggers
operations, then it has a pseudo-Siggers operation.

Proof. Let A0 ⊆ A1 ⊆ · · · be a sequence of finite subsets of C whose union equals C, and
pick for every i ∈ ω a 6-ary operation si ∈ C witnessing the definition of local pseudo-
Siggers operations on Ai, i.e., there exist unary αi, βi ∈ C such that αisi(x, y, x, z, y, z) =
βisi(y, x, z, x, z, y) for all x, y, z ∈ Ai. Note that if si is such a witness for Ai, then so is γsi,
for all γ ∈ Gr(C). Hence, because Gr(C) is oligomorphic, we may thin out the sequence in
such a way that sj agrees with si on Ai, for all j > i ≥ 0. We briefly describe this standard
compactness argument for the convenience of the reader: there exists a smallest j0 ≥ 0 such
that for infinitely many k ≥ j0 there exists γk ∈ Gr(C) such that γksk agrees with sj0 on A0,
by oligomorphicity. Replace s0 by sj0 , all sk as above by γksk, and remove all other sk′ where
k′ ≥ 0 from the sequence. Next repeat this process picking j1 ≥ 1 for A1, and so on. This
completes the argument.
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Since the elements of the sequence (si)i∈ω agree on every fixed Ai eventually, and since
C is closed, they converge to a function s ∈ C. The function s, restricted to any Ai, wit-
nesses local pseudo-Siggers operations on Ai, i.e., there exist unary αi, βi ∈ C such that
αis(x, y, x, z, y, z) = βis(y, x, z, x, z, y) for all x, y, z ∈ Ai. By a similar compactness argu-
ment as the one above for the functions si, this time applied to the pairs (αi, βi) of functions,
we may assume that these pairs converge to a pair (α, β) of functions α, β ∈ C. We then have
αs(x, y, x, z, y, z) = βs(y, x, z, x, z, y) for all x, y, z ∈ C. �

We now consider gg-systems where the group Gr(C) of a closed oligomorphic function clone
C acts on finite powers of its domain.

Lemma 4.3. Let C be a closed oligomorphic function clone. Suppose that every gg-system
(G,G) where

• G = (Ck;R) for some k ≥ 1,
• G corresponds to the componentwise action of Gr(C) on Ck,
• G contains a K3, and
• R ⊆ C2k is invariant under C

has a pseudoloop. Then C has a pseudo-Siggers operation.

Proof. We show that C has local pseudo-Siggers operations and apply Lemma 4.2. Let A ⊆ C
be finite, and pick k ≥ 1 and ax,ay,az ∈ Ak such that the rows of the (k × 3)-matrix
(ax,ay,az) form an enumeration of A3. Let R be the binary relation on Ck where tuples
b, c ∈ Ck are related via R if there exists a 6-ary s ∈ C such that b = s(ax,ay,ax,az,ay,az)
and c = s(ay,ax,az,ax,az,ay). In other words, it is the C-invariant subset of (2k)-tuples
generated by the six vectors obtained by concatenating au and av, where u, v ∈ {x, y, z} are
distinct. The latter description reveals that R is a symmetric relation on Ck invariant under
C and containing K3, therefore the gg-system (R,G), where G is the componentwise action
of Gr(C) on Ck, has a pseudoloop (b, c). That means that there exists a 6-ary s ∈ C and
α ∈ Gr(C) such that s(ax,ay,ax,az,ay,az) = αs(ay,ax,az,ax,az,ay), proving the claim. �

Corollary 4.4. Let A be an ω-categorical core. Then either it pp-interprets K3 with param-
eters, or Pol(A) has a pseudo-Siggers operation.

Proof. We apply Lemma 4.3 to the clone C := Pol(A); then Gr(C) consists precisely of the
automorphisms of A. If the assumptions of that lemma are satisfied, then C has a pseudo-
Siggers operation. Otherwise, there exists a pseudoloop-free gg-system ((Ck;R),G) satisfying
the four conditions. By Lemma 3.2, this gg-system pp-interprets K3 with parameters. Since
R is invariant under C, it is pp-definable from A by [19]. Moreover, since A is a core, the
orbits of G are pp-definable from A as well by [12]. It follows that A pp-interprets K3 with
parameters, as required. �

We are now ready to prove Theorem 1.4. For the convenience of the reader, we restate it
here.

Theorem 4.5 (Theorem 1.4). The following are equivalent for an ω-categorical core structure
A.

(i) There exists no continuous clone homomorphism Pol(A, c1, . . . , cn) → P, for any
c1, . . . , cn ∈ A.

