PROBABILISTIC ANALYSIS OF AN EXHAUSTIVE SEARCH ALGORITHM IN RANDOM GRAPHS

Vytas Zacharovas

Academia Sinica, Taiwan
(joint work with Hsien-Kuei Hwang, Cyril Banderier and Vlady Ravelomanana)

Workshop on Discrete Mathematics, Vienna, Austria
November 19-22, 2008
Independent set

An independent (or stable) set in a graph is a set of vertices no two of which share the same edge.

\[\text{MIS} = \{1, 3, 5, 7\} \]

Maximum independent set (MIS)
The MIS problem asks for an independent set with the largest size.

NP hard!!
Independent set
An independent (or stable) set in a graph is a set of vertices no two of which share the same edge.

Maximum independent set (MIS)
The MIS problem asks for an independent set with the largest size.

\[\text{MIS} = \{1, 3, 5, 7\} \]
Independent set
An independent (or stable) set in a graph is a set of vertices no two of which share the same edge.

Maximum independent set (MIS)
The MIS problem asks for an independent set with the largest size.

NP hard!!
MAXIMUM INDEPENDENT SET

Equivalent version
The same problem as **MAXIMUM CLIQUE** on the complementary graph (clique = complete subgraph).
THEORETICAL RESULTS

Random models: Erdős-Rényi’s $G_{n,p}$

Vertex set $= \{1, 2, \ldots, n\}$ and all edges occur independently with the same probability p.

The cardinality of an MIS in $G_{n,p}$

Matula (1970), Grimmett and McDiarmid (1975), Bollobás and Erdős (1976), Frieze (1990): If $pn \to \infty$, then $(q := 1 - p)$

$$|\text{MIS}_n| \sim 2 \log_{1/q} pn \quad \text{whp},$$

where $q = 1 - p$.
THEORETICAL RESULTS

Random models: Erdős-Rényi’s $G_{n,p}$
Vertex set $= \{1, 2, \ldots, n\}$ and all edges occur independently with the same probability p.

The cardinality of an MIS in $G_{n,p}$
Matula (1970), Grimmett and McDiarmid (1975), Bollobas and Erdős (1976), Frieze (1990): If $pn \to \infty$, then $(q := 1 - p)$

$$|\text{MIS}_n| \sim 2 \log_{1/q} pn \quad \text{whp},$$

where $q = 1 - p$.
Problem
Find such an independent set A in G that no other node from G can be added to A without destroying the independence of A.

Solution
Initially $A = \emptyset$.

- Chose $v \in G$.
- $A := A \cup \{v\}$, $G := G \ast v$, where $G \ast v$ is the graph obtained from G by deleting node v together with all its neighboring nodes and their edges.
- Continue until $G = \emptyset$.
DESCRIPTION OF THE GREEDY ALGORITHM

Problem
Find such an independent set \(A \) in \(G \) that no other node from \(G \) can be added to \(A \) without destroying the independence of \(A \).

Solution
Initially \(A = \emptyset \).

- Chose \(v \in G \).
- \(A := A \cup \{v\} \), \(G := G \ast v \), where \(G \ast v \) is the graph obtained from \(G \) by deleting node \(v \) together with all its neighboring nodes and their edges.
- Continue until \(G = \emptyset \).
DESCRIPTION OF THE GREEDY ALGORITHM

Problem
Find such an independent set A in G that no other node from G can be added to A without destroying the independence of A.

Solution
Initially $A = \emptyset$.

- Chose $v \in G$.
- $A := A \cup \{v\}$, $G := G \ast v$, where $G \ast v$ is the graph obtained from G by deleting node v together with all its neighboring nodes and their edges.
- Continue until $G = \emptyset$.
DESCRIPTION OF THE GREEDY ALGORITHM

Problem
Find such an independent set A in G that no other node from G can be added to A without destroying the independence of A.

Solution
Initially $A = \emptyset$.

- Chose $v \in G$.
- $A := A \cup \{v\}$, $G := G * v$, where $G * v$ is the graph obtained from G by deleting node v together with all its neighboring nodes and their edges.
- Continue until $G = \emptyset$.
DESCRIPTION OF THE GREEDY ALGORITHM

Problem
Find such an independent set A in G that no other node from G can be added to A without destroying the independence of A.

Solution
Initially $A = \emptyset$.

▶ Chose $v \in G$.

▶ $A := A \cup \{v\}$, $G := G \ast v$, where $G \ast v$ is the graph obtained from G by deleting node v together with all its neighboring nodes and their edges.

