A Removal Lemma for linear equations

Lluís Vena ${ }^{2}$
(joint work with Daniel Král ${ }^{1}$ and Oriol Serra ${ }^{2}$)

1: Charles University, Prague
2: DMA IV, Universitat Politècnica de Catalunya, Barcelona
Workshop on Discrete Mathematics
Technische Universität Wien,
Vienna, November 2008

Structure

(1) Introduction: The Removal Lemma for Groups

Statement
Removal Lemma for non-necessarily Abelian groups
(2) Extension to systems of equations over finite fields

Statement
Sketch of the proof
Comparative and other results
Applications

Structure

(1) Introduction: The Removal Lemma for Groups

Statement
Removal Lemma for non-necessarily Abelian groups
(2) Extension to systems of equations over finite fields Statement
Sketch of the proof
Comparative and other results
Applications

Statement: Removal Lemma for Groups

Theorem (Removal Lemma for Groups, Green 2005)
Let \mathbf{G} be a finite Abelian group of order N.
Let $m \geq 3$ be an integer, and let X_{1}, \ldots, X_{m} be subsets of G.
If there is $o\left(N^{m-1}\right)$ solutions to the equation $x_{1}+\cdots+x_{m}=0$ with $x_{i} \in X_{i}$,
then we may remove $o(N)$ elements from each X_{i} so as to leave sets X_{i}^{\prime}, such that there is
no solutions to $x_{1}^{\prime}+\cdots+x_{m}^{\prime}=0$ with $x_{i}^{\prime} \in X_{i}^{\prime}$ for all i.
Green's proof uses a Szemerédi Regularity Lemma-like for Abelian groups.

Statement: Removal Lemma for Groups

Theorem (Removal Lemma for Groups, Green 2005)
Let \mathbf{G} be a finite Abelian group of order N.
Let $m \geq 3$ be an integer, and let X_{1}, \ldots, X_{m} be subsets of G.
If there is $o\left(N^{m-1}\right)$ solutions to the equation $x_{1}+\cdots+x_{m}=0$ with $x_{i} \in X_{i}$,
then we may remove o (N) elements from each X_{i} so as to leave sets X_{i}^{\prime}, such that there is
no solutions to $x_{1}^{\prime}+\cdots+x_{m}^{\prime}=0$ with $x_{i}^{\prime} \in X_{i}^{\prime}$ for all i.
Green's proof uses a Szemerédi Regularity Lemma-like for Abelian groups.

Statement: Removal Lemma for Graphs

Lemma (Removal Lemma for Graphs, Füredi/Rödl observation on the Rusza-Szemerédi 1976)
Let H be a graph on h vertices.
Let G be a graph on n vertices.
If the number of copies of $H \subset G$ is $o\left(n^{h}\right)$
then there exists a set $E^{\prime} \subset E(G)$ with $\left|E^{\prime}\right|=o\left(n^{2}\right)$ such that $G \backslash E^{\prime}$ is H-free.

The proof uses the Szemerédi Regularity Lemma.

Statement: edge-colored Removal Lemma

Lemma (Removal Lemma for edge-colored graphs)
Let H a graph with its edges colored with c colors.
If G contains less than $\circ\left(n^{h}\right)$ copies of H (the colors of edges in the copy and H must be the same), then there exists a set E^{\prime} of at most $\circ\left(n^{2}\right)$ edges such that $G \backslash E^{\prime}$ is H -free.

Removal La. edge-colored graphs \Longrightarrow Green's result any group.

Structure

(1) Introduction: The Removal Lemma for Groups Statement
Removal Lemma for non-necessarily Abelian groups
(2) Extension to systems of equations over finite fields

Statement
Sketch of the proof
Comparative and other results
Applications

Systems of equations over finite fields

Using similar ideas:
Hypergraph Removal Lemma \Longrightarrow Removal Lemma Linear Systems
Theorem (removal lemma for systems of equations)
Let $\mathbf{G}=\mathbb{F}_{q}$ be a finite field of order $q=p^{n}, p$ prime.
Let X_{1}, \ldots, X_{m} be subsets of \mathbb{F}_{q}.
Let S be a system of k equations over m variables $A x=b$. Suppose that there are $o\left(q^{m-k}\right)$ solutions to S with $x_{i} \in X_{i}$ for all i.
Then, there exist sets $X_{1}^{\prime}, \ldots, X_{m}^{\prime}$ with $\left|X_{i} \backslash X_{i}^{\prime}\right|=o(q)$ such that there is no solution to the system S with $x_{i} \in X_{i}^{\prime}$ for all i.

Result independently proved by Shapira.

Removal Lemma for Hypergraphs, edge-colored version

Lemma (Removal Lemma for edge-colored hypergraphs, Austin \& Tao, 2008+)
Let H be a k-uniform hypergraph on h vertices, edges colored with c colors.
If a k-uniform hypergraph G, edges colored with c colors, contains less than o(n^{h}) copies of H (the colors of edges in the copy and H must be the same),
then there exists a set E^{\prime} of at most $o\left(n^{k}\right)$ hyperedges such that $G \backslash E^{\prime}$ is H-free.

Other sufficient versions can be proved using the Hypergraph Regularity Method proved by Nagel, Rödl, Schacht, Skokan and Gowers.

