
1 / 27

The Structure of Sparse Random Bipartite Graphs

Reinhard Kutzelnigg∗

Workshop on Discrete Mathematics

Vienna, November 22, 2008

based on joint work with Michael Drmota

∗Research supported by the Austrian Science Foundation FWF, project S9604 and by the
EU FP6-NEST-Adventure Programme, Contract number 028875 (NEMO).

Random Bipartite Graphs

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

2 / 27

• We consider multigraphs with two types of labelled nodes.
• Each labelled edge connects nodes of different types and

is chosen uniformly at random.
• We concentrate on (relatively) sparse graphs.

Random Bipartite Graphs

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

2 / 27

• We consider multigraphs with two types of labelled nodes.
• Each labelled edge connects nodes of different types and

is chosen uniformly at random.
• We concentrate on (relatively) sparse graphs.

1 1

2 2

3 3

4 4

5 5

Random Bipartite Graphs

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

2 / 27

• We consider multigraphs with two types of labelled nodes.
• Each labelled edge connects nodes of different types and

is chosen uniformly at random.
• We concentrate on (relatively) sparse graphs.

1 1

2 2

3 3

4 4

5 5

a

Random Bipartite Graphs

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

2 / 27

• We consider multigraphs with two types of labelled nodes.
• Each labelled edge connects nodes of different types and

is chosen uniformly at random.
• We concentrate on (relatively) sparse graphs.

1 1

2 2

3 3

4 4

5 5

a

b

Random Bipartite Graphs

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

2 / 27

• We consider multigraphs with two types of labelled nodes.
• Each labelled edge connects nodes of different types and

is chosen uniformly at random.
• We concentrate on (relatively) sparse graphs.

1 1

2 2

3 3

4 4

5 5

a

b

c

Random Bipartite Graphs

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

2 / 27

• We consider multigraphs with two types of labelled nodes.
• Each labelled edge connects nodes of different types and

is chosen uniformly at random.
• We concentrate on (relatively) sparse graphs.

1 1

2 2

3 3

4 4

5 5

a

b

c

d

Random Bipartite Graphs

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

2 / 27

• We consider multigraphs with two types of labelled nodes.
• Each labelled edge connects nodes of different types and

is chosen uniformly at random.
• We concentrate on (relatively) sparse graphs.

1 1

2 2

3 3

4 4

5 5

a

b

c

d
e

Random Bipartite Graphs

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

2 / 27

• We consider multigraphs with two types of labelled nodes.
• Each labelled edge connects nodes of different types and

is chosen uniformly at random.
• We concentrate on (relatively) sparse graphs.

1 1

2 2

3 3

4 4

5 5

a

b

c

d
e

f

Random Bipartite Graphs

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

2 / 27

• We consider multigraphs with two types of labelled nodes.
• Each labelled edge connects nodes of different types and

is chosen uniformly at random.
• We concentrate on (relatively) sparse graphs.

1 1

2 2

3 3

4 4

5 5

a

b

d
e

f

c
g

First Results

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

3 / 27

Consider a random bipartite graph G, consisting of m nodes
of each type and n edges.

Theorem 1. The probability, that G contains only tree and
unicyclic components, provided that n = ⌊(1 − ε)m⌋ and
ε ∈ (0, 1), equals

1 − (2ε2 − 5ε + 5)(1 − ε)3

12(2 − ε)2ε3

1

m
+ O

(

1

m2

)

.

Theorem 2. Assume m equals n. The probability, that G
contains only tree and unicyclic components, equals
√

2/3 + O(1).

Introduction
• Random Bipartite
Graphs

• First Results

Generating Functions

The Component
Structure

Application

4 / 27

• Devroye and Morin showed 1 − O(1/m) in 2001.
• The analytic structure of generating functions for bipartite

random graphs is more difficult than that of usual random
graphs.

• Nevertheless the results look the same, cf. Janson et al.
1993. Thus, one can expect that most properties of random
graphs have a counterpart in random bipartite graphs (birth
of giant component etc.).