▶ Continue until $G = \emptyset$.
A GREEDY ALGORITHM

Recurrence
The size of the resulting independent set S_n satisfies recurrence relation:

$$S_n \overset{d}{=} 1 + S_{n-1} - \text{Binom}(n-1; p) \quad (n \geq 1),$$

with $S_0 \equiv 0$.
ANALYSIS OF THE GREEDY ALGORITHM

Relatively easy

▶ Mean: $\mathbb{E}(S_n) \sim \log_{1/q} n + \text{a bounded periodic function.}$

▶ Variance: $\mathbb{V}(S_n) \sim \text{a bounded periodic function.}$

▶ Limit distribution does not exist:
$\mathbb{E} \left(e^{(X_n - \log_{1/q} n) y} \right) \sim F(\log_{1/q} n; y), \text{ where}$

$$F(u; y) := \frac{1 - e^y}{\log(1/q)} \left(\prod_{\ell \geq 1} \frac{1 - e^y q^\ell}{1 - q^\ell} \right) \sum_{j \in \mathbb{Z}} \Gamma \left(-\frac{y + 2j\pi i}{\log(1/q)} \right) e^{2j\pi i u}.$$

ANALYSIS OF THE GREEDY ALGORITHM

Relatively easy

- **Mean:** $\mathbb{E}(S_n) \sim \log_{1/q} n + \text{a bounded periodic function.}$

- **Variance:** $\mathbb{V}(S_n) \sim \text{a bounded periodic function.}$

- **Limit distribution does not exist:**

 $\mathbb{E} \left(e^{(X_n - \log_{1/q} n)y} \right) \sim F(\log_{1/q} n; y)$, where

 $$F(u; y) := \frac{1 - e^y}{\log(1/q)} \left(\prod_{\ell \geq 1} \frac{1 - e^y q^\ell}{1 - q^\ell} \right) \sum_{j \in \mathbb{Z}} \Gamma \left(-\frac{y + 2j\pi i}{\log(1/q)} \right) e^{2j\pi iu}. $$
Relatively easy

▶ **Mean:** $\mathbb{E}(S_n) \sim \log_{1/q} n + \text{a bounded periodic function.}$

▶ **Variance:** $\mathbb{V}(S_n) \sim \text{a bounded periodic function.}$

▶ **Limit distribution does not exist:**

$$
\mathbb{E}
\left(e^{(X_n - \log_{1/q} n)y} \right)
\sim
F(\log_{1/q} n; y),
\text{ where}
$$

$$
F(u; y) := \frac{1 - e^y}{\log(1/q)} \left(\prod_{\ell \geq 1} \frac{1 - e^y q^\ell}{1 - q^\ell} \right) \sum_{j \in \mathbb{Z}} \Gamma \left(-\frac{y + 2j \pi i}{\log(1/q)} \right) e^{2j \pi i u}.
$$
A BETTER ALGORITHM?

Goodness of GREEDY IS

Asymptotically, the GREEDY IS is half optimal.

Can we do better?

Frieze and McDiarmid (1997, RSA), Algorithmic theory of random graphs, Research Problem 15:

Construct a polynomial time algorithm that finds an independent set of size at least $\left(\frac{1}{2} + \varepsilon\right)|\text{MIS}_n|$ whp or show that such an algorithm does not exist modulo some reasonable conjecture in the theory of computational complexity such as, e.g., $P \neq NP$.
A BETTER ALGORITHM?

Goodness of GREEDY IS

Asymptotically, the GREEDY IS is half optimal.

Can we do better?
Frieze and McDiarmid (1997, RSA), Algorithmic theory of random graphs, Research Problem 15:

Construct a polynomial time algorithm that finds an independent set of size at least \((1/2 + \varepsilon)|MIS_n|\) whp or show that such an algorithm does not exist modulo some reasonable conjecture in the theory of computational complexity such as, e.g., \(P \neq NP\).
A BETTER ALGORITHM?

Goodness of GREEDY IS

Asymptotically, the GREEDY IS is half optimal.

Can we do better?
Frieze and McDiarmid (1997, RSA), Algorithmic theory of random graphs, Research Problem 15:

Construct a polynomial time algorithm that finds an independent set of size at least \((\frac{1}{2} + \varepsilon) |MIS_n|\) whp or show that such an algorithm does not exist modulo some reasonable conjecture in the theory of computational complexity such as, e.g., \(P \neq NP\).
POSITIVE RESULTS

Exact algorithms

A huge number of algorithms proposed in the literature; see Bomze et al.’s survey (in *Handbook of Combinatorial Optimization*, 1999).

Special algorithms

– Chvátal (1977) proposes exhaustive algorithms where almost all $G_{n,1/2}$ creates at most $n^2 (1 + \log_2 n)$ subproblems.

