NEMO: red Collaboration Networks

The Structure of Sparse Random Bipartite Graphs

Reinhard Kutzelnigg*
Workshop on Discrete Mathematics
Vienna, November 22, 2008
based on joint work with Michael Drmota

[^0]
Random Bipartite Graphs

Introduction

- Random Bipartite

Graphs

- First Results

Generating Functions
The Component
Structure
Application

- We consider multigraphs with two types of labelled nodes.
- Each labelled edge connects nodes of different types and is chosen uniformly at random.
- We concentrate on (relatively) sparse graphs.

Random Bipartite Graphs

Introduction

- Random Bipartite

Graphs

- First Results

Generating Functions
The Component Structure

Application

- We consider multigraphs with two types of labelled nodes.
- Each labelled edge connects nodes of different types and is chosen uniformly at random.
- We concentrate on (relatively) sparse graphs.

(1)
(2)
(3)
(4)
(5)

Random Bipartite Graphs

Introduction

- Random Bipartite

Graphs

- First Results

Generating Functions
The Component Structure

Application

- We consider multigraphs with two types of labelled nodes.
- Each labelled edge connects nodes of different types and is chosen uniformly at random.
- We concentrate on (relatively) sparse graphs.

Random Bipartite Graphs

Introduction

- Random Bipartite

Graphs

- First Results

Generating Functions
The Component Structure

Application

- We consider multigraphs with two types of labelled nodes.
- Each labelled edge connects nodes of different types and is chosen uniformly at random.
- We concentrate on (relatively) sparse graphs.

Random Bipartite Graphs

Introduction

- Random Bipartite

Graphs

- First Results

Generating Functions
The Component Structure

- We consider multigraphs with two types of labelled nodes.
- Each labelled edge connects nodes of different types and is chosen uniformly at random.
- We concentrate on (relatively) sparse graphs.

Random Bipartite Graphs

Introduction

- Random Bipartite

Graphs

- First Results

Generating Functions
The Component Structure

- We consider multigraphs with two types of labelled nodes.
- Each labelled edge connects nodes of different types and is chosen uniformly at random.
- We concentrate on (relatively) sparse graphs.

Random Bipartite Graphs

Introduction

- Random Bipartite

Graphs

- First Results

Generating Functions
The Component Structure

- We consider multigraphs with two types of labelled nodes.
- Each labelled edge connects nodes of different types and is chosen uniformly at random.
- We concentrate on (relatively) sparse graphs.

Random Bipartite Graphs

Introduction

- Random Bipartite

Graphs

- First Results

Generating Functions
The Component Structure

- We consider multigraphs with two types of labelled nodes.
- Each labelled edge connects nodes of different types and is chosen uniformly at random.
- We concentrate on (relatively) sparse graphs.

Random Bipartite Graphs

Introduction

- Random Bipartite

Graphs

- First Results

Generating Functions
The Component Structure

- We consider multigraphs with two types of labelled nodes.
- Each labelled edge connects nodes of different types and is chosen uniformly at random.
- We concentrate on (relatively) sparse graphs.

First Results

- First Results

Generating Functions
The Component Structure

Application

Consider a random bipartite graph G, consisting of m nodes of each type and n edges.

Theorem 1. The probability, that G contains only tree and unicyclic components, provided that $n=\lfloor(1-\varepsilon) m\rfloor$ and $\varepsilon \in(0,1)$, equals

$$
1-\frac{\left(2 \varepsilon^{2}-5 \varepsilon+5\right)(1-\varepsilon)^{3}}{12(2-\varepsilon)^{2} \varepsilon^{3}} \frac{1}{m}+\mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Theorem 2. Assume m equals n. The probability, that G contains only tree and unicyclic components, equals $\sqrt{2 / 3}+\mathfrak{o}(1)$.

