PROBABILISTIC ANALYSIS OF AN EXHAUSTIVE SEARCH ALGORITHM IN RANDOM GRAPHS

Vytas Zacharovas

Academia Sinica, Taiwan
(joint work with Hsien-Kuei Hwang, Cyril Banderier and Vlady Ravelomanana)

Workshop on Discrete Mathematics, Vienna, Austria November 19-22, 2008

MAXIMUM INDEPENDENT SET

Independent set
An independent (or stable) set in a graph is a set of vertices no two of which share the same edge.

MAXIMUM INDEPENDENT SET

Independent set

An independent (or stable) set in a graph is a set of vertices no two of which share the same edge.

$\mathbf{M I S}=\{1,3,5,7\}$

Maximum independent set (MIS)
The MIS problem asks for an independent set with the largest size.

MAXIMUM INDEPENDENT SET

Independent set

An independent (or stable) set in a graph is a set of vertices no two of which share the same edge.

$\mathbf{M I S}=\{1,3,5,7\}$

Maximum independent set (MIS)
The MIS problem asks for an independent set with the largest size.

NP hard!!

MAXIMUM INDEPENDENT SET

Equivalent version
The same problem as MAXIMUM CLIQUE on the complementary graph (clique = complete subgraph).

THEORETICAL RESULTS

Random models: Erdős-Rényi's $G_{n, p}$
Vertex set $=\{1,2, \ldots, n\}$ and all edges occur independently with the same probability p.

The cardinality of an MIS in $G_{n, p}$
Matula (1970), Grimmett and McDiarmid (1975), Bollobas and Erdős (1976), Frieze (1990): If pn $\rightarrow \infty$, then $(q:=1-p)$

where $q=1-p$.

THEORETICAL RESULTS

Random models: Erdős-Rényi's $G_{n, p}$
Vertex set $=\{1,2, \ldots, n\}$ and all edges occur independently with the same probability p.

The cardinality of an MIS in $G_{n, p}$ Matula (1970), Grimmett and McDiarmid (1975), Bollobas and Erdős (1976), Frieze (1990): If $p n \rightarrow \infty$, then ($q:=1-p$)

$$
\left|\mathbf{M I S}_{n}\right| \sim 2 \log _{1 / q} p n \quad \text { whp },
$$

where $q=1-p$.

DESCRIPTION OF THE GREEDY ALGORITHM

Problem
Find such an independent set A in G that no other node from G can be added to A without destroying the independence of A.

DESCRIPTION OF THE GREEDY ALGORITHM

Problem
Find such an independent set A in G that no other node from G can be added to A without destroying the independence of A.

Solution
Initially $A=\emptyset$.

- Chose $v \in G$.

DESCRIPTION OF THE GREEDY ALGORITHM

Problem
Find such an independent set A in G that no other node from G can be added to A without destroying the independence of A.

Solution
Initially $A=\emptyset$.

- Chose $v \in G$.
- $A:=A \cup\{v\}, G:=G * v$, where $G * v$ is the graph
obtained from G by deleting node v together with
all its neighboring nodes and their edges.

DESCRIPTION OF THE GREEDY ALGORITHM

Problem
Find such an independent set A in G that no other node from G can be added to A without destroying the independence of A.

Solution
Initially $A=\emptyset$.

- Chose $v \in G$.
- $A:=A \cup\{v\}, G:=G * v$, where $G * v$ is the graph obtained from G by deleting node v together with all its neighboring nodes and their edges.

DESCRIPTION OF THE GREEDY ALGORITHM

Problem
Find such an independent set A in G that no other node from G can be added to A without destroying the independence of A.

Solution
Initially $A=\emptyset$.

- Chose $v \in G$.
- $A:=A \cup\{v\}, G:=G * v$, where $G * v$ is the graph obtained from G by deleting node v together with all its neighboring nodes and their edges.
- Continue until $G=\emptyset$.

A GREEDY ALGORITHM

Recurrence
The size of the resulting independent set S_{n} satisfies recurrence relation:

$$
S_{n} \stackrel{d}{=} 1+S_{n-1-\operatorname{Binom}(n-1 ; p)} \quad(n \geqslant 1)
$$

with $S_{0} \equiv 0$.