– Pittel (1982):

\[
P\left(n^{\frac{1}{2} - \log_{1/2} n} \leq \text{Time used by Chvátal’s algo} \leq n^{\frac{1}{2} + \log_{1/2} n}\right) \geq 1 - e^{-c\log^2 n}
\]
Exact algorithms

A huge number of algorithms proposed in the literature; see Bomze et al.’s survey (in *Handbook of Combinatorial Optimization*, 1999).

Special algorithms

- Chvátal (1977) proposes *exhaustive* algorithms where almost all $G_{n,1/2}$ creates at most $n^{2(1+\log_2 n)}$ subproblems.

- Pittel (1982):

$$P\left(n^{\frac{1-\varepsilon}{4} \log_{1/q} n} \leq \text{Time used by Chvátal’s algo} \leq n^{\frac{1+\varepsilon}{2} \log_{1/q} n}\right) \geq 1 - e^{-c \log^2 n}$$
POSITIVE RESULTS

Exact algorithms

A huge number of algorithms proposed in the literature; see Bomze et al.’s survey (in *Handbook of Combinatorial Optimization*, 1999).

Special algorithms

- Chvátal (1977) proposes exhaustive algorithms where almost all $G_{n,1/2}$ creates at most $n^{2(1+\log_2 n)}$ subproblems.
- Pittel (1982):

$$\Pr \left(n^{\frac{1-\epsilon}{4} \log_{1/q} n} \leq \text{Time used by Chvátal’s algo} \leq n^{\frac{1+\epsilon}{2} \log_{1/q} n} \right) \geq 1 - e^{-c \log^2 n}$$
Problem

Suppose we want to compute the stability number of the graph G, that is $|MIS(G)|$.

- Choose a node $v \in G$.
- Delete from G the node v together with all its edges, that is obtain graph $G - v$. Compute $|MIS(G - v)|$.
- Delete from G the node v together with all its neighboring nodes and their edges. The obtained graph denote by $G \ast v$. Compute $|MIS(G \ast v)|$.

$|MIS(G)| = \max\{|MIS(G - v)|, |MIS(G \ast v)| + 1\}$.
PROBLEM

Suppose we want to compute the stability number of the graph G, that is $|MIS(G)|$.

1. **Choose a node** $v \in G$.
2. **Delete from G the node v together with all its edges**, that is obtain graph $G - v$. **Compute** $|MIS(G - v)|$.
3. **Delete from G the node v together with all its neighboring nodes and their edges**. The obtained graph denote by $G \ast v$. **Compute** $|MIS(G \ast v)|$.
4. $|MIS(G)| = \max\{|MIS(G - v)|, |MIS(G \ast v)| + 1\}$.
DESCRIPTION OF THE EXHAUSTIVE ALGORITHM PROPOSED BY V. CHVATAL

Problem
Suppose we want to compute the stability number of the graph G, that is $|\text{MIS}(G)|$.

- Chose a node $v \in G$.
- Delete from G the node v together with all its edges, that is obtain graph $G - v$. Compute $|\text{MIS}(G - v)|$.
- Delete from G the node v together with all its neighboring nodes and their edges. The obtained graph denote by $G \ast v$. Compute $|\text{MIS}(G \ast v)|$.
- $|\text{MIS}(G)| = \max\{|\text{MIS}(G - v)|, |\text{MIS}(G \ast v)| + 1\}$.

DESCRIPTION OF THE EXHAUSTIVE ALGORITHM PROPOSED BY V. CHVATAL

Problem
Suppose we want to compute the stability number of the graph G, that is $|MIS(G)|$.

- Chose a node $v \in G$.
- Delete from G the node v together with all its edges, that is obtain graph $G - v$. Compute $|MIS(G - v)|$.
- Delete from G the node v together with all its neighboring nodes and their edges. The obtained graph denote by $G \ast v$. Compute $|MIS(G \ast v)|$.
- $|MIS(G)| = \max\{ |MIS(G - v)|, |MIS(G \ast v)| + 1 \}$.
AIM: A MORE PRECISE ANALYSIS OF THE EXHAUSTIVE ALGORITHM

The time needed to complete the algorithm X_n is a random variable satisfying recurrence relation

$$X_n \overset{d}{=} X_{n-1} + X^*_{n-1 - \text{Binom}(n-1;p)} \quad (n \geq 2),$$

with $X_0 = 0$ and $X_1 = 1$.

Special cases

- If p is close to 1, then the second term is small, so we expect a polynomial time bound.
- If p is sufficiently small, then the second term is large, and we expect an exponential time bound.
- What happens for p in between?
The time needed to complete the algorithm X_n is a random variable satisfying recurrence relation

$$X_n \overset{d}{=} X_{n-1} + X^*_{n-1 - \text{Binom}(n-1;p)} \quad (n \geq 2),$$

with $X_0 = 0$ and $X_1 = 1$.