- Devroye and Morin showed $1-O(1 / m)$ in 2001.
- The analytic structure of generating functions for bipartite random graphs is more difficult than that of usual random graphs.
- Nevertheless the results look the same, cf. Janson et al. 1993. Thus, one can expect that most properties of random graphs have a counterpart in random bipartite graphs (birth of giant component etc.).
- Asymptotic Analysis
- The Saddle Point

Method

- The "critical" case

The Component Structure

Generating Functions

Application

Bipartite Trees

- Bipartite Trees
- Cyclic Components
- Trees and Unicycles
- Asymptotic Analysis
- The Saddle Point Method
- The "critical" case

The Component Structure

Application

- We use the generating functions $t_{1}(x, y)$ and $t_{2}(x, y)$ for bipartite rooted trees, where the root is contained in first respectively second subset of nodes.
- This generating functions are given by

$$
t_{1}(x, y)=x e^{t_{2}(x, y)}, \quad t_{2}(x, y)=y e^{t_{1}(x, y)}
$$

- Let $\tilde{t}(x, y)$ denote the generating function of unrooted bipartite trees.
- Furthermore, one can show:

$$
\tilde{t}(x, y)=t_{1}(x, y)+t_{2}(x, y)-t_{1}(x, y) t_{2}(x, y)
$$

Cyclic Components

Introduction
Generating Functions

- Bipartite Trees
- Cyclic Components
- Trees and Unicycles
- Asymptotic Analysis
- The Saddle Point

Method

- The "critical" case

The Component Structure

Application

- Of course, a cycle has to have an even number of nodes, say $2 k$, where k nodes are of type 1 and the other k nodes of type 2 .
- A cyclic node of type 1 can be considered as the root of a rooted tree of type 1 and similarly, for type 2.

- The product of the generating functions of this trees is divided by $2 k$, to account for cyclic order and change of orientation.

Generating Functions

- Bipartite Trees
- Cyclic Components
- Trees and Unicycles
- Asymptotic Analysis
- The Saddle Point Method
- The "critical" case

The Component Structure

Application

- Consequently the generating function of a connected graph with exactly one cycle is given by

$$
\begin{aligned}
c(x, y) & =\sum_{k \geq 1} \frac{1}{2 k} t_{1}(x, y)^{k} t_{2}(x, y)^{k} \\
& =\frac{1}{2} \log \frac{1}{1-t_{1}(x, y) t_{2}(x, y)} .
\end{aligned}
$$

Trees and Unicycles

- Bipartite Trees
- Cyclic Components
- Trees and Unicycles
- Asymptotic Analysis
- The Saddle Point

Method

- The "critical" case

The Component Structure

Application

- Let $g^{\circ}(x, y)$ denote the generating function of bipartite graphs consisting only of tree and unicyclic components.
- Note that such a graph possesses exactly $2 m-n$ tree components.
- Hence, we get

$$
g^{\circ}(x, y)=\frac{1}{(2 m-n)!} \frac{\tilde{t}(x, y)^{2 m-n}}{\sqrt{1-t_{1}(x, y) t_{2}(x, y)}}
$$

- We are interested in $\left[x^{m} y^{m}\right] g^{\circ}(x, y)$.

Asymptotic Analysis

$$
\begin{aligned}
& {\left[x^{m} y^{m}\right] g^{\circ}(x, y)} \\
& \quad=\frac{-(m!)^{2}}{4 \pi(2 m-n)!} \iint_{|x|=x_{0}} \int_{|y|=y_{0}} \frac{\tilde{t}(x, y)^{2 m-n}}{\sqrt{1-t_{1}(x, y) t_{2}(x, y)}} \frac{d x d y}{(x y)^{m+1}}
\end{aligned}
$$

This is in fact an integral that can be asymptotically evaluated with help of a (double) saddle point method. It turns out, that if $n=(1-\varepsilon) m$ and $\varepsilon \in(0,1)$ is fixed, the saddle point is given by

$$
x_{0}=y_{0}=\frac{n}{m} e^{-\frac{n}{m}}=(1-\varepsilon) e^{\varepsilon-1}<\frac{1}{e} .
$$

The Saddle Point Method

Lemma 1. $f(x, y)$ and $g(x, y)$ analytic functions in a ball around $(0,0)$ (+ technical assumptions):

$$
\begin{aligned}
& {\left[x^{m_{1}} y^{m_{2}}\right] g(x, y) f(x, y)^{k}} \\
& =\frac{g\left(x_{0}, y_{0}\right) f\left(x_{0}, y_{0}\right)^{k}}{2 \pi x_{0}^{m_{1}} y_{0}^{m_{2}} k \sqrt{\Delta}}\left(1+\frac{h}{24 \Delta^{3}} \frac{1}{k}+O\left(\frac{1}{k^{2}}\right)\right),
\end{aligned}
$$

where x_{0} and y_{0} are uniquely defined by

$$
\begin{aligned}
\frac{m_{1}}{k} & =\frac{x_{0}}{f\left(x_{0}, y_{0}\right)}\left[\frac{\partial}{\partial x} f(x, y)\right]_{\left(x_{0}, y_{0}\right)} \\
\frac{m_{2}}{k} & =\frac{y_{0}}{f\left(x_{0}, y_{0}\right)}\left[\frac{\partial}{\partial y} f(x, y)\right]_{\left(x_{0}, y_{0}\right)} .
\end{aligned}
$$