ANALYSIS OF THE GREEDY ALGORITHM

Relatively easy

- Mean: $\mathbb{E}\left(S_{n}\right) \sim \log _{1 / q} n+$ a bounded periodic function.
- Variance: $\mathbb{V}\left(S_{n}\right) \sim$ a bounded periodic function. - Limit distribution does not exist:

ANALYSIS OF THE GREEDY ALGORITHM

Relatively easy

- Mean: $\mathbb{E}\left(S_{n}\right) \sim \log _{1 / q} n+$ a bounded periodic function.
- Variance: $\mathbb{V}\left(S_{n}\right) \sim$ a bounded periodic function.
- Limit distribution does not exist:
$\mathbb{E}\left(e^{\left(X_{n}-\log _{1 / q} n\right) y}\right) \sim F\left(\log _{1 / q} n ; y\right)$, where

ANALYSIS OF THE GREEDY ALGORITHM

Relatively easy

- Mean: $\mathbb{E}\left(S_{n}\right) \sim \log _{1 / q} n+$ a bounded periodic function.
- Variance: $\mathbb{V}\left(S_{n}\right) \sim$ a bounded periodic function.
- Limit distribution does not exist:
$\mathbb{E}\left(e^{\left(X_{n}-\log _{1 / q} n\right) y}\right) \sim F\left(\log _{1 / q} n ; y\right)$, where

$$
F(u ; y):=\frac{1-e^{y}}{\log (1 / q)}\left(\prod_{\ell \geqslant 1} \frac{1-e^{y} q^{\ell}}{1-q^{\ell}}\right) \sum_{j \in \mathbb{Z}}\left\ulcorner\left(-\frac{y+2 j \pi i}{\log (1 / q)}\right) e^{2 j \pi i u} .\right.
$$

A BETTER ALGORITHM?

Goodness of GREEDY IS
Grimmett and McDiarmid (1975), Karp (1976), Fernandez de la Vega (1984), Gazmuri (1984), McDiarmid (1984):
Asymptotically, the GREEDY IS is half optimal.

> Frieze and McDiarmid (1997, RSA), Algorithmic theory
> of random graphs, Research Problem 15:
> Construct a polynomial time algorithm that finds an
> independent set of size at least $\left.\left(\frac{1}{2}+\varepsilon\right) \right\rvert\,$ MIS $_{n} \mid$ whp

A BETTER ALGORITHM?

Goodness of GREEDY IS
Grimmett and McDiarmid (1975), Karp (1976), Fernandez de la Vega (1984), Gazmuri (1984), McDiarmid (1984):
Asymptotically, the GREEDY IS is half optimal.
Can we do better?
Frieze and McDiarmid (1997, RSA), Algorithmic theory of random graphs, Research Problem 15:
Construct a polynomial time algorithm that finds an independent set of size at least $\left.\left(\frac{1}{2}+\varepsilon\right) \right\rvert\,$ MIS $_{n} \mid$ whp

A BETTER ALGORITHM?

Goodness of GREEDY IS
Grimmett and McDiarmid (1975), Karp (1976), Fernandez de la Vega (1984), Gazmuri (1984), McDiarmid (1984):

Asymptotically, the GREEDY IS is half optimal.

Can we do better?
Frieze and McDiarmid (1997, RSA), Algorithmic theory of random graphs, Research Problem 15:
Construct a polynomial time algorithm that finds an independent set of size at least $\left.\left(\frac{1}{2}+\varepsilon\right) \right\rvert\,$ MIS $_{n} \mid$ whp or show that such an algorithm does not exist modulo some reasonable conjecture in the theory of computational complexity such as, e.g., $P \neq N P$.

POSITIVE RESULTS

Exact algorithms
A huge number of algorithms proposed in the literature; see Bomze et al.'s survey (in Handbook of Combinatorial Optimization, 1999).

POSITIVE RESULTS

Exact algorithms
A huge number of algorithms proposed in the literature; see Bomze et al.'s survey (in Handbook of Combinatorial Optimization, 1999).

Special algorithms

POSITIVE RESULTS

Exact algorithms
A huge number of algorithms proposed in the literature; see Bomze et al.'s survey (in Handbook of Combinatorial Optimization, 1999).
Special algorithms

- Chvátal (1977) proposes exhaustive algorithms where almost all $G_{n, 1 / 2}$ creates at most $n^{2\left(1+\log _{2} n\right)}$ subproblems.
- Pittel (1982):

$$
\mathbb{P}\left(n^{\frac{1-\varepsilon}{4} \log _{1 / q} n} \leqslant \text { Time }_{\text {Chvátal's algo }}^{\text {used by }} \leqslant n^{\frac{1+\varepsilon}{2} \log _{1 / q} n}\right) \geqslant 1-e^{-c \log ^{2} n}
$$

DESCRIPTION OF THE EXHAUSTIVE ALGORITHM PROPOSED BY V. CHVATAL

Problem
Suppose we want to compute the stability number of the graph G, that is $|M I S(G)|$.