Special cases

- If p is close to 1, then the second term is small, so we expect a polynomial time bound.
- If p is sufficiently small, then the second term is large, and we expect an exponential time bound.
- What happens for p in between?
AIM: A MORE PRECISE ANALYSIS OF THE EXHAUSTIVE ALGORITHM

The time needed to complete the algorithm X_n is a random variable satisfying recurrence relation

$$X_n \overset{d}{=} X_{n-1} + X^*_{n-1} - \text{Binom}(n-1;p) \quad (n \geq 2),$$

with $X_0 = 0$ and $X_1 = 1$.

Special cases

- If p is close to 1, then the second term is small, so we expect a **polynomial** time bound.
- If p is sufficiently small, then the second term is large, and we expect an **exponential** time bound.
- What happens for p in between?
AIM: A MORE PRECISE ANALYSIS OF THE EXHAUSTIVE ALGORITHM

The time needed to complete the algorithm X_n is a random variable satisfying recurrence relation

$$X_n \overset{d}{=} X_{n-1} + X^*_{n-1 - \text{Binom}(n-1; p)} \quad (n \geq 2),$$

with $X_0 = 0$ and $X_1 = 1$.

Special cases

– If p is close to 1, then the second term is small, so we expect a *polynomial* time bound.

– If p is sufficiently small, then the second term is large, and we expect an *exponential* time bound.

– What happens for p in between?
The expected value $\mu_n := \mathbb{E}(X_n)$ satisfies

$$\mu_n = \mu_{n-1} + \sum_{0 \leq j < n} \binom{n-1}{j} p^j q^{n-1-j} \mu_{n-1-j}.$$

with $\mu_0 = 0$ and $\mu_1 = 1$.

Poisson generating function

Let $\tilde{f}(z) := e^{-z} \sum_{n \geq 0} \mu_n z^n / n!$. Then

$$\tilde{f}'(z) = \tilde{f}(qz) + e^{-z}.$$
The expected value $\mu_n := \mathbb{E}(X_n)$ satisfies

$$
\mu_n = \mu_{n-1} + \sum_{0 \leq j < n} \binom{n-1}{j} p^j q^{n-1-j} \mu_{n-1-j}.
$$

with $\mu_0 = 0$ and $\mu_1 = 1$.

Poisson generating function

Let $\tilde{f}(z) := e^{-z} \sum_{n \geq 0} \mu_n z^n / n!$. Then

$$
\tilde{f}'(z) = \tilde{f}(qz) + e^{-z}.
$$
RESOLUTION OF THE RECURRENCE

Laplace transform

The Laplace transform of \tilde{f}

$$\mathcal{L}(s) = \int_0^{\infty} e^{-sx} \tilde{f}(x) \, dx$$

satisfies

$$s\mathcal{L}(s) = \frac{1}{q} \mathcal{L}\left(\frac{s}{q}\right) + \frac{1}{s + 1}.$$

Exact solutions

$$\mathcal{L}(s) = \sum_{j \geq 0} \frac{q^{(j+1)/2}}{s^{j+1} (s + q^j)}.$$
Laplace transform

The Laplace transform of \tilde{f}

$$\mathcal{L}(s) = \int_0^\infty e^{-xs}\tilde{f}(x) \, dx$$

satisfies

$$s\mathcal{L}(s) = \frac{1}{q} \mathcal{L}\left(\frac{s}{q}\right) + \frac{1}{s + 1}.$$

Exact solutions

$$\mathcal{L}(s) = \sum_{j \geq 0} \frac{q^{(j+1)}}{s^{j+1}(s + q^j)}.$$
RESOLUTION OF THE RECURRENCE

Exact solutions

\[\mathcal{L}(s) = \sum_{j \geq 0} \frac{q^{(j+1)/2}}{s^{j+1}(s+q^j)}. \]

Inverting gives \(\tilde{f}(z) = \sum_{j \geq 0} \frac{q^{(j+1)/2}}{j!} z^{j+1} \int_0^1 e^{-q^j u z} (1 - u)^j \, du. \)

Thus \(\mu_n = \sum_{1 \leq j \leq n} \binom{n}{j} (-1)^j \sum_{1 \leq \ell \leq j} (-1)^{\ell} q^{j(\ell-1)-(\ell/2)}, \) or

\[\mu_n = n \sum_{0 \leq j < n} \binom{n-1}{j} q^{(j+1)/2} \sum_{0 \leq \ell < n-j} \binom{n-1-j}{\ell} q^{\ell} (1 - q^j)^{n-1-j-\ell} \frac{1}{j + \ell + 1}. \]

