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Consider a random bipartite graph G, consisting of m nodes
of each type and n edges.

Theorem 1. The probability, that G contains only tree and
unicyclic components, provided that n = ⌊(1 − ε)m⌋ and
ε ∈ (0, 1), equals

1 − (2ε2 − 5ε + 5)(1 − ε)3

12(2 − ε)2ε3

1

m
+ O

(

1

m2

)

.

Theorem 2. Assume m equals n. The probability, that G
contains only tree and unicyclic components, equals
√

2/3 + O(1).
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• Devroye and Morin showed 1 − O(1/m) in 2001.
• The analytic structure of generating functions for bipartite

random graphs is more difficult than that of usual random
graphs.

• Nevertheless the results look the same, cf. Janson et al.
1993. Thus, one can expect that most properties of random
graphs have a counterpart in random bipartite graphs (birth
of giant component etc.).
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• We use the generating functions t1(x, y) and t2(x, y) for
bipartite rooted trees, where the root is contained in first
respectively second subset of nodes.

• This generating functions are given by

t1(x, y) = xet2(x,y), t2(x, y) = yet1(x,y).

• Let t̃(x, y) denote the generating function of unrooted
bipartite trees.

• Furthermore, one can show:

t̃(x, y) = t1(x, y) + t2(x, y) − t1(x, y)t2(x, y)
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• Of course, a cycle has to have an even number of nodes,
say 2k, where k nodes are of type 1 and the other k nodes
of type 2.

• A cyclic node of type 1 can be considered as the root of a
rooted tree of type 1 and similarly, for type 2.

• The product of the generating functions of this trees is
divided by 2k, to account for cyclic order and change of
orientation.
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• Consequently the generating function of a connected graph
with exactly one cycle is given by

c(x, y) =
∑

k≥1

1

2k
t1(x, y)kt2(x, y)k

=
1

2
log

1

1 − t1(x, y)t2(x, y)
.
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• Let g◦(x, y) denote the generating function of bipartite
graphs consisting only of tree and unicyclic components.

• Note that such a graph possesses exactly 2m − n tree
components.

• Hence, we get

g◦(x, y) =
1

(2m − n)!

t̃(x, y)2m−n

√

1 − t1(x, y)t2(x, y)
.

• We are interested in [xmym]g◦(x, y).



Asymptotic Analysis

10 / 27

[xmym]g◦(x, y)

=
−(m!)2

4π(2m − n)!

∫

|x|=x0

∫

|y|=y0

t̃(x, y)2m−n

√

1 − t1(x, y)t2(x, y)

dx dy

(xy)m+1

This is in fact an integral that can be asymptotically evaluated with help
of a (double) saddle point method. It turns out, that if n = (1− ε)m and
ε ∈ (0, 1) is fixed, the saddle point is given by

x0 = y0 =
n

m
e−

n
m = (1 − ε)eε−1 <

1

e
.
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Lemma 1. f(x, y) and g(x, y) analytic functions in a ball around (0, 0)
(+ technical assumptions):

[xm1ym2 ]g(x, y)f(x, y)k

=
g(x0, y0)f(x0, y0)

k

2πxm1

0 ym2

0 k
√

∆

(

1 +
h

24∆3

1

k
+ O

(

1

k2

))

,

where x0 and y0 are uniquely defined by

m1

k
=

x0

f(x0, y0)

[

∂

∂x
f(x, y)

]

(x0,y0)

m2

k
=

y0

f(x0, y0)

[

∂

∂y
f(x, y)

]

(x0,y0)

.

(m1, m2, and k have to be of the same order of magnitude)
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Generally, let the cummulants κij and κij be

κij =

[

∂i

∂ui

∂j

∂vj
log f(x0e

u, y0e
v)

]

(0,0)

κij =

[

∂i

∂ui

∂j

∂vj
log g(x0e

u, y0e
v)

]

(0,0)

.

