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Abstract. Canonical functions are a powerful concept with numerous applications in
the study of groups, monoids, and clones on countable structures with Ramsey-type
properties. In this short note, we present a proof of the existence of canonical functions
in certain sets using topological dynamics, providing a shorter alternative to the original
combinatorial argument. We moreover present equivalent algebraic characterisations of
canonicity.

1. Introduction

When f : (Q;<)→ (Q;<) is any function from the order of the rational numbers to itself,
then there are arbitrarily large finite subsets of Q on which f “behaves regularly”; that is,
it is either strictly increasing, strictly decreasing, or constant. A direct (although arguably
unnecessarily elaborate) way to see this is by applying Ramsey’s theorem: two-element
subsets of Q are colored with three colors according to the local behavior of f on them (this
yields, by the infinite version of Ramsey’s theorem, even an infinite set on which f behaves
regularly, but this is beside the point for us). In particular, it follows that the closure of the
set {β f α | α, β ∈ Aut(Q;<)} in QQ, equipped with the pointwise convergence topology,
contains a function which behaves regularly everywhere. This function of regular behavior
is called canonical.

More generally, a function f : ∆ → Λ between two structures ∆,Λ is called canonical
when it behaves regularly in an analogous way, that is, when it sends tuples in ∆ of
the same type (in the sense of model theory, as in [Hod97]) to tuples the same type
in Λ [BPT13, BP14, BP11]. Similarly as in the example above, canonical functions can
be obtained from f , in the fashion stated above, when ∆ has sufficient Ramsey-theoretic
properties (for example, the Ramsey property) and when Λ is sufficiently small (for example
ω-categorical) [BPT13,BP14,BP11].

The concept of canonical functions has turned out useful in numerous applications: for
classifying first-order reducts they are used in [Aga16, Pon13, PPP+14, BPP15, BJP16b,
AK16, LP15], for complexity classification for constraint satisfaction problems (CSPs)
in [BMPP16,BW12,BP15a,BJP16a,KP16], for decidability of meta-problems in the context
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of the CSPs in [BPT13], for lifting algorithmic results from finite-domain CSPs to CSPs
over infinite domains in [BM16], for lifting algorithmic results from finite-domain CSPs to
homomorphism problems from definable infinite structures to finite structures [KKOT15],
and for decidability questions in computations with atoms in [KLOT16]. Most of these
applications are covered by a survey article published shortly after their invention [BP11].

As indicated above, the technique is available for a function f : ∆ → Λ whenever ∆ is
a Ramsey structure and Λ is ω-categorical, and the existence of canonical functions in the
set {β f α | α ∈ Aut(∆), β ∈ Aut(Λ)} ⊆ Λ∆ was originally shown under these conditions
by a combinatorial argument [BPT13, BP14, BP11]. By the Kechris-Pestov-Todorcevic
correspondence [KPT05], a structure ∆ is Ramsey (with respect to colorings of embeddings)
if and only if its automorphism group Aut(∆) is extremely amenable, meaning that every
continuous action of it on a compact Hausdorff space has a fixed point. Moreover, by
the theorem of Ryll-Nardzewski, Engeler, and Svenonius, two tuples in a countable ω-
categorical structure have the same type if and only if they lie in the same orbit with
respect to the componentwise action of its automorphism group on tuples, and a countable
structure is ω-categorical if and only if its automorphism group is oligomorphic. Therefore
both the definition of canonicity as well as the above-mentioned conditions implying their
existence in sets of the form {β f α | α ∈ Aut(∆), β ∈ Aut(Λ)} can be formulated in the
language of permutation groups.

It is therefore natural to ask for a perhaps more elegant proof of the existence of canonical
functions via topological dynamics, reminiscent of the numerous proofs of combinatorial
statements obtained in this fashion (cf. the survey [Ber06] for Ergodic Ramsey theory;
[Kec14] mentions some applications of extreme amenability). In this short note, we present
such a proof. The proof was discovered by the authors at the Workshop on Algebra and
CSPs at the Fields Institute in Toronto in 2011, where it was also presented (by the second
author), but has so far not appeared in print. We use the occasion of this note to present
various equivalent characterisations of canonicity of functions that facilitate their use and
better explain their significance.

2. Canonicity

We use the notation G y X to denote a permutation group G acting on a set X. We
make the convention that if f : X → Y is a function and t = (t1, . . . , tk) ∈ Xk, where
k ≥ 1, then f(t) := (f(t1), . . . , f(tk)) ∈ Y k denotes the k-tuple obtained by applying f
componentwise.

The following is an algebraic formulation of Definition 6 in [BPT13].