- Chose a node $v \in G$.
- Delete from G the node v together with all its edges, that is obtain graph $G-v$. Compute $|M I S(G-v)|$.

DESCRIPTION OF THE EXHAUSTIVE ALGORITHM PROPOSED BY V. CHVATAL

Problem
Suppose we want to compute the stability number of the graph G, that is $|M I S(G)|$.

- Chose a node $v \in G$.
- Delete from G the node v together with all its edges, that is obtain graph $G-v$. Compute $|M I S(G-v)|$.
- Delete from G the node v together with all its neighboring nodes and their edges. The obtained graph denote by $G * v$. Compute $|M I S(G * v)|$.

DESCRIPTION OF THE EXHAUSTIVE ALGORITHM PROPOSED BY V. CHVATAL

Problem

Suppose we want to compute the stability number of the graph G, that is $|\operatorname{MIS}(G)|$.

- Chose a node $v \in G$.
- Delete from G the node v together with all its edges, that is obtain graph $G-v$. Compute $|M I S(G-v)|$.
- Delete from G the node v together with all its neighboring nodes and their edges. The obtained graph denote by $G * v$. Compute $|\operatorname{MIS}(G * v)|$.

DESCRIPTION OF THE EXHAUSTIVE ALGORITHM PROPOSED BY V. CHVATAL

Problem

Suppose we want to compute the stability number of the graph G, that is $|\operatorname{MIS}(G)|$.

- Chose a node $v \in G$.
- Delete from G the node v together with all its edges, that is obtain graph $G-v$. Compute $|M I S(G-v)|$.
- Delete from G the node v together with all its neighboring nodes and their edges. The obtained graph denote by $G * v$. Compute $|\operatorname{MIS}(G * v)|$.
- $|M I S(G)|=\max \{|M I S(G-v)|,|M I S(G * v)|+1\}$.

AIM: A MORE PRECISE ANALYSIS OF THE EXHAUSTIVE ALGORITHM

The time needed to complete the algorithm X_{n} is a random variable satisfying recurrence relation

$$
X_{n} \stackrel{d}{=} X_{n-1}+X_{n-1-\operatorname{Binom}(n-1 ; p)}^{*} \quad(n \geqslant 2)
$$

with $X_{0}=0$ and $X_{1}=1$.
Special cases

- If p is close to 1 , then the second term is small, so we expect a polynomial time bound.

AIM: A MORE PRECISE ANALYSIS OF THE EXHAUSTIVE ALGORITHM

The time needed to complete the algorithm X_{n} is a random variable satisfying recurrence relation

$$
X_{n} \stackrel{d}{=} X_{n-1}+X_{n-1-\operatorname{Binom}(n-1 ; p)}^{*} \quad(n \geqslant 2)
$$

with $X_{0}=0$ and $X_{1}=1$.
Special cases

- If p is close to 1 , then the second term is small, so we expect a polynomial time bound.
- If p is sufficiently small, then the second term is
large, and we expect an exponential time bound.

AIM: A MORE PRECISE ANALYSIS OF THE EXHAUSTIVE ALGORITHM

The time needed to complete the algorithm X_{n} is a random variable satisfying recurrence relation

$$
X_{n} \stackrel{d}{=} X_{n-1}+X_{n-1-\operatorname{Binom}(n-1 ; p)}^{*} \quad(n \geqslant 2)
$$

with $X_{0}=0$ and $X_{1}=1$.
Special cases

- If p is close to 1 , then the second term is small, so we expect a polynomial time bound.
- If p is sufficiently small, then the second term is large, and we expect an exponential time bound.
- What happens for p in between?

AIM: A MORE PRECISE ANALYSIS OF THE EXHAUSTIVE ALGORITHM

The time needed to complete the algorithm X_{n} is a random variable satisfying recurrence relation

$$
X_{n} \stackrel{d}{=} X_{n-1}+X_{n-1-\operatorname{Binom}(n-1 ; p)}^{*} \quad(n \geqslant 2)
$$

with $X_{0}=0$ and $X_{1}=1$.
Special cases

- If p is close to 1 , then the second term is small, so we expect a polynomial time bound.
- If p is sufficiently small, then the second term is large, and we expect an exponential time bound.
- What happens for p in between?