(ii) There exists no clone homomorphism Pol(A, c1, . . . , cn)→ P, for any c1, . . . , cn ∈ A.
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(iii) Pol(A) contains a pseudo-Siggers operation, i.e., a 6-ary operation s such that

αs(x, y, x, z, y, z) ≈ βs(y, x, z, x, z, y)

for some unary operations α, β ∈ Pol(A).

Proof. We first prove that (iii) implies (ii). Take α, β, s ∈ Pol(A) satisfying the pseudo-Siggers
identity. We claim that every stabilizer Pol(A, c1, . . . , cn) has a pseudo-Siggers operation. To
see that, consider the endomorphisms γ, δ of A defined by γ(x) := s(x, . . . , x), δ(x) := αγ(x)
(= βγ(x) by the pseudo-Siggers identity). Because A is a core, its automorphisms are dense
in endomorphisms, thus there exist automorphisms ε, θ of A such that ε(ci) = γ(ci) and
θ(ci) = δ(ci) for every i. But then θ−1αε, θ−1βε and ε−1s are contained in Pol(A, c1, . . . , cn)
and satisfy

(θ−1αε)(ε−1s)(x, y, x, z, y, z) ≈ (θ−1βε)(ε−1s)(y, x, z, x, z, y).

The implication from (ii) to (i) is trivial.
Finally, assume that no stabilizer of Pol(A) has a continuous clone homomorphism to P.

Then no such stabilizer has a continuous clone homomorphism to Pol(K3) either, since it is
well-known that the latter clone has a continuous clone homomorphism to P: it is a folklore
fact that all operations of Pol(K3) are essentially unary, i.e., depend on at most one variable.
By Theorem 1.3, A does not pp-interpret K3 with parameters. Corollary 4.4 then tells us
that Pol(A) has a pseudo-Siggers operation. �

4.2. Discussion of the pseudo-Siggers theorem. A positive answer to Conjecture 3.7, at
least under the assumption that R contains edges (r, a), (a, r), (r, e), (e, a) for some a, e, r ∈ G,
would allow a strengthening of Item (iii) of Theorem 1.4 to a 4-variable pseudo-Siggers opera-
tion s satisfying αs(r, a, r, e) ≈ βs(a, r, e, a) for some unary functions α, β (which works in the
finite case, see [39, 35]). Another open problem is whether it is possible to replace item (iii)
of Theorem 1.4 by a pseudo-weak-near-unanimity operation, i.e., an operation w(x1, . . . , xn),
for some n ≥ 2, satisfying α1w(x, . . . , x, y) ≈ α2w(x, . . . , x, y, x) ≈ . . . ≈ αnw(y, x . . . , x), for
unary functions α1, . . . , αn (which again works in the finite, see [36]).

On the negative side, it has been observed that the CSP classification for the reducts of
(Q;<) in [16] shows that the syntactically strongest characterization of (iii) in Theorem 1.4 in
the finite case by means of cyclic operations (see [3]) cannot be lifted to the infinite, at least
not in the straightforward way of adding unary functions. For a well-known example, the
clone of those functions in Pol(Q;<) which are injective (up to dummy variables) contains
a pseudo-Siggers operation [16] (and the CSP of the corresponding structure is in P), but
no operation c(x1, . . . , xn), where n ≥ 2, satisfying αc(x1, . . . , xn) ≈ βc(x2, . . . , xn, x1): if
there was such an operation, then picking any non-constant tuple (a1, . . . , an) ∈ Qn, there
would be an automorphism γ of (Q;<) such that c(b1, . . . , bn) = γc(b2, . . . , bn, b1) for all
b1, . . . , bn ∈ {a1, . . . , an}, since (Q;<) is a core structure. But then shifting n times we
would get c(a1, . . . , an) = γnc(a1, . . . , an), and so γ would fix c(a1, . . . , an), contradicting the
injectivity of c.

Finally, we remark that our main theorem as well as the pseudoloop lemma can be used as
tools for proving hardness: if an ω-categorical core structure A does not have a pseudo-Siggers
polymorphism (or A pp-defines with parameters a pseudoloop-free graph containing a K3),
then A interprets all finite structures with parameters by the combination of Theorem 1.4
and Theorem 1.3 (or Lemma 3.2), and therefore CSP(A) is NP-hard.
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5. Mappings to the projection clone

A recent revision of the basic reductions between CSPs in [7] has revealed the importance
of a different kind of mapping – uniformly continuous h1 clone homomorphisms – which is
obtained from continuous clone homomorphisms by strengthening the topological requirement
and weakening the algebraic one. We now briefly introduce these concepts and refer to [7] for
more details.