(m_{1}, m_{2}, and k have to be of the same order of magnitude)

Generally, let the cummulants $\kappa_{i j}$ and $\bar{\kappa}_{i j}$ be

$$
\begin{aligned}
\kappa_{i j} & =\left[\frac{\partial^{i}}{\partial u^{i}} \frac{\partial^{j}}{\partial v^{j}} \log f\left(x_{0} e^{u}, y_{0} e^{v}\right)\right]_{(0,0)} \\
\bar{\kappa}_{i j} & =\left[\frac{\partial^{i}}{\partial u^{i}} \frac{\partial^{j}}{\partial v^{j}} \log g\left(x_{0} e^{u}, y_{0} e^{v}\right)\right]_{(0,0)} .
\end{aligned}
$$

Further let $\Delta=\kappa_{20} \kappa_{02}-\kappa_{11}^{2}$, then h is a constant depending on
$\kappa_{02}, \kappa_{11}, \kappa_{20}, \kappa_{03}, \kappa_{12}, \kappa_{21}, \kappa_{30}, \bar{\kappa}_{01}, \bar{\kappa}_{10}, \bar{\kappa}_{02}, \bar{\kappa}_{11}$, and $\bar{\kappa}_{20}$.

The "critical" case

Introduction
Generating Functions

- Bipartite Trees
- Cyclic Components
- Trees and Unicycles
- Asymptotic Analysis
- The Saddle Point Method
- The "critical" case

The Component Structure

Application

- Here, we consider the special case $\varepsilon=0$.
- The proof of Theorem 2 follows the same idea.
- However, the saddle point $x_{0}=y_{0}=1 / e$ coalesces with the singularity of the denominator of

$$
\frac{\tilde{t}(x, y)^{2 m-n}}{\sqrt{1-t_{1}(x, y) t_{2}(x, y)}} .
$$

- We use the following series of $\# G_{m, m, m}^{\circ}$ and consider each summand separately,

$$
(m!)^{2} \sum_{k \geq 0}\binom{2 k}{k} \frac{1}{4^{k}}\left[x^{m} y m\right] \tilde{t}(x, y)^{m} t_{1}(x, y)^{k} t_{2}(x, y)^{k}
$$

- Using Lagrange's Inversion Theorem, we get

$$
\left[x^{m} y^{m}\right] \tilde{t}(x, y)^{m} t_{1}(x, y)^{k} t_{2}(x, y)^{k}=\frac{1}{m}\left[u^{m} y^{m}\right] f(u, y)^{m} l(u, y) h(u, y)
$$

Hereby, we use the following functions:

$$
\begin{aligned}
f(u, y) & =\left(u+y e^{u}(1-u)\right) \exp \left(y e^{u}\right) \\
l(u, y) & =u^{k}\left(y e^{u}\right)^{k} \\
h(u, y) & =u \frac{m u-m y e^{u} u^{2}+k u+k y e^{u}+k u^{2}-k u^{2} y e^{u}}{u\left(u+y e^{u}(1-u)\right)}
\end{aligned}
$$

- The saddle point now equals $u_{0}=1, y_{0}=1 / e$.

Generating Functions

- Bipartite Trees
- Cyclic Components
- Trees and Unicycles
- Asymptotic Analysis
- The Saddle Point

Method

- The "critical" case

The Component Structure

Application

- We have to handle the integral

$$
\int_{0}^{\infty} s e^{-\frac{2}{3} s^{3}+\frac{2 \zeta}{\sqrt[3]{m}} k s} d t d s
$$

- This function is related to the Lommel function of second kind, that is a solution of the inhomogeneous Bessel differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\nu^{2}\right) y=x^{\mu+1}
$$

The Component Structure

Application

Number of Cycles

- Number of Cycles
- Trees with fixed size
- Nodes in all cyclic

Components

- Remarks
- Proof: Step 1
- Proof: Step 2

Application

Suppose that $\varepsilon \in(0,1)$ is fixed and that $n=\lfloor(1-\varepsilon) m\rfloor$. Then a labelled random bipartite multigraph with $2 \times m$ vertices and n edges satisfies the following properties:

- The number of unicyclic components with cycle length $2 k$ has in limit a Poisson distribution $\operatorname{Po}\left(\lambda_{k}\right)$ with parameter

$$
\lambda_{k}=\frac{1}{2 k}(1-\varepsilon)^{2 k},
$$

and the number of unicyclic components has in limit a Poisson distribution $\operatorname{Po}(\lambda)$, too, with parameter

$$
\lambda=-\frac{1}{2} \log \left(1-(1-\varepsilon)^{2}\right) .
$$

Trees with fixed size

- Denote the number of tree components with k vertices by t_{k}. Mean and variance of this random variable are asymptotically equal to

$$
m \mu=2 m \frac{k^{k-2}(1-\varepsilon)^{k-1} e^{k(\varepsilon-1)}}{k!}
$$

respectively

$$
m \sigma^{2}=m \mu-\frac{2 m e^{2 k(\varepsilon-1)} k^{2 k-4}(1-\varepsilon)^{2 k-3}\left(k^{2} \varepsilon^{2}+k^{2} \varepsilon-4 k \varepsilon+2\right)}{(k!)^{2}} .
$$

Furthermore t_{k} satisfies a central limit theorem of the form

$$
\frac{t_{k}-\mu}{\sigma} \rightarrow N(0,1)
$$

Nodes in all cyclic Components

Introduction
Generating Functions
The Component Structure

- Number of Cycles
- Trees with fixed size
- Nodes in all cyclic

Components

- Remarks
- Proof: Step 1
- Proof: Step 2

Application

- Furthermore, the expected value of the number of nodes in unicyclic components is asymptotically given by

$$
\frac{(1-\varepsilon)^{2}}{\varepsilon\left(1-(1-\varepsilon)^{2}\right)}
$$

and its variance by

$$
\frac{(1-\varepsilon)^{2}\left(\varepsilon^{2}-3 \varepsilon+4\right)}{\varepsilon^{2}\left(1-(1-\varepsilon)^{2}\right)^{2}}
$$

Remarks

- Because of Theorem 1, it is sufficient to consider graphs that contain tree and unicylic components only. Recall the corresponding generating function

$$
g^{\circ}(x, y)=\frac{\tilde{t}(x, y)^{2 m-n}}{(2 m-n)!} \exp (c(x, y))
$$

where $c(x, y)$ denotes the generating function of an unicyclic component.

- Similar results hold for "usual" random graphs too.

Proof: Step 1

Introduce a "new" Variable w to mark the Parameter of interest:

- Number of cycles

$$
g_{1}^{\circ}(x, y, w)=\frac{\tilde{t}(x, y)^{2 m-n}}{(2 m-n)!} \exp (w c(x, y))
$$

- Trees possessing k nodes

$$
g_{2}^{\circ}(x, y, w)=\frac{\left(\tilde{t}(x, y)+(w-1) \tilde{t}_{k}(x, y)\right)^{2 m-n}}{(2 m-n)!} \exp (c(x, y))
$$

- Nodes in all cyclic Components

$$
g_{3}^{\circ}(x, y, w)=\frac{\tilde{t}(x, y)^{2 m-n}}{(2 m-n)!} \exp (c(w x, w y))
$$

Proof: Step 2

Introduction
Generating Functions
The Component
Structure

- Number of Cycles
- Trees with fixed size
- Nodes in all cyclic

Components

- Remarks
- Proof: Step 1
- Proof: Step 2

Application

Calculate the l-th factorial Moment

$$
\mathcal{M}_{l}=\frac{\left[x^{m} y^{m}\right]\left[\frac{\partial^{l}}{\partial w^{l}} g^{\circ}(x, y, w)\right]_{w=1}}{\left[x^{m} y^{m}\right] g_{t}^{\circ}(x, y, 1)}
$$

or the characteristic function

$$
\phi(s)=\frac{\left[x^{m} y^{m}\right] g^{\circ}\left(x, y, e^{i s}\right)}{\left[x^{m} y^{m}\right] g_{t}^{\circ}(x, y, 1)} .
$$

The calculation itself is again performed using the saddle point method.