MEAN VALUE

The expected value $\mu_{n}:=\mathbb{E}\left(X_{n}\right)$ satisfies

$$
\mu_{n}=\mu_{n-1}+\sum_{0 \leqslant j<n}\binom{n-1}{j} p^{j} q^{n-1-j} \mu_{n-1-j} .
$$

with $\mu_{0}=0$ and $\mu_{1}=1$.
Poisson generating function
Let $\tilde{f}(z):=e^{-z} \sum_{n \geqslant 0} \mu_{n} z^{n} / n!$. Then

$$
\tilde{f} \tilde{\prime}^{\prime}(z)=\tilde{f}(q z)+e^{-z}
$$

MEAN VALUE

The expected value $\mu_{n}:=\mathbb{E}\left(X_{n}\right)$ satisfies

$$
\mu_{n}=\mu_{n-1}+\sum_{0 \leqslant j<n}\binom{n-1}{j} p^{j} q^{n-1-j} \mu_{n-1-j} .
$$

with $\mu_{0}=0$ and $\mu_{1}=1$.
Poisson generating function
Let $\tilde{f}(z):=e^{-z} \sum_{n \geqslant 0} \mu_{n} z^{n} / n!$. Then

$$
\tilde{f}^{\prime}(z)=\tilde{f}(q z)+e^{-z} .
$$

RESOLUTION OF THE RECURRENCE

Laplace transform
The Laplace transform of \tilde{f}

$$
\mathscr{L}(s)=\int_{0}^{\infty} e^{-x s \tilde{f}}(x) \mathbf{d} x
$$

satisfies

$$
s \mathscr{L}(s)=\frac{1}{q} \mathscr{L}\left(\frac{s}{q}\right)+\frac{1}{s+1} .
$$

RESOLUTION OF THE RECURRENCE

Laplace transform
The Laplace transform of \tilde{f}

$$
\mathscr{L}(s)=\int_{0}^{\infty} e^{-x s \tilde{f}}(x) \mathbf{d} x
$$

satisfies

$$
s \mathscr{L}(s)=\frac{1}{q} \mathscr{L}\left(\frac{s}{q}\right)+\frac{1}{s+1}
$$

Exact solutions

$$
\mathscr{L}(s)=\sum_{j \geqslant 0} \frac{q^{\binom{j+1}{2}}}{s^{j+1}\left(s+q^{j}\right)}
$$

RESOLUTION OF THE RECURRENCE

Exact solutions

$$
\mathscr{L}(s)=\sum_{j \geqslant 0} \frac{q^{\left({ }^{(+1+1}\right.}{ }^{\left.\frac{1}{2}\right)}}{s^{+1}\left(s+q^{\prime}\right)} .
$$

Inverting gives $\tilde{f}(z)=\sum_{j \geqslant 0} \frac{q^{\binom{(+1}{2}}}{j!} z^{j+1} \int_{0}^{1} e^{-q u z}(1-u)^{j} \mathbf{d} u$.

RESOLUTION OF THE RECURRENCE

Exact solutions

$$
\mathscr{L}(s)=\sum_{j \geqslant 0} \frac{q^{\left(s_{2}^{+1}\right)}}{s^{j+1}\left(s+q^{j}\right)} .
$$

Inverting gives $\tilde{f}(z)=\sum_{j \geqslant 0} \frac{q^{\binom{(+1}{2}}}{j!} z^{j+1} \int_{0}^{1} e^{-q u z}(1-u)^{j} \mathbf{d} u$.
Thus $\mu_{n}=\sum_{1 \leqslant j \leqslant n}\binom{n}{j}(-1)^{j} \sum_{1 \leqslant \ell \leqslant j}(-1)^{\ell} q^{j(\ell-1)-\binom{\ell}{2}}$, or

$$
\left.\mu_{n}=n \sum_{0 \leqslant j<n}\binom{n-1}{j} q^{\left({ }^{\left({ }_{2}^{2}+1\right.}\right.} \mathbf{2}\right) \sum_{0 \leqslant \ell<n-j}\binom{n-1-j}{\ell} \frac{q^{j \ell}\left(1-q^{j}\right)^{n-1-j-\ell}}{j+\ell+1} .
$$