Generating Functions

Introduction

Generating Functions

• Bipartite Trees

• Cyclic Components

• Trees and Unicycles

• Asymptotic Analysis

• The Saddle Point
Method

• The “critical” case

The Component
Structure

Application

5 / 27

Bipartite Trees

Introduction

Generating Functions

• Bipartite Trees

• Cyclic Components

• Trees and Unicycles

• Asymptotic Analysis

• The Saddle Point
Method

• The “critical” case

The Component
Structure

Application

6 / 27

• We use the generating functions t1(x, y) and t2(x, y) for
bipartite rooted trees, where the root is contained in first
respectively second subset of nodes.

• This generating functions are given by

t1(x, y) = xet2(x,y), t2(x, y) = yet1(x,y).

• Let t̃(x, y) denote the generating function of unrooted
bipartite trees.

• Furthermore, one can show:

t̃(x, y) = t1(x, y) + t2(x, y) − t1(x, y)t2(x, y)

Cyclic Components

Introduction

Generating Functions

• Bipartite Trees

• Cyclic Components

• Trees and Unicycles

• Asymptotic Analysis

• The Saddle Point
Method

• The “critical” case

The Component
Structure

Application

7 / 27

• Of course, a cycle has to have an even number of nodes,
say 2k, where k nodes are of type 1 and the other k nodes
of type 2.

• A cyclic node of type 1 can be considered as the root of a
rooted tree of type 1 and similarly, for type 2.

• The product of the generating functions of this trees is
divided by 2k, to account for cyclic order and change of
orientation.

Introduction

Generating Functions

• Bipartite Trees

• Cyclic Components

• Trees and Unicycles

• Asymptotic Analysis

• The Saddle Point
Method

• The “critical” case

The Component
Structure

Application

8 / 27

• Consequently the generating function of a connected graph
with exactly one cycle is given by

c(x, y) =
∑

k≥1

1

2k
t1(x, y)kt2(x, y)k

=
1

2
log

1

1 − t1(x, y)t2(x, y)
.

Trees and Unicycles

Introduction

Generating Functions

• Bipartite Trees

• Cyclic Components

• Trees and Unicycles

• Asymptotic Analysis

• The Saddle Point
Method

• The “critical” case

The Component
Structure

Application

9 / 27

• Let g◦(x, y) denote the generating function of bipartite
graphs consisting only of tree and unicyclic components.

• Note that such a graph possesses exactly 2m − n tree
components.

• Hence, we get

g◦(x, y) =
1

(2m − n)!

t̃(x, y)2m−n

√

1 − t1(x, y)t2(x, y)
.

• We are interested in [xmym]g◦(x, y).

Asymptotic Analysis

10 / 27

[xmym]g◦(x, y)

=
−(m!)2

4π(2m − n)!

∫

|x|=x0

∫

|y|=y0

t̃(x, y)2m−n

√

1 − t1(x, y)t2(x, y)

dx dy

(xy)m+1

This is in fact an integral that can be asymptotically evaluated with help
of a (double) saddle point method. It turns out, that if n = (1− ε)m and
ε ∈ (0, 1) is fixed, the saddle point is given by

x0 = y0 =
n

m
e−

n
m = (1 − ε)eε−1 <

1

e
.

The Saddle Point Method

11 / 27

Lemma 1. f(x, y) and g(x, y) analytic functions in a ball around (0, 0)
(+ technical assumptions):

[xm1ym2]g(x, y)f(x, y)k

=
g(x0, y0)f(x0, y0)

k

2πxm1

0 ym2

0 k
√

∆

(

1 +
h

24∆3

1

k
+ O

(

1

k2

))

,

where x0 and y0 are uniquely defined by

m1

k
=

x0

f(x0, y0)

[

∂

∂x
f(x, y)

]

(x0,y0)

m2

k
=

y0

f(x0, y0)

[

∂

∂y
f(x, y)

]

(x0,y0)

.