The pointwise convergence topology of a function clone is induced by a uniformity [30, 24]
which is, in the case of a countable domain, induced by a metric. An arity-preserving mapping
ξ from a clone C on a set C to a clone D on a finite set D is uniformly continuous with respect
to this univormity if there exists a finite subset C ′ ⊆ C such that ξ(f) = ξ(g) whenever
f and g agree on C ′. An h1 clone homomorphism is a mapping from one function clone
to another which preserves arities and composition with projections; equivalently, preserves
identities of height 1, i.e., identities of the form f(variables) ≈ g(variables). For example, the
pseudo-Siggers identity of our main theorem is not of height 1, but becomes height 1 when
the outer unary functions are removed.

These notions give us 12=3× 2× 2 different meaningful types of morphisms from a clone
to the clone of projections: we may require that the mapping is uniformly continuous, or
continuous, or we do no impose any topological condition at all; we may require that the
mapping is a clone homomorphism or only an h1 clone homomorphism; finally, we can ask for
a total mapping from the clone itself, or only for a mapping from some stabilizer. The trivial
implications between the existence of such morphisms form a 3 × 2 × 2 grid. However, as
it turns out, for polymorphism clones of ω-categorical core structures there are at most six
non-equivalent conditions and the implications among them form a chain.

Corollary 5.1. Consider the following statements for an ω-categorical core A.

(1) Pol(A) has a uniformly continuous clone homomorphism to P.
(1’) Pol(A) has a continuous clone homomorphism to P.
(2) Pol(A) has a clone homomorphism to P.
(3) Some Pol(A, c1, . . . , cn) has a clone homomorphism to P.

(3’) Some Pol(A, c1, . . . , cn) has a continuous clone homomorphism to P.
(3”) Some Pol(A, c1, . . . , cn) has a uniformly continuous clone homomorphism to P.
(4) Some Pol(A, c1, . . . , cn) has a uniformly continuous h1 clone homomorphism to P.

(4’) Pol(A) has a uniformly continuous h1 clone homomorphism to P.
(5) Pol(A) has a continuous h1 clone homomorphism to P.

(5’) Some Pol(A, c1, . . . , cn) has a continuous h1 clone homomorphism to P.
(6) Pol(A) has an h1 clone homomorphism to P.

(6’) Some Pol(A, c1, . . . , cn) has an h1 clone homomorphism to P.

Then all statements with equal number are equivalent, and (i) implies (j) for all 1 ≤ i ≤ j ≤ 6.

Proof. Items (1) and (1’) are equivalent by the proof of Lemma 20 in [22] (cf. [30] for an
explicit proof thereof), (3) and (3’) are equivalent by Theorem 1.4, and (3’) and (3”) again
by the proof in [22]. Items (4) and (4’), (5) and (5’), as well as (6) and (6’) are equivalent by
Corollary 8.1 in [7] which implies that there is a uniformly continuous h1 clone homomorphism
from Pol(A) to Pol(A, c1, . . . , cn) (although the argument presented there does not work; a
correct argument is obtained by combining Lemma 3.9 with Corollary 4.7 of that article).
Given these equivalences it is clear that the strength of the statements is decreasing with
increasing number. �
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In [7] it was shown that (4’) still implies NP-hardness of the CSP. This challenged the
original dichotomy conjecture of Bodirsky and Pinsker, Conjecture 1.1, which identified NP-
hardness with (3’). More on the eventual resolution of this matter in the next subsection.

Trung Van Pham has observed that our main theorem implies that the failure of (4’) is
witnessed by the satisfaction of the pseudo-Siggers identity even for ω-categorical structures
which are not cores. In the following proof, we assume that the reader is familiar with the
basic facts about the core of an ω-categorical structure, and refer to [2] for more details.

Corollary 5.2. Let B be ω-categorical. If Pol(B) has no uniformly continuous h1 clone
homomorphism to P, then Pol(B) contains a pseudo-Siggers operation.

Proof. Let A be the core of B. Since Pol(B) has no uniformly continuous h1 clone homo-
morphism to P, neither does Pol(A), by the results from [7]. Hence, by Corollary 5.1 and
Theorem 1.4, Pol(A) has a pseudo-Siggers operation s(x1, . . . , x6) whose pseudo-Siggers iden-
tity is witnessed by unary functions α, β ∈ Pol(A).

To show that Pol(B) contains a pseudo-Siggers operation as well, we show that it con-
tains local pseudo-Siggers operations and then refer to Lemma 4.2. So let F ⊆ B be fi-
nite. We may assume that A ⊆ B and that A is an induced substructure of B. Let h
be a homomorphism from B into A. Let F ′ ⊆ A be the image of F 6 under the operation
s′(x1, . . . , x6) := s(h(x1), . . . , h(x6)) ∈ Pol(B), and let γ be an automorphism of A which
agrees with h on F ′; this automorphism exists since A is a core and since h restricted to A is
an endomorphism of A. Then for all x1, . . . , x6 ∈ F we have

αγ−1hs′(x, y, x, z, y, z) = βγ−1hs′(y, x, z, x, z, y) .