RESOLUTION OF THE RECURRENCE

Exact solutions

$$
\mathscr{L}(s)=\sum_{j \geqslant 0} \frac{q^{\left(\frac{j+1}{2}\right)}}{s^{j+1}\left(s+q^{j}\right)}
$$

Inverting gives $\tilde{f}(z)=\sum_{j \geqslant 0} \frac{q^{\binom{j+1}{2}}}{j!} z^{j+1} \int_{0}^{1} e^{-q^{j} u z}(1-u)^{j} \mathbf{d} u$.
Thus $\mu_{n}=\sum_{1 \leqslant j \leqslant n}\binom{n}{j}(-1)^{j} \sum_{1 \leqslant \ell \leqslant j}(-1)^{\ell} q^{j(\ell-1)-\binom{\ell}{2}}$, or

$$
\mu_{n}=n \sum_{0 \leqslant j<n}\binom{n-1}{j} q^{\binom{j+1}{2}} \sum_{0 \leqslant \ell<n-j}\binom{n-1-j}{\ell} \frac{q^{\ell \ell}\left(1-q^{j}\right)^{n-1-j-\ell}}{j+\ell+1} .
$$

Neither is useful for numerical purposes for large n.

ASYMPTOTICS OF μ_{n}

Poisson heuristic (de-Poissonization, saddle-point method)

$$
\begin{aligned}
\mu_{n} & =\frac{n!}{2 \pi i} \oint_{|z|=n} z^{-n-1} e^{z} \tilde{f}(z) \mathbf{d} z \\
& \approx \sum_{j \geqslant 0} \frac{\tilde{f}^{(j)}(n)}{j!} \frac{n!}{2 \pi i} \oint_{|z|=n} z^{-n-1} e^{z}(z-n)^{j} \mathbf{d} z \\
& =\tilde{f}(n)+\sum_{j \geqslant 2} \frac{\tilde{f}(j)}{j}(n) \\
j! & \tau_{j}(n),
\end{aligned}
$$

where $\tau_{j}(n):=n!\left[z^{n}\right] e^{z}(z-n)^{j}=j!\left[z^{j}\right](1+z)^{n} e^{-n z}$ (Charlier polynomials).

ASYMPTOTICS OF μ_{n}

Poisson heuristic (de-Poissonization, saddle-point method)

$$
\begin{aligned}
\mu_{n} & =\frac{n!}{2 \pi i} \oint_{|z|=n} z^{-n-1} e^{z} \tilde{f}(z) \mathbf{d} z \\
& \approx \sum_{j \geqslant 0} \frac{\tilde{f}^{(j)}(n)}{j!} \frac{n!}{2 \pi i} \oint_{|z|=n} z^{-n-1} e^{z}(z-n)^{j} \mathbf{d} z \\
& =\tilde{f}(n)+\sum_{j \geqslant 2} \frac{\tilde{f}(j)}{j}(n) \\
j! & \tau_{j}(n),
\end{aligned}
$$

where $\tau_{j}(n):=n!\left[z^{n}\right] e^{z}(z-n)^{j}=j!\left[z^{j}\right](1+z)^{n} e^{-n z}$
(Charlier polynomials). In particular, $\tau_{0}(n)=1$, $\tau_{1}(n)=0, \tau_{2}(n)=-n, \tau_{3}(n)=2 n$, and $\tau_{4}(n)=3 n^{2}-6 n$.

A MORE PRECISE EXPANSION FOR $\tilde{f}(x)$

Asymptotics of $\tilde{f}(x)$
Let $\rho=1 / \log (1 / q)$ and $R \log R=x / \rho$. Then

$$
\tilde{f}(x) \sim \frac{R^{\rho+1 / 2} e^{(\rho / 2)(\log R)^{2}} G(\rho \log R)}{\sqrt{2 \pi \rho \log R}}\left(1+\sum_{j \geqslant 1} \frac{\phi_{j}(\rho \log R)}{(\rho \log R)^{i}}\right),
$$

as $x \rightarrow \infty$, where $G(u):=q^{\left(\{u\}^{2}+\{u\}\right) / 2} F\left(q^{-\{u\}}\right)$,

$$
F(s)=\sum_{-\infty<j<\infty} \frac{q^{j(j+1) / 2}}{1+q^{j} s} s^{j+1}
$$

and the $\phi_{j}(u)$'s are bounded, 1-periodic functions of u involving the derivatives $F^{(j)}\left(q^{-\{u\}}\right)$.