(m1, m2, and k have to be of the same order of magnitude)

12 / 27

Generally, let the cummulants κij and κij be

κij =

[

∂i

∂ui

∂j

∂vj
log f(x0e

u, y0e
v)

]

(0,0)

κij =

[

∂i

∂ui

∂j

∂vj
log g(x0e

u, y0e
v)

]

(0,0)

.

Further let ∆ = κ20κ02 − κ2
11, then h is a constant depending on

κ02, κ11, κ20, κ03, κ12, κ21, κ30, κ01, κ10, κ02, κ11, and κ20.

The “critical” case

Introduction

Generating Functions

• Bipartite Trees

• Cyclic Components

• Trees and Unicycles

• Asymptotic Analysis

• The Saddle Point
Method

• The “critical” case

The Component
Structure

Application

13 / 27

• Here, we consider the special case ε = 0.
• The proof of Theorem 2 follows the same idea.
• However, the saddle point x0 = y0 = 1/e coalesces with

the singularity of the denominator of

t̃(x, y)2m−n

√

1 − t1(x, y)t2(x, y)
.

• We use the following series of #G◦
m,m,m and consider

each summand separately,

(m!)2
∑

k≥0

(

2k

k

)

1

4k
[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k.

14 / 27

• Using Lagrange’s Inversion Theorem, we get

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k =
1

m
[umym]f(u, y)ml(u, y)h(u, y).

Hereby, we use the following functions:

f(u, y) = (u + yeu(1 − u)) exp (yeu) ,

l(u, y) = uk (yeu)k ,

h(u, y) = u
mu − myeuu2 + ku + kyeu + ku2 − ku2yeu

u (u + yeu(1 − u))
.

Introduction

Generating Functions

• Bipartite Trees

• Cyclic Components

• Trees and Unicycles

• Asymptotic Analysis

• The Saddle Point
Method

• The “critical” case

The Component
Structure

Application

15 / 27

• The saddle point now equals u0 = 1, y0 = 1/e.
• We have to handle the integral

∞
∫

0

se
− 2

3
s3+ 2ζ

3
√

m
ks

dt ds.

• This function is related to the Lommel function of second
kind, that is a solution of the inhomogeneous Bessel
differential equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = xµ+1.

The Component Structure

Introduction

Generating Functions

The Component
Structure

• Number of Cycles

• Trees with fixed size
• Nodes in all cyclic
Components

• Remarks

• Proof: Step 1

• Proof: Step 2

Application

16 / 27

Number of Cycles

Introduction

Generating Functions

The Component
Structure

• Number of Cycles

• Trees with fixed size
• Nodes in all cyclic
Components

• Remarks

• Proof: Step 1

• Proof: Step 2

Application

17 / 27

Suppose that ε ∈ (0, 1) is fixed and that n = ⌊(1 − ε)m⌋.
Then a labelled random bipartite multigraph with 2 × m
vertices and n edges satisfies the following properties:

• The number of unicyclic components with cycle length 2k
has in limit a Poisson distribution Po(λk) with parameter

λk =
1

2k
(1 − ε)2k ,

and the number of unicyclic components has in limit a
Poisson distribution Po(λ), too, with parameter

λ = −1

2
log

(

1 − (1 − ε)2
)

.

Trees with fixed size

18 / 27

• Denote the number of tree components with k vertices by tk. Mean
and variance of this random variable are asymptotically equal to

mµ = 2m
kk−2(1 − ε)k−1ek(ε−1)

k!
,

respectively

mσ2 = mµ−2me2k(ε−1)k2k−4(1 − ε)2k−3(k2ε2 + k2ε − 4kε + 2)

(k!)2
.

Furthermore tk satisfies a central limit theorem of the form

tk − µ

σ
→ N(0, 1).