Introduction
Generating Functions
The Component
Structure
Application

- Cuckoo Hashing

Application

Cuckoo Hashing

- Hash table data structure introduced by Pagh and Rodler in 2001.
- Offers constant worst case search time.
- Uses two tables and two different hash functions h_{1} and h_{2}, both determine a unique position in each table.
- Resolve conflicts by rearranging keys.
- Algorithm can be modelled by a random bipartite graph.

Cuckoo Hashing

- Hash table data structure introduced by Pagh and Rodler in 2001.
- Offers constant worst case search time.
- Uses two tables and two different hash functions h_{1} and h_{2}, both determine a unique position in each table.
- Resolve conflicts by rearranging keys.
- Algorithm can be modelled by a random bipartite graph.

Cuckoo Hashing

- Hash table data structure introduced by Pagh and Rodler in 2001.
- Offers constant worst case search time.
- Uses two tables and two different hash functions h_{1} and h_{2}, both determine a unique position in each table.
- Resolve conflicts by rearranging keys.
- Algorithm can be modelled by a random bipartite graph.

Cuckoo Hashing

- Hash table data structure introduced by Pagh and Rodler in 2001.
- Offers constant worst case search time.
- Uses two tables and two different hash functions h_{1} and h_{2}, both determine a unique position in each table.
- Resolve conflicts by rearranging keys.
- Algorithm can be modelled by a random bipartite graph.

Cuckoo Hashing

- Hash table data structure introduced by Pagh and Rodler in 2001.
- Offers constant worst case search time.
- Uses two tables and two different hash functions h_{1} and h_{2}, both determine a unique position in each table.
- Resolve conflicts by rearranging keys.
- Algorithm can be modelled by a random bipartite graph.

Cuckoo Hashing

- Hash table data structure introduced by Pagh and Rodler in 2001.
- Offers constant worst case search time.
- Uses two tables and two different hash functions h_{1} and h_{2}, both determine a unique position in each table.
- Resolve conflicts by rearranging keys.
- Algorithm can be modelled by a random bipartite graph.

Cuckoo Hashing

- Hash table data structure introduced by Pagh and Rodler in 2001.
- Offers constant worst case search time.
- Uses two tables and two different hash functions h_{1} and h_{2}, both determine a unique position in each table.
- Resolve conflicts by rearranging keys.
- Algorithm can be modelled by a random bipartite graph.

Cuckoo Hashing

- Hash table data structure introduced by Pagh and Rodler in 2001.
- Offers constant worst case search time.
- Uses two tables and two different hash functions h_{1} and h_{2}, both determine a unique position in each table.
- Resolve conflicts by rearranging keys.
- Algorithm can be modelled by a random bipartite graph.

Cuckoo Hashing

- Hash table data structure introduced by Pagh and Rodler in 2001.
- Offers constant worst case search time.
- Uses two tables and two different hash functions h_{1} and h_{2}, both determine a unique position in each table.
- Resolve conflicts by rearranging keys.
- Algorithm can be modelled by a random bipartite graph.

References (1)

L. Devroye and P. Morin. Cuckoo hashing: Further analysis. Information Processing Letters, 86(4):215-219, 2003.

Michael Drmota. A bivariate asymptotic expansion of coefficients of powers of generating functions. European Journal of Combinatorics, 15(2):139-152, 1994.

Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space efficient hash tables with worst case constant access time. Theory Comput. Syst., 38(2):229-248, 2005.

Svante Janson, Donald E. Knuth, Tomasz Łuczak, and Boris Pittel. The birth of the giant component. Random Structures and Algorithms, 4(3):233-359, 1993.
I. B. Kalugin. The number of components of a random bipartite graph. Discrete Mathematics and Applications, 1(3):289-299, 1991.

References (2)

Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley, Boston, second edition, 1998.
R. Kutzelnigg. Bipartite random graphs and cuckoo hashing. In Proceedings of the 4th Colloquium on Mathematics and Computer Science, DMTCS, pages 403-406, 2006.
R. Kutzelnigg. An improved version of cuckoo hashing: Average case analysis of construction cost and search operations. In Proceedings of the 19th IWOCA, pages 253-266, 2008.

Reinhard Kutzelnigg. Random Bipartite Graphs and their Application to Cuckoo Hashing. PhD thesis, Vienna University of Technology, 2008.
R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms,

51(2):122-144, 2004.

[^0]: *Research supported by the Austrian Science Foundation FWF, project S9604 and by the EU FP6-NEST-Adventure Programme, Contract number 028875 (NEMO).