Since αγ−1h and βγ−1h are contained in Pol(B), we see that the pseudo-Siggers identity is
indeed satisfied by s′ on F . �

5.1. Converse implications. The implication (2) ⇒ (1) is the original question from [23]
about clone homomorphisms to projections, which we already shortly discussed in the present
paper after Conjecture 1.5. It remains open.

A counterexample to (3) ⇒ (2) can be found among the first-order reducts of (Q;<),
investigated in [16]: it is the structure of shuffle closed temporal relations, or equivalently,
those relations preserved by a binary operation called pp, which essentially behaves like one
projection on one half plane, and like the other projection on the remaining half plane. It is
not hard to see that it satisfies (3) but not (2).

The following example, a simplified version of a construction communicated to us by Ross
Willard, shows that the implication from (2) to (3) cannot be reversed even for finite struc-
tures. The example is a disjoint union of two copies of K3 with an additional relation ensuring
that the structure is a core.

Example 5.3. Consider A = (A;R,S), where

A := {10, 20, 30, 11, 21, 31},
R(ai, bj) :↔ (i = j) ∧ (a 6= b), and

S(ai, bj) :↔ i 6= j.

The structure A is a core. Indeed, for each endomorphism α of A and each pair of elements
ai, bj ∈ A with α(ai) = α(bj) we have i = j since α preserves S, and then a = b since α
preserves R. Therefore, each endomorphism of A is injective, and hence an automorphism as
A is finite.
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Next observe that, for an arbitrary chosen c ∈ A, the substructure of (A;R) induced by
the set {x | S(x, c)}, which is obviously pp-definable with a parameter, is isomorphic to K3.
It follows that A pp-interprets K3 with parameters and therefore a stabilizer of Pol(A) has a
clone homomorphism to P.

Finally, in order to show that Pol(A) does not have a homomorphism to P, we define
polymorphisms α and s, where α is unary and s ternary, satisfying a non-trivial identity:
that is, an identity not satisfiable by members of P. Set

α(ai) := a1−i and s(ai, bj , ck) :=

{
ck if i = j
ai if i 6= j

.

Now α, s are clearly polymorphisms and they satisfy the nontrivial identity

s(x, x, y) ≈ s(y, α(y), x)

since both sides are equal to y by the definitions.

A counterexample to (4) ⇒ (3) is given in [2]. However, it is also proved in the same
paper that each such counterexample must have at least double exponential growth (in n)
of the number of orbits of n-tuples. This is never the case for reducts of finitely bounded
homogeneous structures, so that (3) and (4) are equivalent in the range of Conjectures 1.1
and 1.5, and the conjectures remain plausible even in the light of the above-mentioned results
from [7] which show that (4) still implies NP-hardness.

No counterexamples are known for (5) ⇒ (4) or (6) ⇒ (5). We suspect that (6) ⇒ (4)
at least for reducts of finitely bounded homogeneous structures. Note that if Conjecture 1.1
is true and (6) does not imply (4), then we would be in a rather peculiar situation: The
complexity of a CSP would depend only on the height 1 identities together with the uniform
structure of the polymorphism clone (this fact follows from [7]), but height 1 identities per
se would be insufficient to decide the complexity. On the other hand, the topology would be
irrelevant when all the identities (or at least the pseudo-identities as in our main theorem)
are taken into account.

We now provide an example showing that the implication (6)⇒ (5) does not hold in general
for polymorphism clones. Our example answers Question 7.2 in [23] to the negative, by the
results in [7, 30, 22].

Example 5.4. Define for every n ≥ 1 a binary function gn : ω2 → ω as follows:

gn(x, y) :=

{
n if x < n
x otherwise.

Let C be the smallest function clone of the domain ω which contains the set {gn | n ≥ 1};
then C consists of all term functions over this set.

Let f ∈ C, and denote its arity by m. We claim that there exists kf ≥ 0 such that
f(x1, . . . , xm) ≥ kf for all x1, . . . , xm ∈ [0, kf ), and such that f restricted to [kf ,∞)m equals
a projection. To see this, we use induction over terms. Clearly, the claim is true for the
functions gn (set kgn := n) and all projections. Now let

f(x1, . . . , xm) = gn(s(x1, . . . , xm), t(x1, . . . , xm)),

where n ≥ 1, and s, t ∈ C satisfy the claim.