A MORE EXPLICIT ASYMPTOTIC APPROXIMATION

$R=x / \rho / W(x / \rho)$, Lambert's W-function

$$
W(x)=\log x-\log \log x+\frac{\log \log x}{\log x}+\frac{(\log \log x)^{2}-2 \log \log x}{2(\log x)^{2}}+\cdots .
$$

So that

A MORE EXPLICIT ASYMPTOTIC APPROXIMATION

$R=x / \rho / W(x / \rho)$, Lambert's W-function

$$
W(x)=\log x-\log \log x+\frac{\log \log x}{\log x}+\frac{(\log \log x)^{2}-2 \log \log x}{2(\log x)^{2}}+\cdots .
$$

So that

$$
\tilde{f}(x) \sim \frac{x^{\rho+1 / 2} G\left(\rho \log \frac{x / \rho}{\log (x / \rho)}\right)}{\sqrt{2 \pi} \rho^{\rho+1 / 2} \log x} \exp \left(\frac{\rho}{2}\left(\log \frac{x / \rho}{\log (x / \rho)}\right)^{2}\right) .
$$

Method of proof: a variant of the saddle-point method

A MORE EXPLICIT ASYMPTOTIC APPROXIMATION

$R=x / \rho / W(x / \rho)$, Lambert's W-function

$$
W(x)=\log x-\log \log x+\frac{\log \log x}{\log x}+\frac{(\log \log x)^{2}-2 \log \log x}{2(\log x)^{2}}+\cdots .
$$

So that

$$
\tilde{f}(x) \sim \frac{x^{\rho+1 / 2} G\left(\rho \log \frac{x / \rho}{\log (x / \rho)}\right)}{\sqrt{2 \pi} \rho^{\rho+1 / 2} \log x} \exp \left(\frac{\rho}{2}\left(\log \frac{x / \rho}{\log (x / \rho)}\right)^{2}\right) .
$$

Method of proof: a variant of the saddle-point method

$$
\tilde{f}(x)=\frac{1}{2 \pi i} \int_{1-i \infty}^{1+i \infty} e^{x s} \mathscr{L}(s) \mathbf{d} s
$$

JUSTIFICATION OF THE POISSON HEURISTIC

Four properties are sufficient
The following four properties are enough to justify the Poisson-Charlier expansion.

$$
\begin{aligned}
& -\tilde{f}^{\prime}(z)=\tilde{f}(q z)+e^{-z} ; \\
& -F(s)=s F(q s)\left(F(s)=\sum_{i \in \mathbb{Z}} q^{j(j+1) / 2} s^{j+1} /\left(1+q^{j} s\right)\right) ; \\
& -\frac{\tilde{f}(j)}{\tilde{f}(x)} \sim\left(\frac{\rho \log x}{x}\right)^{j} ; \\
& -|f(z)| \leqslant f(|z|) \text { where } f(z):=e^{z \tilde{f}}(z) .
\end{aligned}
$$

JUSTIFICATION OF THE POISSON HEURISTIC

Four properties are sufficient
The following four properties are enough to justify the Poisson-Charlier expansion.

$$
\begin{aligned}
& -\tilde{f}^{\prime}(z)=\tilde{f}(q z)+e^{-z} ; \\
& -F(s)=s F(q s)\left(F(s)=\sum_{i \in \mathbb{Z}} q^{j(j+1) / 2} s^{j+1} /\left(1+q^{j} s\right)\right) ; \\
& -\frac{\tilde{f}(j)}{\tilde{f}(x)} \sim\left(\frac{\rho \log x}{x}\right)^{j} ; \\
& -|f(z)| \leqslant f(|z|) \text { where } f(z):=e^{z} \tilde{f}(z) .
\end{aligned}
$$

Thus $(\rho=1 / \log (1 / q))$

$$
\mu_{n} \sim \frac{n^{\rho+1 / 2} G\left(\rho \log \frac{n / \rho}{\log (n / \rho)}\right)}{\sqrt{2 \pi} \rho^{\rho+1 / 2} \log n} \exp \left(\frac{\rho}{2}\left(\log \frac{n / \rho}{\log (n / \rho)}\right)^{2}\right) .
$$