Neither is useful for numerical purposes for large \(n. \)
RESOLUTION OF THE RECURRENCE

Exact solutions

\[\mathcal{L}(s) = \sum_{j \geq 0} \frac{q^{(j+1)}_{1/2}}{s^{j+1}(s + q^j)}. \]

Inverting gives

\[\tilde{f}(z) = \sum_{j \geq 0} \frac{q^{(j+1)}_{1/2}}{j!} z^{j+1} \int_0^1 e^{-q^j uz} (1 - u)^j \, du. \]

Thus

\[\mu_n = \sum_{1 \leq j \leq n} \binom{n}{j} (-1)^j \sum_{1 \leq \ell \leq j} (-1)^\ell q^{j(j-1)-(\ell-1)} \binom{j+1}{2}, \text{ or} \]

\[\mu_n = n \sum_{0 \leq j < n} \binom{n-1}{j} q^{(j+1)}_{1/2} \sum_{0 \leq \ell < n-j} \binom{n-1-j}{\ell} q^{j\ell} (1 - q^j)^{n-1-j-\ell} \frac{q^{j\ell} (1 - q^j)^{n-1-j-\ell}}{j + \ell + 1}. \]

Neither is useful for numerical purposes for large \(n \).
RESOLUTION OF THE RECURRENCE

Exact solutions

\[\mathcal{L}(s) = \sum_{j \geq 0} \frac{q^{\left(\frac{j+1}{2}\right)}}{s^{j+1}(s + q^j)} \cdot \]

Inverting gives \(\tilde{f}(z) = \sum_{j \geq 0} \frac{q^{\left(\frac{j+1}{2}\right)}}{j!} z^{j+1} \int_{0}^{1} e^{-q^j uz}(1 - u)^j \, du. \)

Thus \(\mu_n = \sum_{1 \leq j \leq n} \binom{n}{j} (-1)^j \sum_{1 \leq \ell \leq j} (-1)^\ell q^{\ell(\ell-1)} \binom{\ell}{2}, \) or

\[\mu_n = n \sum_{0 \leq j < n} \binom{n-1}{j} q^{\left(\frac{j+1}{2}\right)} \sum_{0 \leq \ell < n-j} \binom{n-1-j}{\ell} \frac{q^{\ell}(1 - q^j)^{n-1-j-\ell}}{j + \ell + 1}. \]

Neither is useful for numerical purposes for large \(n. \)
ASYMPTOTICS OF μ_n

Poisson heuristic (de-Poissonization, saddle-point method)

$$\mu_n = \frac{n!}{2\pi i} \oint_{|z|=n} z^{-n-1} e^z \tilde{f}(z) \, dz \approx \sum_{j \geq 0} \frac{\tilde{f}(j)(n)}{j!} \frac{n!}{2\pi i} \oint_{|z|=n} z^{-n-1} e^z (z - n)^j \, dz$$

$$= \tilde{f}(n) + \sum_{j \geq 2} \frac{\tilde{f}(j)(n)}{j!} \tau_j(n),$$

where $\tau_j(n) := n! [z^n] e^z (z - n)^j = j! [z^j] (1 + z)^n e^{-nz}$ (Charlier polynomials). In particular, $\tau_0(n) = 1$, $\tau_1(n) = 0$, $\tau_2(n) = -n$, $\tau_3(n) = 2n$, and $\tau_4(n) = 3n^2 - 6n$.
ASYMPTOTICS OF μ_n

Poisson heuristic (de-Poissonization, saddle-point method)

$$
\mu_n = \frac{n!}{2\pi i} \oint_{|z|=n} z^{-n-1} e^{z} \tilde{f}(z) \, dz
$$

$$
\approx \sum_{j \geq 0} \frac{\tilde{f}(j)(n)}{j!} \frac{n!}{2\pi i} \oint_{|z|=n} z^{-n-1} e^{z}(z-n)^j \, dz
$$

$$
= \tilde{f}(n) + \sum_{j \geq 2} \frac{\tilde{f}(j)(n)}{j!} \tau_j(n),
$$

where $\tau_j(n) := n! [z^n] e^z (z-n)^j = j! [z^j] (1+z)^n e^{-nz}$ (Charlier polynomials). In particular, $\tau_0(n) = 1$, $\tau_1(n) = 0$, $\tau_2(n) = -n$, $\tau_3(n) = 2n$, and $\tau_4(n) = 3n^2 - 6n$.
A MORE PRECISE EXPANSION FOR $\tilde{f}(x)$