Further let ∆ = κ20κ02 − κ2
11, then h is a constant depending on

κ02, κ11, κ20, κ03, κ12, κ21, κ30, κ01, κ10, κ02, κ11, and κ20.
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• Here, we consider the special case ε = 0.
• The proof of Theorem 2 follows the same idea.
• However, the saddle point x0 = y0 = 1/e coalesces with

the singularity of the denominator of

t̃(x, y)2m−n

√

1 − t1(x, y)t2(x, y)
.

• We use the following series of #G◦
m,m,m and consider

each summand separately,

(m!)2
∑

k≥0

(

2k

k

)

1

4k
[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k.
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• Using Lagrange’s Inversion Theorem, we get

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k =
1

m
[umym]f(u, y)ml(u, y)h(u, y).

Hereby, we use the following functions:

f(u, y) = (u + yeu(1 − u)) exp (yeu) ,

l(u, y) = uk (yeu)k ,

h(u, y) = u
mu − myeuu2 + ku + kyeu + ku2 − ku2yeu

u (u + yeu(1 − u))
.
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• The saddle point now equals u0 = 1, y0 = 1/e.
• We have to handle the integral

∞
∫

0

se
− 2

3
s3+ 2ζ

3
√

m
ks

dt ds.

• This function is related to the Lommel function of second
kind, that is a solution of the inhomogeneous Bessel
differential equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = xµ+1.
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Suppose that ε ∈ (0, 1) is fixed and that n = ⌊(1 − ε)m⌋.
Then a labelled random bipartite multigraph with 2 × m
vertices and n edges satisfies the following properties:

• The number of unicyclic components with cycle length 2k
has in limit a Poisson distribution Po(λk) with parameter

λk =
1

2k
(1 − ε)2k ,

and the number of unicyclic components has in limit a
Poisson distribution Po(λ), too, with parameter

λ = −1

2
log

(

1 − (1 − ε)2
)

.
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• Denote the number of tree components with k vertices by tk. Mean
and variance of this random variable are asymptotically equal to

mµ = 2m
kk−2(1 − ε)k−1ek(ε−1)

k!
,

respectively

mσ2 = mµ−2me2k(ε−1)k2k−4(1 − ε)2k−3(k2ε2 + k2ε − 4kε + 2)

(k!)2
.

Furthermore tk satisfies a central limit theorem of the form

tk − µ

σ
→ N(0, 1).
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• Furthermore, the expected value of the number of nodes in
unicyclic components is asymptotically given by

(1 − ε)2

ε (1 − (1 − ε)2)
,

and its variance by

(1 − ε)2(ε2 − 3ε + 4)

ε2 (1 − (1 − ε)2)2 .
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• Because of Theorem 1, it is sufficient to consider graphs
that contain tree and unicylic components only. Recall the
corresponding generating function

g◦(x, y) =
t̃(x, y)2m−n

(2m − n)!
exp(c(x, y)),

where c(x, y) denotes the generating function of an
unicyclic component.

• Similar results hold for “usual” random graphs too.
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Introduce a “new” Variable w to mark the Parameter of interest:

• Number of cycles

g◦
1(x, y, w) =

t̃(x, y)2m−n

(2m − n)!
exp(wc(x, y))

• Trees possessing k nodes

g◦
2(x, y, w) =

(

t̃(x, y) + (w − 1)t̃k(x, y)
)2m−n

(2m − n)!
exp(c(x, y))

• Nodes in all cyclic Components

g◦
3(x, y, w) =

t̃(x, y)2m−n

(2m − n)!
exp(c(wx,wy))
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Calculate the l-th factorial Moment

Ml =
[xmym]

[

∂l

∂wl g
◦(x, y, w)

]

w=1

[xmym]g◦
t (x, y, 1)

,

or the characteristic function

φ(s) =
[xmym]g◦(x, y, eis)

[xmym]g◦
t (x, y, 1)

.

The calculation itself is again performed using the saddle point
method.
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