• If x1, . . . , xm ∈ [0, ks), then f(x1, . . . , xm) ≥ s(x1, . . . , xm) ≥ ks since gn(x, y) ≥ x for
all x, y ∈ ω by definition.
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• If x1, . . . , xm ∈ [0, n), then either s(x1, . . . , xm) ≥ n and hence

f(x1, . . . , xm) ≥ s(x1, . . . , xm) ≥ n,

or s(x1, . . . , xm) < n, in which case we have gn(s(x1, . . . , xm), t(x1, . . . , xm)) = n by
the definition of gn.
• On [max{ks, n},∞)m we have that s(x1, . . . , xm) behaves like a projection, by the

definition of ks. Therefore, for x1, . . . , xm ∈ [max{ks, n},∞) we have s(x1, . . . , xm) ∈
{x1, . . . , xm}, and in particular s(x1, . . . , xm) ≥ n. Thus,

gn(s(x1, . . . , xm), t(x1, . . . , xm)) = s(x1, . . . , xm).

Consequently, f behaves like the same projection as s on [max{ks, n},∞)m.

Summarizing, we obtain that setting kf := max{ks, n} proves the claim.
The mapping ξ which sends every function f(x1, . . . , xm) ∈ C to the projection which it

equals on [kf ,∞)m clearly is a clone homomorphism from C to P.
However, the clone C does not enjoy any uniformly continuous h1 clone homomorphism ξ′

to P: uniform continuity would imply that there exists a finite set F ⊆ ω such that the value
of every function in C under ξ′ only depends on its restriction to F . But then ξ′(gn(x, y)) =
ξ′(gn(y, x)) for any n ≥ 1 such that F ⊆ [0, n), a contradiction since ξ′(gn(y, x)) is, by the
definition of an h1 clone homomorphism, also the opposite projection of ξ′(gn(x, y)) (as such
homomorphisms preserve the switching of variables).

The topological closure C of C in the space of all finitary functions on ω is a polymorphism
clone. We argue that every f ∈ C still enjoys the property of the claim above: for any sequence
(fn)n∈ω in C converging to f we must have that (kfn)n∈ω is eventually constant, and so setting

kf to that value works. Hence, C has a clone homomorphism to P as well (but still none which
is uniformly continuous).

We remark that the mapping ξ is continuous: if a sequence (fn)n∈ω in C converges to f ∈ C,
then we must have kf = kfn eventually, and that all fn behave like the same projection on
[kf ,∞)m eventually.

5.2. Taylor equations without idempotency. Long before the CSP motivated the inten-
sive investigation of function clones that do not have a clone homomorphism to P, such clones
were characterized by Walter Taylor by means of certain identities [40]. His theorem does
not require any finiteness or topological assumptions. On the other hand, it only concerns
idempotent clones, that is, clones whose all operations f satisfy the identity f(x, x . . . , x) ≈ x
(or, in other words, all operations are polymorphisms of all singleton unary relations).

Theorem 5.5 ([40]). Let C be an idempotent function clone. Then C does not have a clone
homomorphism to P if and only if it contains an operation t(x1, . . . , xn) for some n ≥ 1 such
that, for any 1 ≤ i ≤ n, t satisfies an identity of the form t(. . . , x, . . . ) ≈ t(. . . , y, . . . ), where
x and y are at the i-th position (and the remaining positions contain some variables which
are not further specified).

The standard proof (see, e.g., [33]) of the non-trivial implication (i.e., from left to right)
can be split into two parts. First, every h1 clone homomorphism from an idempotent clone to
P is, in fact, a clone homomorphism. Second, the absence of t as in Theorem 5.5 implies the
existence of an h1 clone homomorphism by a compactness argument. While the former part
can be generalized to the non-idempotent situation as proved in the following proposition,
Example 5.7 below shows that the latter part does not generalize in a straightforward fashion.
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For the purpose of the next proposition, we say that a mapping ξ : C → D, where C,D are
function clones, is an almost clone homomorphism if it is an h1 clone homomorphism and it
preserves the composition with unary members both from inside and outside; equivalently, ξ
preserves arities and all identities of the form

α(f(β1(xi1), . . . , βn(xin))) ≈ γ(g(δ1(xj1), . . . , δn(xjn))),

where some of the unary functions of the identity can be missing (so that in particular, h1
identities are of this form).

Proposition 5.6. Let C be a function clone and let ξ : C → P be a mapping. Then ξ is a
clone homomorphism if and only if it is an almost clone homomorphism.

Proof. Assume that ξ is an almost clone homomorphism. We will show that ξ is a clone
homomorphism in a sequence of steps. The first step is well-known.

Step 1: It is enough to show that ξ preserves the projections and identities of the form

f(x1, . . . , xk, g(xk+1, . . . , xl), xl+1, . . . , xm) ≈ h(x1, x2, . . . , xm).

This follows from the fact that each term can be obtained by repeatedly using the type of
composition on the left hand side and then merging the variables.