Definition 1. Let G y X and H y Y be permutation groups. A function f : X → Y
is called canonical with respect to G and H if for every k ≥ 1, t ∈ Xk, and α ∈ G there
exists β ∈ H such that f α(t) = β f(t).

Hence, functions that are canonical with respect to G and H induce for each integer
k ≥ 1 a function from the orbits of the componentwise action of G of Xk to the orbits of
the componentwise action of H on Y k.
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In order to formulate properties equivalent to canonicity we require some topological
notions. We consider the set Y X of all functions from X to Y as a topological space
equipped with the topology of pointwise convergence, i.e., the product topology where Y is
taken to be discrete. When S ⊆ Y X , then we write S for the closure of S in this space. In
particular, when G y X is a permutation group, then G is the closure of G in XX . Note
that G might no longer be a group, but it is still a monoid with respect to composition of
functions. For example, in the case of the full symmetric group G = Sym(X) consisting of
all permutations of X, G is the transformation monoid of all injections in XX .

A permutation group G y X is called oligomorphic if for each k ≥ 1 the componentwise
action of G on Xk has finitely many orbits. For oligomorphic permutation groups we have
the following equivalent characterisations of canonicity.

Proposition 1. Let G y X and H y Y be permutation groups, where H y Y is
oligomorphic. Then for any function f : X → Y the following are equivalent.

(1) f is canonical with respect to G and H;

(2) for all α ∈ G we have fα ∈ Hf := {βf | β ∈ H};
(3) for all α ∈ G there are e1, e2 ∈ H such that e1fα = e2f .

A stronger condition is to require that for all α ∈ G there is an e ∈ H such that
fα = ef . To illustrate that this is strictly stronger, already when G = H, we give an
explicit example.

Example 2 (thanks to Trung Van Pham). Let G := Aut(Q;<). Note that (Q;<) and
(Q\{0};<) are isomorphic, and let f be such an isomorphism. Then f , viewed as a function
from Q → Q, is clearly canonical with respect to G and G. But f does not satisfy the
stronger condition above: there is no e ∈ G such that fα = ef . To see this, choose b, c ∈ Q
such that f(b) < 0 < f(c). By transitivity there exists an α ∈ G such that α(b) = c. Note
that 0 < fα(b) < fα(c). Morever, the image of fα equals the image of f , and hence any
e ∈ G such that fα = ef must fix 0. Since e must also preserve <, it cannot map f(b) < 0
to fα(b) > 0. Hence, there is no e ∈ G such that fα = ef . �

In Proposition 1, the implications from (1) to (2) and from (3) to (1) follow straight-
forwardly from the definitions. For the implication from (2) to (3) we need a lift lemma,
which is in essence from [BPP14]. This lemma has been applied frequently lately [BJP16a,
BP16,BM16], in various slightly different forms. We need a yet different formulation here;
since the lemma is a consequence of the compactness of a certain space which we need in
any case for the canonisation theorem in Section 3, we present its proof.

Let H y Y be a permutation group, and let f, g ∈ Y X , for some X. We say that
f = g holds locally modulo H if for all finite F ⊆ X there exist β1, β2 ∈ H such that
β1 f �F= β2 g �F . We say that f = g holds globally modulo H (modulo H) if there exist
e1, e2 ∈ H (e1, e2 ∈ H, respectively) such that e1 f = e2 g.

Of course, if f = g holds globally modulo H, then it holds locally modulo H. On the
other hand, if f = g holds locally modulo H, then it need not hold globally modulo H. To
see this, let f(x, y) : ω2 → ω be an injection, set g := f(y, x), and let H be the group of all
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permutations of ω. Then f = g holds locally modulo H, but not globally. However, there
exist injections e1, e2 ∈ ωω such that e1 f = e2 g, so f = g holds globally modulo H. This
is true in general, as we see in the following lift lemma.

Lemma 3. Let H y Y be an oligomorphic permutation group, let I be an index set, and
let Xi be a set for every i ∈ I. Let fi, gi be functions in Y Xi such that fi = gi holds locally
modulo H for all i ∈ I. Then there exist e, ei ∈ H such that e fi = ei gi holds globally for
all i ∈ I.

To prove Lemma 3, it is convenient to work with a certain compact Hausdorff space that
we also use for the canonisation theorem in Section 3. Let H y Y be a permutation group,
and X be a set. On Y X , define an equivalence relation ∼ by setting f ∼ g if f ∈ H g,
i.e., if f = g holds locally modulo H; here, transitivity and symmetry follow from the fact
that H is a group. The following has essentially been shown in [BP15b] (though for the
finer equivalence relation of global equality modulo H), but we give an argument for the
convenience of the reader since it is used so often (cf. for example [BJ11, BOP15, BPP14,
BKO+16]).