Rough estimates

Corollary

Thus we have

$$
\mathbb{E} X_{n} \asymp n^{\rho+1 / 2} \exp \left(\frac{\rho}{2}\left(\log \frac{n / \rho}{\log (n / \rho)}\right)^{2}\right)
$$

where

$$
\rho=\rho(p)=\frac{1}{\log \frac{1}{1-p}} .
$$

Compare with the result of Pittel (1982)
$\mathbb{P}\left(n^{\frac{1-\varepsilon}{4} \log _{1 / q} n} \leqslant\right.$ Time $\left._{\text {Chvátal's algo }}^{\text {used by }} \leqslant n^{\frac{1+\varepsilon}{2} \log _{1 / q} n}\right) \geqslant 1-e^{-c \log ^{2} n}$

Numerical example

$\mathrm{n}=300$
If we take $n=300$ then according to our result for $p=0.4$

$$
\mathbb{E} X_{n} \approx 1.12 \cdot 10^{11}
$$

while for $p=0.6$

$$
\mathbb{E} X_{n} \approx 3.38 \cdot 10^{7}
$$

This means that our algorithm for $p=0.6$ runs almost 3300 times faster than for $p=0.4$.

Idealized model

Dependence of X_{n}
Unfortunately X_{n} in the recurrence

$$
X_{n} \stackrel{d}{=} X_{n-1}+X_{n-1-\operatorname{Binom}(n-1 ; p)}^{*} \quad(n \geqslant 2)
$$

with $X_{0}=0$ and $X_{1}=1$, are not independent!
Idealized model
What will happen if we assume that X_{n} are independent?

VARIANCE OF X_{n} under the assumption of independence

$$
\begin{aligned}
& \sigma_{n}:=\sqrt{\mathbb{V}\left(X_{n}\right)} \\
& \sigma_{n}^{2}=\sigma_{n-1}^{2}+\sum_{0 \leqslant \ll n} \pi_{n, j} \sigma_{n-1-j}^{2}+T_{n}, \quad \pi_{n, j}:=\binom{n-1}{j} p^{j} q^{n-1-j},
\end{aligned}
$$

where $T_{n}:=\sum_{0 \leqslant j<n} \pi_{n, j} \Delta_{n, j}^{2}, \Delta_{n, j}:=\mu_{j}+\mu_{n-1}-\mu_{n}$.

Asymptotic transfer: $a_{n}=a_{n-1}+\sum_{0 \leqslant j<n} \pi_{n, j} a_{n-1-j}+b_{n}$If $b_{n} \sim n^{\beta}(\log n)^{\kappa} \tilde{f}(n)^{\alpha}$, where $\alpha>1, \beta, \kappa \in \mathbb{R}$, then

VARIANCE OF X_{n} under the assumption of independence

$$
\begin{aligned}
& \sigma_{n}:=\sqrt{\mathbb{V}\left(X_{n}\right)} \\
& \sigma_{n}^{2}=\sigma_{n-1}^{2}+\sum_{0 \leqslant j<n} \pi_{n, j} \sigma_{n-1-j}^{2}+T_{n}, \quad \pi_{n, j}:=\binom{n-1}{j} p^{j} q^{n-1-j},
\end{aligned}
$$

where $T_{n}:=\sum_{0 \leqslant j<n} \pi_{n, j} \Delta_{n, j}^{2}, \Delta_{n, j}:=\mu_{j}+\mu_{n-1}-\mu_{n}$.
Asymptotic transfer: $a_{n}=a_{n-1}+\sum_{0 \leqslant j<n} \pi_{n, j} a_{n-1-j}+b_{n}$
If $b_{n} \sim n^{\beta}(\log n)^{\kappa} \tilde{f}(n)^{\alpha}$, where $\alpha>1, \beta, \kappa \in \mathbb{R}$, then

$$
a_{n} \sim \sum_{j \leqslant n} b_{j} \sim \frac{n}{\alpha \rho \log n} b_{n}
$$

ASYMPTOTICS OF THE VARIANCE

Asymptotics of T_{n} : by elementary means

$$
T_{n} \sim q^{-1} p \rho^{4} n^{-3}(\log n)^{4} \tilde{f}(n)^{2} .
$$

Applying the asymptotic transfer

$$
\sigma_{n}^{2} \sim C n^{-2}(\log n)^{3} f(n)^{2} .
$$

where $C:=p \rho^{3} /(2 q)$.