Asymptotics of $\tilde{f}(x)$

Let $\rho = 1 / \log(1/q)$ and $R \log R = x / \rho$. Then

$$\tilde{f}(x) \sim \frac{R^{\rho+1/2} e^{(\rho/2)(\log R)^2} G(\rho \log R)}{\sqrt{2\pi \rho \log R}} \left(1 + \sum_{j \geq 1} \frac{\phi_j(\rho \log R)}{((\rho \log R)^j)} \right),$$

as $x \to \infty$, where $G(u) := q^{\{u\}^2 + \{u\}}/2 F(q^{-\{u\}}),$

$$F(s) = \sum_{-\infty < j < \infty} \frac{q^{j(j+1)/2}}{1 + q^j s} s^{j+1},$$

and the $\phi_j(u)$’s are bounded, 1-periodic functions of u involving the derivatives $F^{(j)}(q^{-\{u\}}).$
A MORE EXPLICIT ASYMPTOTIC APPROXIMATION

\[R = x/\rho / W(x/\rho) , \text{Lambert’s } W\text{-function} \]

\[W(x) = \log x - \log \log x + \frac{\log \log x}{\log x} + \frac{(\log \log x)^2 - 2 \log \log x}{2(\log x)^2} + \cdots . \]

So that

\[\tilde{f}(x) \sim \frac{x^{\rho + 1/2} G \left(\rho \log \frac{x/\rho}{\log(x/\rho)} \right)}{\sqrt{2\pi \rho^\rho + 1/2} \log x} \exp \left(\frac{\rho}{2} \left(\log \frac{x/\rho}{\log(x/\rho)} \right)^2 \right) . \]

Method of proof: a variant of the saddle-point method

\[\tilde{f}(x) = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} e^{xs} \mathcal{L}(s) \, ds \]
A MORE EXPLICIT ASYMPTOTIC APPROXIMATION

\[R = x/\rho / W(x/\rho) \], Lambert’s \(W \)-function

\[W(x) = \log x - \log \log x + \frac{\log \log x}{\log x} + \frac{(\log \log x)^2 - 2 \log \log x}{2(\log x)^2} + \cdots. \]

So that

\[\tilde{f}(x) \sim \frac{x^{\rho+1/2} G \left(\rho \log \frac{x/\rho}{\log(x/\rho)} \right)}{\sqrt{2\pi \rho^{\rho+1/2} \log x}} \exp \left(\frac{\rho}{2} \left(\log \frac{x/\rho}{\log(x/\rho)} \right)^2 \right). \]

Method of proof: a variant of the saddle-point method

\[\tilde{f}(x) = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} e^{xs} \mathcal{L}(s) \, ds \]
A MORE EXPLICIT ASYMPTOTIC APPROXIMATION

\[R = \frac{x}{\rho} / W(x/\rho), \text{ Lambert’s } W \text{-function} \]

\[W(x) = \log x - \log \log x + \frac{\log \log x}{\log x} + \frac{(\log \log x)^2 - 2 \log \log x}{2(\log x)^2} + \cdots. \]

So that

\[\tilde{f}(x) \sim x^{\rho+1/2} G\left(\rho \log \frac{x/\rho}{\log(x/\rho)} \right) \exp \left(\frac{\rho}{2} \left(\log \frac{x/\rho}{\log(x/\rho)} \right)^2 \right). \]

Method of proof: a variant of the saddle-point method

\[\tilde{f}(x) = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} e^{xs} \mathcal{L}(s) \, ds \]
JUSTIFICATION OF THE POISSON HEURISTIC

Four properties are sufficient
The following four properties are enough to justify the Poisson-Charlier expansion.

- \(\tilde{f}'(z) = \tilde{f}(qz) + e^{-z} \);
- \(F(s) = sF(qs) \) \(F(s) = \sum_{i \in \mathbb{Z}} q^{j(j+1)/2} s^{i+1} / (1 + q^j s) \);
- \(\tilde{f}(j)(x) \sim \left(\frac{\rho \log x}{x} \right)^j \);
- \(|f(z)| \leq f(|z|) \) where \(f(z) := e^z \tilde{f}(z) \).

Thus \(\rho = 1 / \log(1/q) \)

\[
\mu_n \sim \frac{n^{\rho+1/2} G \left(\rho \log \frac{n/\rho}{\log(n/\rho)} \right)}{\sqrt{2\pi\rho^{\rho+1/2} \log n}} \exp \left(\frac{\rho}{2} \left(\log \frac{n/\rho}{\log(n/\rho)} \right)^2 \right).
\]
JUSTIFICATION OF THE POISSON HEURISTIC

Four properties are sufficient

The following four properties are enough to justify the Poisson-Charlier expansion.