Step 2: Whenever an operation f(x1, . . . , xn) ∈ C depends only on its i-th argument, then it
is mapped via ξ to the i-th n-ary projection; in particular, ξ preserves projections. Indeed,
such f satisfies the identity

f(x1, . . . , xn) ≈ f(y1, . . . , yi−1, xi, yi+1, . . . , yn)

and the only projection satisfying this identity is the projection onto the i-th coordinate.
Since ξ is an h1 clone homomorphism, the claim follows.

Step 3: The mapping ξ preserves identities of the form

f(g(x1,1, . . . , x1,m), g(x2,1, . . . , x2,m), . . . , g(xn,1, . . . , xn,m)) ≈
h(x1,1, . . . , x1,m, x2,1, . . . , . . . , xn,m) .

Suppose ξ(f) and ξ(g) are the i-th and j-th projection, respectively. We need to show that
the above identity holds in P after application of ξ, or in other words, that

xi,j ≈ ξ(h)(x1,1, . . . , x1,m, x2,1, . . . , . . . , xn,m)

holds in P.
Denoting α(x) := g(x, . . . , x), the following identity holds in C:

h(x1, . . . , x1︸ ︷︷ ︸
m×

, x1, . . . , x1︸ ︷︷ ︸
m×

, . . . , xn, . . . , xn︸ ︷︷ ︸
m×

) ≈ f(α(x1), α(x2), . . . , α(xn)) .

Since ξ preserves this identity and ξ(α) is the identity mapping, we obtain

ξ(h)(x1, . . . , x1︸ ︷︷ ︸
m×

, x2, . . . , x2︸ ︷︷ ︸
m×

, . . . , xn, . . . , xn︸ ︷︷ ︸
m×

) ≈ ξ(f)(x1, x2, . . . , xn) ≈ xi

and it follows that

xi,` ≈ ξ(h)(x1,1, . . . , x1,m, x2,1, . . . , . . . , xn,m)

for some 1 ≤ ` ≤ m.
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Similarly, from

h(x1, . . . , xm, x1, . . . , xm, . . . ) ≈ β(g(x1, . . . , xm)),

where β(x) := f(x, . . . , x), we get that

xk,j ≈ ξ(h)(x1,1, . . . , x1,m, x2,1, . . . , . . . , xn,m)

for some 1 ≤ k ≤ n, proving the claim.

Step 4: Now we can finish the proof using Step 1. For simplicity, consider the case where g
appears at the first coordinate. So, suppose the following identity holds in C.

f(g(x1, . . . , xm), xm+1, . . . , xn) ≈ h(x1, x2, . . . , xn).

Set
t(x1,1, . . . , x1,m, x2,1, . . . , . . . , xn,m) := f(g(x1,1, . . . , x1,m), g(x2,1, . . . ), . . . ).

From Step 3 we get ξ(t)(x1,1, . . . , xn,m) ≈ ξ(f)(ξ(g)(x1,1, . . . ), . . . ), in particular,

ξ(t)(x1, . . . , xm, xm+1, . . . , xm+1︸ ︷︷ ︸
m×

, . . . , xn, . . . , xn︸ ︷︷ ︸
m×

) ≈

ξ(f)(ξ(g)(x1, . . . , xm), ξ(g)(xm+1, . . . , xm+1), . . . , ξ(g)(xn, . . . , xn)) .

Since ξ(g) is a projection, we have ξ(g)(x, . . . , x) ≈ x. Finally, from the definition of t it
follows that

t(x1, . . . , xm, xm+1, . . . , xm+1, . . . , xn, . . . , xn) ≈ h(x1, . . . , xm, α(xm+1), . . . , α(xn)),

where α(x) := g(x, . . . , x), so

ξ(t)(x1, . . . , xm, xm+1, . . . , xm+1, . . . , xn, . . . , xn) ≈ ξ(h)(x1, . . . , xm, xm+1, . . . , xn).

Combining these facts we obtain

ξ(f)(ξ(g)(x1, . . . , xm), xm+1, . . . , xn)

≈ ξ(f)(ξ(g)(x1, . . . , xm), ξ(g)(xm+1, . . . , xm+1), . . . , ξ(g)(xn, . . . , xn))

≈ ξ(t)(x1, . . . , xm, xm+1, . . . , xm+1, . . . , xn, . . . , xn)

≈ ξ(h)(x1, . . . , xn),

which finishes the proof.
�

The following example due to Miroslav Oľsák shows that a direct analogue of Theorem 5.5,
or more precisely the above-mentioned second part of its standard proof, does not hold.

Example 5.7. Let C be the clone of all term operations of the free algebra over countably
many generators in the signature consisting of unary operations p, q and binary operations
r, s modulo the identities

pr(x, y) ≈ ps(x, y), qr(x, y) ≈ qs(y, x).