ASYMPTOTICS OF THE VARIANCE

Asymptotics of T_{n} : by elementary means

$$
T_{n} \sim q^{-1} p \rho^{4} n^{-3}(\log n)^{4} \tilde{f}(n)^{2} .
$$

Applying the asymptotic transfer

$$
\sigma_{n}^{2} \sim C n^{-2}(\log n)^{3} \tilde{f}(n)^{2}
$$

where $C:=p \rho^{3} /(2 q)$.

ASYMPTOTICS OF THE VARIANCE

Asymptotics of T_{n} : by elementary means

$$
T_{n} \sim q^{-1} p \rho^{4} n^{-3}(\log n)^{4} \tilde{f}(n)^{2} .
$$

Applying the asymptotic transfer

$$
\sigma_{n}^{2} \sim \mathrm{Cn}^{-2}(\log n)^{3} \tilde{f}(n)^{2}
$$

where $C:=p \rho^{3} /(2 q)$.
$\frac{\text { Variance }}{\text { Mean }^{2}} \sim C \frac{(\log n)^{3}}{n^{2}}$

ASYMPTOTIC NORMALITY OF X_{n}

Convergence in distribution
The distribution of X_{n} is asymptotically normal

$$
\frac{X_{n}-\mu_{n}}{\sigma_{n}} \xrightarrow{d} \mathscr{N}(0,1),
$$

with convergence of all moments.
Proof by the method of moments

- Derive recurrence for $\mathbb{E}\left(X_{n}-\mu_{n}\right)^{m}$.
- Prove by induction (using the asymp totic transfer) that

ASYMPTOTIC NORMALITY OF X_{n}

Convergence in distribution
The distribution of X_{n} is asymptotically normal

$$
\frac{X_{n}-\mu_{n}}{\sigma_{n}} \xrightarrow{d} \mathscr{N}(0,1),
$$

with convergence of all moments.
Proof by the method of moments

- Derive recurrence for $\mathbb{E}\left(X_{n}-\mu_{n}\right)^{m}$.
- Prove by induction (using the asymptotic transfer) that

$$
\mathbb{E}\left(X_{n}-\mu_{n}\right)^{m} \begin{cases}\sim \frac{(m)!}{(m / 2)!2^{m / 2}} \sigma_{n}^{m}, & \text { if } 2 \mid m, \\ =o\left(\sigma_{n}^{m}\right), & \text { if } 2 \nmid m,\end{cases}
$$

A STRAIGHTFORWARD EXTENSION

$b=1,2, \ldots$

$$
X_{n} \stackrel{d}{=} X_{n-b}+X_{n-b-\operatorname{Binom}(n-b ; p)}^{*},
$$

with $X_{n}=0$ for $n<b$ and $X_{b}=1$.

A NATURAL VARIANT

What happens if $X_{n} \stackrel{d}{=} X_{n-1}+X_{\text {uniform }[0, n-1]}^{*}$?

$$
\mu_{n}=\mu_{n-1}+\frac{1}{n} \sum_{0 \leqslant j<n} \mu_{j},
$$

satisfies $\mu_{n} \sim c n^{-1 / 4} e^{2 \sqrt{n}}$.
Limit law not Gaussian (by method of moments)

where $g(z):=\sum_{m \geqslant 1} \mathbb{E}\left(X^{m}\right) z^{m} /(m \cdot m!)$ satisfies

$$
z^{2} g^{\prime \prime}+z g^{\prime}-g=z g g^{\prime} .
$$

A NATURAL VARIANT

What happens if $X_{n} \stackrel{d}{=} X_{n-1}+X_{\text {uniform }[0, n-1]}^{*}$?

$$
\mu_{n}=\mu_{n-1}+\frac{1}{n} \sum_{0 \leqslant j<n} \mu_{j},
$$

satisfies $\mu_{n} \sim c n^{-1 / 4} e^{2 \sqrt{n}}$.
Limit law not Gaussian (by method of moments)

$$
\frac{X_{n}}{\mu_{n}} \xrightarrow{d} X,
$$

where $g(z):=\sum_{m \geqslant 1} \mathbb{E}\left(X^{m}\right) z^{m} /(m \cdot m!)$ satisfies

$$
z^{2} g^{\prime \prime}+z g^{\prime}-g=z g g^{\prime}
$$

CONCLUSION

Random graph algorithms:
a rich source of interesting recurrences