– \(\tilde{f}'(z) = \tilde{f}(qz) + e^{-z}; \)
– \(F(s) = sF(qs) \quad (F(s) = \sum_{j \in \mathbb{Z}} q^{j(j+1)/2} s^{j+1}/(1 + q^j s)); \)
– \(\frac{\tilde{f}(j)(x)}{\tilde{f}(x)} \sim \left(\frac{\rho \log x}{x} \right)^j; \)
– \(|f(z)| \leq f(|z|) \quad \text{where} \quad f(z) := e^z \tilde{f}(z). \)

Thus \((\rho = 1 / \log(1/q)) \)

\[
\mu_n \sim \frac{n^{\rho+1/2} G\left(\rho \log \frac{n/\rho}{\log(n/\rho)} \right)}{\sqrt{2\pi \rho^{\rho+1/2} \log n}} \exp \left(\frac{\rho}{2} \left(\log \frac{n/\rho}{\log(n/\rho)} \right)^2 \right).
\]
Rough estimates

Corollary

Thus we have

$$\mathbb{E}X_n \asymp n^{\rho + 1/2} \exp \left(\frac{\rho}{2} \left(\log \frac{n/\rho}{\log(n/\rho)} \right)^2 \right),$$

where

$$\rho = \rho(p) = \frac{1}{\log \frac{1}{1-p}}.$$

Compare with the result of Pittel (1982)

$$\mathbb{P} \left(n^{\frac{1-\varepsilon}{4}} \log_{1/q} n \leq \text{Time used by Chvátal's algo} \leq n^{\frac{1+\varepsilon}{2}} \log_{1/q} n \right) \geq 1 - e^{-c \log^2 n}$$
If we take $n = 300$ then according to our result for $p = 0.4$

$$\mathbb{E}X_n \approx 1.12 \cdot 10^{11}$$

while for $p = 0.6$

$$\mathbb{E}X_n \approx 3.38 \cdot 10^{7}$$

This means that our algorithm for $p = 0.6$ runs almost 3300 times faster than for $p = 0.4$.

n=300
Idealized model

Dependence of X_n

Unfortunately X_n in the recurrence

$$X_n \overset{d}{=} X_{n-1} + X_{n-1}^* \text{Binom}(n-1;p) \quad (n \geq 2),$$

with $X_0 = 0$ and $X_1 = 1$, are not independent!

Idealized model

What will happen if we assume that X_n are independent?
VARIANCE OF X_n under the assumption of independence

$$\sigma_n := \sqrt{\mathbb{V}(X_n)}$$

$$\sigma_n^2 = \sigma_{n-1}^2 + \sum_{0 \leq j < n} \pi_{n,j} \sigma_{n-1-j}^2 + T_n, \quad \pi_{n,j} := \binom{n-1}{j} p^j q^{n-1-j},$$

where $T_n := \sum_{0 \leq j < n} \pi_{n,j} \Delta_{n,j}^2$, $\Delta_{n,j} := \mu_j + \mu_{n-1} - \mu_n$.

Asymptotic transfer: $a_n = a_{n-1} + \sum_{0 \leq j < n} \pi_{n,j} a_{n-1-j} + b_n$

If $b_n \sim n^\beta (\log n)^\kappa \tilde{f}(n)^\alpha$, where $\alpha > 1$, $\beta, \kappa \in \mathbb{R}$, then

$$a_n \sim \sum_{j \leq n} b_j \sim \frac{n}{\alpha \rho \log n} b_n.$$
VARIANCE OF X_n under the assumption of independence

$$\sigma_n := \sqrt{\mathbb{V}(X_n)}$$

$$\sigma_n^2 = \sigma_{n-1}^2 + \sum_{0 \leq j < n} \pi_{n,j} \sigma_{n-1-j} + T_n, \quad \pi_{n,j} := \binom{n-1}{j} p^j q^{n-1-j},$$

where $T_n := \sum_{0 \leq j < n} \pi_{n,j} \Delta_{n,j}^2$, $\Delta_{n,j} := \mu_j + \mu_{n-1} - \mu_n$.