Since this system of identities is not satisfiable by projections, the clone C does not have a
clone homomorphisms to P.

Let t ∈ C be an arbitrary n-ary function. We claim that t has a coordinate 1 ≤ k ≤ n such
that no identity of the following form is satisfied:

α(t(β1(xi1), . . . , βn(xin))) ≈ γ(t(δ1(xj1), . . . , δn(xjn))),
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where ik 6= jk, and some of the unary functions can be missing in the identity.
Striving for a contradiction, suppose there was an n-ary t ∈ C satisfying such an identity

for every 1 ≤ k ≤ n. Fix a term t′(x1, . . . , xn) over the variables x1, . . . , xn in the signature
{p, q, r, s} which evaluates in C as t.

Assume first that the outermost symbol of t′ is not r. We inductively define a mapping θ
from the set of all terms over the variables x1, . . . , xn to the set {1, . . . , n} as follows:

θ(z) =

 i if z = xi
θ(z2) if z = qr(z1, z2)
θ(z1) otherwise, and z = f(z1, . . . , zl) for some f ∈ {p, q, r, s} .

In other words, θ(z) is the index of its leftmost variable after rewriting it using the rule
which replaces each subterm of the form qr(z1, z2) by qs(z2, z1). It is clear that θ preserves
composition with unary operations symbols from the inside and, for terms z whose outermost
symbol is not r, also from the outside.

It is apparent from the defining identities of C that θ(z1) = θ(z2) whenever z1 and z2
evaluate to the same function in C. On the other hand, setting k := θ(t′) we obtain

θ(α(t′(β1(xi1), . . . , βn(xin)))) = θ(t′(xi1 , . . . , xin)) = ik, and

θ(γ(t′(δ1(xj1), . . . , δn(xjn))) = jk,

a contradiction.
If the outermost symbol of t′ is r, then we adjust the definition of θ by swapping the roles

of r and s, and argue until a contradiction in the same fashion.

Note that any pseudo-Siggers operation satisfies the modification of Taylor identities (from
Theorem 5.5) which is described in the second paragraph of Example 5.7 (even without the
inner unary functions). Hence, the non-satisfaction of identities of that form does, in the case
of polymorphism clones of ω-categorical core structures, imply the existence of a uniformly
continuous clone homomorphism from some stabilizer to P, and then also the existence of
an h1 clone homomorphism to P by Corollary 5.1. The non-satisfaction of Taylor identities
(without inner and outer unary functions) is not sufficient to this end: the function clone of
all (up to dummy variables) injective functions on a countable set has no Taylor term (whose
identities are incompatible with injectivity), but satisfies non-trivial h1 identities, e.g., those
implicitly described in the statement of Lemma IV.3 in [2].

5.3. Ternary identities. Perhaps surprisingly in the light of our main theorem, it has been
observed by Jakub Opršal and independently by Ross Willard (and perhaps might have been
known to others as well) that the existence of clone homomorphisms to P only depends on
the structure of the ternary operations in the clone.

Proposition 5.8. Let C be a function clone, and let ξ be a mapping from the ternary oper-
ations in C to P which preserves arities and identities (h1 identities). Then ξ has a unique
extension to a clone homomorphism (h1 clone homomorphism) from C to P.

Proof. We give a self-contained proof, although the claim essentially follows from the results
and arguments in [7], in particular, Section 7 thereof.

Let f(x1, . . . , xn) ∈ C, where n ≥ 1, and let a = (a1, . . . , an) ∈ {0, 1}n. We define fa(x, y) ∈
C to be the binary function obtained by identifying all variables xi of f with x whenever ai = 0,
and all other variables with y. We further define an n-ary operation ξ′(f) on {0, 1} by setting
ξ′(f)(a) := ξ(fa)(0, 1) for all a ∈ {0, 1}n.
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It is easy to verify that ξ′ is an extension of ξ, since ξ preserves h1 identities on the ternary
functions. Moreover, it is clear for the same reason that any extension of ξ to an h1 clone
homomorphism into P must be compatible with the above definition, and hence be equal to
ξ′, proving uniqueness of the extension.

We claim that ξ′ maps into P. To show this, we use the fact that P = Pol(M), where

M = ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}),

as in the introduction. If ξ′(f) was not a projection for some f(x1, . . . , xn) ∈ C, then there
would exist triples r1, . . . , rn in the relation of M such that ξ′(f)(r1, . . . , rn), calculated com-
ponentwise, is not contained in that relation. Since the relation contains only three triples,
we can define a ternary operation g(x, y, z) from f by replacing xi by x whenever ri equals
(0, 0, 1), similarly for y and (0, 1, 0), and for z and (1, 0, 0). Then ξ′(g) still violates M, a
contradiction since ξ(g) = ξ′(g) and since ξ(g) is a projection.