Lemma 4. If H y Y is oligomorphic, then the space Y X/∼ is a compact Hausdorff space.

Proof. We represent the space in such a way that this becomes obvious. Extend the
definition of the equivalence relation ∼ to all spaces Y F , where F ⊆ X. When F is finite,
then Y F /∼ is finite and discrete, because H is oligomorphic. Hence, the space∏

F∈[X]<ω

Y F /∼

is compact. The mapping from Y X/∼ into this space defined by

[g]∼ 7→
(
[g �F ]∼ | F ∈ [X]<ω

)
is well-defined. In fact, it is a homeomorphism onto a closed subspace thereof, since the
topology on Y X/∼ is precisely given by the behavior of functions on finite sets, modulo
the equivalence ∼. Hence, Y X/∼ is indeed a compact Hausdorff space. �

Proof of Lemma 3. For simplicity of notation, assume that the Xi are countable; then Y Xi

is a metric space (otherwise, we would have to work with more general topological notions

than sequences). We have fi ∈ H gi; so let (βji gi)j∈ω be a sequence converging to fi for all

i ∈ I. Setting X := Y we see that XX/∼ is compact by Lemma 4. Therefore, the set

{([δ]∼, ([δ βji ]∼)i∈I) | j ∈ ω, δ ∈ H}

is a subset of a compact space, (XX/∼)× (XX/∼)I . Hence, it has an accumulation point
([e]∼, ([ei]∼)i∈I). Clearly, e, ei ∈ H for all i ∈ I, and the functions ei prove the lemma. �

The implication from (2) to (3) in Proposition 1 now is a direct consequence of Lemma 3.
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3. Canonisation

The following is the canonisation theorem, first proved combinatorially in [BPT13] in a
slightly more specialized context.

Theorem 5. Let G y X, H y Y be permutation groups, where G is extremely amenable
and H is oligomorphic, and let f : X → Y . Then

H f G := {β f α | α ∈ G, β ∈ H}
contains a canonical function with respect to G and H.

Proof. The space H f G/∼ is a closed subspace of the compact Hausdorff space Y X/∼ from
Lemma 4, and hence is a compact Hausdorff space as well. We define a continuous action
of G on this space by

(α, [g]∼) 7→ [g α−1]∼ .

Clearly, this assignment is a function, it is a group action, and it is continuous. Since G is
extremely amenable, the action has a fixed point [g]∼. Any member g of this fixed point is
canonical: whenever α ∈ G, then [g α]∼ = [g]∼, which is the definition of canonicity. �

In applications of Theorem 5 (e.g., in [Aga16, Pon13, PPP+14, BPP15, BJP16b, AK16,
LP15,BMPP16,BW12,BP15a,BJP16a,KP16,BPT13,BM16,KLOT16,BP11]), one usually
needs the following special case of the above situation. It states, roughly, that whenever we
have a finite arity function f on a set, and an oligomorphic extremely amenable permutation
group G on the same set, then we can obtain from f and G, using composition and
topological closure, a canonical function whilst retaining finite information about f .

In the following statement, for m ≥ 1 we write Gm for the natural action of Gm on Xm

given by ((α1, . . . , αm), (x1, . . . , xm)) 7→ (α1(x1), . . . , αm(xm)). Moreover, we denote the
pointwise stabilizer of c1, . . . , cn ∈ Xm in Gm by (Gm, c1, . . . , cn).

Corollary 6. Let G y X be an oligomorphic extremely amenable permutation group. Let
f : Xm → X for some m ≥ 1, and let c1, . . . , cn ∈ Xm for some n ≥ 1. Then there exists

g ∈ G f Gm

such that

• g agrees with f on {c1, . . . , cn}, and
• g is canonical with respect to the groups (Gm, c1, . . . , cn) and G.

Proof. The group Gm is obviously extremely amenable. Moreover, it is known that so is
any stabilizer of it (in fact, every open subgroup; cf. [BPT13]). The statement therefore
follows from Theorem 5. �

4. Open Problems

Is there a converse of Theorem 5 in the sense that extreme amenability of G is equivalent
to some form of the statement of the canonisation theorem? More precisely, we ask the
following question.
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Question 7. Let G be the automorphism group of a countably infinite linearly ordered
structure with domain X. Is it true that G is extremely amenable if and only if for all
oligomorphic permutation groups H y Y and every f : X → Y we have that H f G contains
a function that is canonical with respect to H and G?
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[PPP+14] Péter Pál Pach, Michael Pinsker, Gabriella Pluhár, András Pongrácz, and Csaba Szabó. Reducts
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