Nodes in all cyclic Components

Introduction

Generating Functions

The Component
Structure

• Number of Cycles

• Trees with fixed size
• Nodes in all cyclic
Components

• Remarks

• Proof: Step 1

• Proof: Step 2

Application

19 / 27

• Furthermore, the expected value of the number of nodes in
unicyclic components is asymptotically given by

(1 − ε)2

ε (1 − (1 − ε)2)
,

and its variance by

(1 − ε)2(ε2 − 3ε + 4)

ε2 (1 − (1 − ε)2)2 .

Remarks

Introduction

Generating Functions

The Component
Structure

• Number of Cycles

• Trees with fixed size
• Nodes in all cyclic
Components

• Remarks

• Proof: Step 1

• Proof: Step 2

Application

20 / 27

• Because of Theorem 1, it is sufficient to consider graphs
that contain tree and unicylic components only. Recall the
corresponding generating function

g◦(x, y) =
t̃(x, y)2m−n

(2m − n)!
exp(c(x, y)),

where c(x, y) denotes the generating function of an
unicyclic component.

• Similar results hold for “usual” random graphs too.

Proof: Step 1

21 / 27

Introduce a “new” Variable w to mark the Parameter of interest:

• Number of cycles

g◦
1(x, y, w) =

t̃(x, y)2m−n

(2m − n)!
exp(wc(x, y))

• Trees possessing k nodes

g◦
2(x, y, w) =

(

t̃(x, y) + (w − 1)t̃k(x, y)
)2m−n

(2m − n)!
exp(c(x, y))

• Nodes in all cyclic Components

g◦
3(x, y, w) =

t̃(x, y)2m−n

(2m − n)!
exp(c(wx,wy))

Proof: Step 2

Introduction

Generating Functions

The Component
Structure

• Number of Cycles

• Trees with fixed size
• Nodes in all cyclic
Components

• Remarks

• Proof: Step 1

• Proof: Step 2

Application

22 / 27

Calculate the l-th factorial Moment

Ml =
[xmym]

[

∂l

∂wl g
◦(x, y, w)

]

w=1

[xmym]g◦
t (x, y, 1)

,

or the characteristic function

φ(s) =
[xmym]g◦(x, y, eis)

[xmym]g◦
t (x, y, 1)

.

The calculation itself is again performed using the saddle point
method.

Application

Introduction

Generating Functions

The Component
Structure

Application

• Cuckoo Hashing

23 / 27

Cuckoo Hashing

24 / 27

• Hash table data structure introduced by Pagh and Rodler in 2001.
• Offers constant worst case search time.
• Uses two tables and two different hash functions h1 and h2, both

determine a unique position in each table.
• Resolve conflicts by rearranging keys.
• Algorithm can be modelled by a random bipartite graph.

Cuckoo Hashing

24 / 27

• Hash table data structure introduced by Pagh and Rodler in 2001.
• Offers constant worst case search time.
• Uses two tables and two different hash functions h1 and h2, both

determine a unique position in each table.
• Resolve conflicts by rearranging keys.
• Algorithm can be modelled by a random bipartite graph.

1 1

2 2

3 3

4 4

5 5

Cuckoo Hashing

24 / 27

• Hash table data structure introduced by Pagh and Rodler in 2001.
• Offers constant worst case search time.
• Uses two tables and two different hash functions h1 and h2, both

determine a unique position in each table.
• Resolve conflicts by rearranging keys.
• Algorithm can be modelled by a random bipartite graph.

1 1

2 2

3 3

4 4

5 5

a a
a

Cuckoo Hashing

24 / 27

• Hash table data structure introduced by Pagh and Rodler in 2001.
• Offers constant worst case search time.
• Uses two tables and two different hash functions h1 and h2, both

determine a unique position in each table.
• Resolve conflicts by rearranging keys.
• Algorithm can be modelled by a random bipartite graph.

1 1

2 2

3 3

4 4

5 5

a a
a

b b
b

Cuckoo Hashing

24 / 27

• Hash table data structure introduced by Pagh and Rodler in 2001.
• Offers constant worst case search time.
• Uses two tables and two different hash functions h1 and h2, both

determine a unique position in each table.
• Resolve conflicts by rearranging keys.
• Algorithm can be modelled by a random bipartite graph.