To see that ξ′ is an h1 clone homomorphism, consider an identity

f(yi1 , . . . , yin) ≈ s(y1, . . . , ym),

and say that ξ′(f) projects onto the j-th coordinate, where 1 ≤ j ≤ n. Then

ξ′(f)(yi1 , . . . , yin) ≈ yij
holds in P; we wish to show that ξ′(s)(y1, . . . , ym) ≈ yij . Let a = (a1, . . . , am) ∈ {0, 1}m be
the tuple in which aij = 1, and all other ai = 0; since ξ′(s) ∈ P, it suffices to show that
ξ′(s)(a) = 1. By the definition of ξ′ and the first identity above, we have that ξ′(s)(a) =
ξ(g)(0, 1), where g(x, y) is the binary function obtained from f(x1, . . . , xn) by inserting y for
xk whenever ik = ij , and x otherwise. Again by the definition of ξ′ and the first identity, this
value is equal to ξ′(f)(b), where b = (b1, . . . , bn) ∈ {0, 1}n is the tuple where bk = 1 if and
only if ik = ij . By the second identity above, that value equals 1, as desired.

When ξ preserves identities, then it is not hard to show that ξ′ is a clone homomorphism:
one argues that it is an almost clone homomorphism by reducing to ternary functions, and
then refers to Proposition 5.6. �

A standrad application of the compactness theorem of logic yields the following corollary.

Corollary 5.9. Let C be a function clone. Then there is no clone homomorphism (h1 clone
homomorphism) C → P if and only if C satisfies a non-trivial finite system of identities (h1
identities) of ternary functions.

In particular, our pseudo-Siggers identity, which involves a 6-ary function, always implies
a non-trivial system of ternary identities – but note that there is no bound on the number of
identities in the system.

6. Conclusion

The presented results show the possibility of a purely algebraic theory for function clones
that are concerned by the infinite-domain tractability conjecture. They have already found
several applications: in the classification of CSPs over reducts of unary structures [18], and
indirectly (via results in [2] inspired by the present work) in the algebraic dichotomy for
CSPs in MMSNP [17]. Nevertheless, the theory is presently only in its infancy compared to
its finite counterpart. We now briefly discuss three of the research directions that call for
further exploration.
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Firstly, the technical core of our main result is the pseudoloop lemma which generalizes a
loop lemma for finite undirected graphs. The extension of the latter result to directed graphs
stated in Theorem 3.6 has lead to the development of absorption theory [3, 4], which in turn
proved to be a powerful tool in the context of finite domain CSPs and universal algebra. While
it might be possible to lift some results from the finite to the infinite, e.g., in a manner akin
to the one shown in Proposition 3.8, it seems more valuable to find a genuine generalization
of absorption theory itself. Some ideas from this theory and, in particular, a loop lemma was
used in a different infinite setting, namely that of idempotent clones [37]. Is it possible to
merge these approaches?

Secondly, as discussed in Section 5, there are several meaningful types of morphisms to the
clone of projections and their exact relation in various settings (e.g., polymorphism clones of
structures, polymorphism clones of ω-categorical structures, polymorphism clones of reducts
of homogeneous structures) requires further investigation. For finite core clones all the items
(2) – (6) in Corollary 5.1 are equivalent, and many alternative characterizations are available:
for example by means of identities, the structure of invariant relations, absorption properties,
the Tame Congruence Theory types, Bulatov’s local algebraic properties, etc. Are there
infinite analogues to these characterizations?

Thirdly, clone homomorphisms to other clones rather than only the projection clone P are
significant for CSPs as well as universal algebra. For example, the clones of modules play a
similar role to P in the context of solvability of finite-domain CSPs by consistency methods.
Again, are there infinite analogues?
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[7] Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. Israel Journal of Math-
ematics, 223(1):363–398, 2018.

[8] Libor Barto and Michael Pinsker. The algebraic dichotomy conjecture for infinite domain constraint
satisfaction problems. In Proceedings of the 31th Annual IEEE Symposium on Logic in Computer Science
– LICS’16, pages 615–622, 2016.

[9] Clifford Bergman. Universal algebra, volume 301 of Pure and Applied Mathematics (Boca Raton). CRC
Press, Boca Raton, FL, 2012. Fundamentals and selected topics.

[10] Garrett Birkhoff. On the structure of abstract algebras. Mathematical Proceedings of the Cambridge Philo-
sophical Society, 31(4):433–454, 1935.

[11] Manuel Bodirsky. Cores of countably categorical structures. Logical Methods in Computer Science, 3(1):1–
16, 2007.



26 L. BARTO AND M. PINSKER

[12] Manuel Bodirsky. Complexity classification in infinite-domain constraint satisfaction. Mémoire
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