Asymptotic transfer: $a_n = a_{n-1} + \sum_{0 \leq j < n} \pi_{n,j} a_{n-1-j} + b_n$

If $b_n \sim n^\beta (\log n)^\kappa \tilde{f}(n)^\alpha$, where $\alpha > 1$, $\beta, \kappa \in \mathbb{R}$, then

$$a_n \sim \sum_{j \leq n} b_j \sim \frac{n}{\alpha \rho \log n} b_n.$$
ASYMPTOTICS OF THE VARIANCE

Asymptotics of T_n: by elementary means

$$T_n \sim q^{-1} p \rho^4 n^{-3} (\log n)^4 \tilde{f}(n)^2.$$

Applying the asymptotic transfer

$$\sigma_n^2 \sim C n^{-2} (\log n)^3 \tilde{f}(n)^2.$$

where $C := p \rho^3 / (2q)$.

\[
\frac{\text{Variance}}{\text{Mean}^2} \sim C \frac{(\log n)^3}{n^2}
\]
Asymptotics of T_n: by elementary means

$$T_n \sim q^{-1} p\rho^4 n^{-3} (\log n)^4 \tilde{f}(n)^2.$$

Applying the asymptotic transfer

$$\sigma_n^2 \sim Cn^{-2} (\log n)^3 \tilde{f}(n)^2.$$

where $C := p\rho^3/(2q)$.

\[
\frac{\text{Variance}}{\text{Mean}^2} \sim C \frac{(\log n)^3}{n^2}
\]
Asymptotics of T_n: by elementary means

$$T_n \sim q^{-1} p \rho^4 n^{-3} (\log n)^4 \tilde{f}(n)^2.$$

Applying the asymptotic transfer

$$\sigma_n^2 \sim C n^{-2} (\log n)^3 \tilde{f}(n)^2.$$

where $C := p \rho^3 / (2q)$.

$$\frac{\text{Variance}}{\text{Mean}^2} \sim C \frac{(\log n)^3}{n^2}$$
ASYMPTOTIC NORMALITY OF X_n

Convergence in distribution

The distribution of X_n is asymptotically normal

$$\frac{X_n - \mu_n}{\sigma_n} \xrightarrow{d} \mathcal{N}(0, 1),$$

with convergence of all moments.

Proof by the method of moments

– Derive recurrence for $\mathbb{E}(X_n - \mu_n)^m$.
– Prove by induction (using the asymptotic transfer) that

$$\mathbb{E}(X_n - \mu_n)^m \begin{cases} \sim \frac{(m)!}{(m/2)!2^{m/2}} \sigma_n^m, & \text{if } 2 \mid m, \\ = o(\sigma_n^m), & \text{if } 2 \nmid m, \end{cases}$$
ASYMPTOTIC NORMALITY OF X_n

Convergence in distribution

The distribution of X_n is asymptotically normal

$$\frac{X_n - \mu_n}{\sigma_n} \xrightarrow{d} \mathcal{N}(0, 1),$$

with convergence of all moments.

Proof by the method of moments

- Derive recurrence for $\mathbb{E}(X_n - \mu_n)^m$.
- Prove by induction (using the asymptotic transfer) that

$$\mathbb{E}(X_n - \mu_n)^m \begin{cases} \sim \frac{(m)!}{(m/2)!2^{m/2}} \sigma_n^m, & \text{if } 2 \mid m, \\ = o(\sigma_n^m), & \text{if } 2 \nmid m, \end{cases}$$
A STRAIGHTFORWARD EXTENSION

\[b = 1, 2, \ldots \]

\[X_n \overset{d}{=} X_{n-b} + X^*_{n-b} - \text{Binom}(n-b;p), \]

with \(X_n = 0 \) for \(n < b \) and \(X_b = 1 \).
What happens if $X_n \overset{d}{=} X_{n-1} + X_{\text{uniform}[0,n-1]}$?

$$
\mu_n = \mu_{n-1} + \frac{1}{n} \sum_{0 \leq j < n} \mu_j,
$$

satisfies $\mu_n \sim cn^{-1/4} e^{2\sqrt{n}}$.

Limit law not Gaussian (by method of moments)

$$
\frac{X_n}{\mu_n} \overset{d}{\to} X,
$$

where $g(z) := \sum_{m \geq 1} \mathbb{E}(X^m)z^m/(m \cdot m!)$ satisfies

$$
z^2 g'' + zg' - g = zgg'.
$$
What happens if $X_n \overset{d}{=} X_{n-1} + X_{\text{uniform}[0,n-1]}$?

$$\mu_n = \mu_{n-1} + \frac{1}{n} \sum_{0 \leq j < n} \mu_j,$$

satisfies $\mu_n \sim cn^{-1/4}e^{2\sqrt{n}}$.

Limit law not Gaussian (by method of moments)

$$\frac{X_n}{\mu_n} \overset{d}{\to} X,$$

where $g(z) := \sum_{m \geq 1} \mathbb{E}(X^m)z^m/(m \cdot m!)$ satisfies

$$z^2 g'' + zg' - g = zgg'.$$
Random graph algorithms: a rich source of interesting recurrences