1 1

2 2

3 3

4 4

5 5

a a
a

b b
b

c c
c

Cuckoo Hashing

24 / 27

• Hash table data structure introduced by Pagh and Rodler in 2001.
• Offers constant worst case search time.
• Uses two tables and two different hash functions h1 and h2, both

determine a unique position in each table.
• Resolve conflicts by rearranging keys.
• Algorithm can be modelled by a random bipartite graph.

1 1

2 2

3 3

4 4

5 5

a a
a

b b
b

c c
c

d d

d

Cuckoo Hashing

24 / 27

• Hash table data structure introduced by Pagh and Rodler in 2001.
• Offers constant worst case search time.
• Uses two tables and two different hash functions h1 and h2, both

determine a unique position in each table.
• Resolve conflicts by rearranging keys.
• Algorithm can be modelled by a random bipartite graph.

1 1

2 2

3 3

4 4

5 5

a a
a

b b
b

c c
c

e ee
d d

d

Cuckoo Hashing

24 / 27

• Hash table data structure introduced by Pagh and Rodler in 2001.
• Offers constant worst case search time.
• Uses two tables and two different hash functions h1 and h2, both

determine a unique position in each table.
• Resolve conflicts by rearranging keys.
• Algorithm can be modelled by a random bipartite graph.

1 1

2 2

3 3

4 4

5 5

a a
a

b b
b

c c
c

e e e
d d

d
f f

f

Cuckoo Hashing

24 / 27

• Hash table data structure introduced by Pagh and Rodler in 2001.
• Offers constant worst case search time.
• Uses two tables and two different hash functions h1 and h2, both

determine a unique position in each table.
• Resolve conflicts by rearranging keys.
• Algorithm can be modelled by a random bipartite graph.

1 1

2 2

3 3

4 4

5 5

a a
a

b b
b

e e e
d d

d
f f

f

c
g c

c

g

25 / 27

References (1)

26 / 27

L. Devroye and P. Morin. Cuckoo hashing: Further analysis. Information
Processing Letters, 86(4):215–219, 2003.

Michael Drmota. A bivariate asymptotic expansion of coefficients of
powers of generating functions. European Journal of Combinatorics,
15(2):139–152, 1994.

Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis.
Space efficient hash tables with worst case constant access time.
Theory Comput. Syst., 38(2):229–248, 2005.

Svante Janson, Donald E. Knuth, Tomasz Łuczak, and Boris Pittel. The
birth of the giant component. Random Structures and Algorithms,
4(3):233–359, 1993.

I. B. Kalugin. The number of components of a random bipartite graph.
Discrete Mathematics and Applications, 1(3):289–299, 1991.

References (2)

27 / 27

Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, Boston, second edition, 1998.

R. Kutzelnigg. Bipartite random graphs and cuckoo hashing. In
Proceedings of the 4th Colloquium on Mathematics and Computer
Science, DMTCS, pages 403–406, 2006.

R. Kutzelnigg. An improved version of cuckoo hashing: Average case
analysis of construction cost and search operations. In Proceedings of
the 19th IWOCA, pages 253–266, 2008.

Reinhard Kutzelnigg. Random Bipartite Graphs and their Application to
Cuckoo Hashing. PhD thesis, Vienna University of Technology, 2008.

R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

	Introduction
	Random Bipartite Graphs
	First Results
	

	Generating Functions
	Bipartite Trees
	Cyclic Components
	
	Trees and Unicycles
	Asymptotic Analysis
	The Saddle Point Method
	
	The ``critical" case
	
	

	The Component Structure
	Number of Cycles
	Trees with fixed size
	Nodes in all cyclic Components
	Remarks
	Proof: Step 1
	Proof: Step 2

	Application
	Cuckoo Hashing
	
	References (1)
	References (2)