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

Build a convenient graph

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

Build a convenient graph

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

Build a convenient graph

$$
-g_{1}+g_{2}
$$

$$
=x_{1}
$$

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

Build a convenient graph

$$
\begin{array}{rlr}
-g_{1}+g_{2} & =x_{1} \\
-g_{2}+g_{3} & & =x_{2}
\end{array}
$$

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

Build a convenient graph

$$
\begin{array}{rlrl}
-g_{1}+g_{2} & & =x_{1} \\
-g_{2}+g_{3} & & =x_{2} \\
-g_{3}+g_{4} & & =x_{3} \\
-g_{4}+g_{5} & & =x_{4} \\
-g_{5}+g_{6} & =x_{5} \\
g_{1}-g_{6} & =x_{6}
\end{array}
$$

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

Build a convenient graph
Equivalence solutions \leftrightarrow subgraphs

$$
\begin{aligned}
-g_{1}+g_{2} & & =x_{1} \\
-g_{2}+g_{3} & & =x_{2} \\
-g_{3}+g_{4} & & =x_{3} \\
-g_{4}+g_{5} & & =x_{4} \\
& -g_{5}+g_{6} & =x_{5} \\
g_{1} & -g_{6} & =x_{6}
\end{aligned}
$$

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

Build a convenient graph
Equivalence solutions \leftrightarrow subgraphs

$$
\begin{array}{rlrl}
-g_{1}+g_{2} & & =x_{1} \\
-g_{2}+g_{3} & & =x_{2} \\
-g_{3}+g_{4} & & =x_{3} \\
-g_{4}+g_{5} & & =x_{4} \\
-g_{5}+g_{6} & =x_{5} \\
g_{1} & -g_{6} & =x_{6}
\end{array}
$$

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

Build a convenient graph
Equivalence solutions \leftrightarrow subgraphs
Apply Rem. La. edge-colored graphs

$$
\begin{array}{rlrl}
-g_{1}+g_{2} & & =x_{1} \\
-g_{2}+g_{3} & & =x_{2} \\
-g_{3}+g_{4} & & =x_{3} \\
-g_{4}+g_{5} & & =x_{4} \\
-g_{5}+g_{6} & =x_{5} \\
g_{1} & -g_{6} & =x_{6}
\end{array}
$$

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

Build a convenient graph
Equivalence solutions \leftrightarrow subgraphs
Apply Rem. La. edge-colored graphs

Use the Pidgeonhole principle

$$
\begin{array}{rlrl}
-g_{1}+g_{2} & & =x_{1} \\
-g_{2}+g_{3} & & =x_{2} \\
-g_{3}+g_{4} & & =x_{3} \\
-g_{4}+g_{5} & & =x_{4} \\
-g_{5}+g_{6} & =x_{5} \\
g_{1} & -g_{6} & =x_{6}
\end{array}
$$

Proof Removal La.: one equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0
$$

$$
\left(\begin{array}{cccccc}
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 \\
1 & 0 & 0 & 0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4} \\
g_{5} \\
g_{6}
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)
$$

Proof Removal La.: various equations

System:

$$
\left(\begin{array}{cccccc}
1 & 0 & -1 & 0 & 1 & -1 \\
0 & 1 & 2 & 1 & 0 & 2
\end{array}\right) \vec{x}=0
$$

Representation:

$$
\left(\begin{array}{cccccc}
-1 & 1 / 2 & -1 & 0 & 0 & 0 \\
0 & -1 & -2 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & 2 \\
1 & 0 & 0 & 0 & -1 & -1 \\
0 & -1 / 2 & 0 & 0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4} \\
g_{5} \\
g_{6}
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)
$$

General systems of equations: requires some adaptation.

Differences with Shapira's proof

Shapira's construction:

- $O\left(m^{2}\right)$-uniform hypergraphs.

Our proof:

- $k+1$-uniform hypergraphs.

Differences with Shapira's proof

Shapira's construction:

- $O\left(m^{2}\right)$-uniform hypergraphs.
- "Structured": some edges comes from the elements in $x_{i} \in X_{i}$ for $i>k$. The apparition of the other edges in the subgraph means that some equations are fullilled.

Our proof:

- $k+1$-uniform hypergraphs.
- All edges treated equally: the sewing are made thanks to the structure of the solution space.

Differences with Shapira's proof

Shapira's construction:

- $O\left(m^{2}\right)$-uniform hypergraphs.
- "Structured": some edges comes from the elements in $x_{i} \in X_{i}$ for $i>k$. The apparition of the other edges in the subgraph means that some equations are fullilled.
- Relies more on the matrix of the system.

Our proof:

- $k+1$-uniform hypergraphs.
- All edges treated equally: the sewing are made thanks to the structure of the solution space.
- Relies on the relations between the columns of A.

Related results

Candela:

- Same result if any $k \times k$ submatrix of A is non-singular. Similar construction.

Szegedy:

- Proved a general framework. Symmetry Preserving Removal Lemma.

Consequences: Szemerédi Theorem

Let A be a $k \times m$.
Let $A x=0$ be a system of equations with $x_{i} \in X \subset \mathbb{F}_{q}$. Denote by A_{i} a column of A.

Consequences: Szemerédi Theorem

Let A be a $k \times m$.
Let $A x=0$ be a system of equations with $x_{i} \in X \subset \mathbb{F}_{q}$. Denote by A_{i} a column of A.

Corollary
If $\sum_{i=1}^{m} A_{i}=0$ and
$|X|=\Omega(q)$,
then the number of solutions is $\Omega\left(q^{m-k}\right)$.

Consequences: Szemerédi Theorem

Let A be a $k \times m$.
Let $A x=0$ be a system of equations with $x_{i} \in X \subset \mathbb{F}_{q}$. Denote by A_{i} a column of A.

Corollary
If $\sum_{i=1}^{m} A_{i}=0$ and
$|X|=\Omega(q)$,
then the number of solutions is $\Omega\left(q^{m-k}\right)$.
Corollary (Szemerédi Thm. finite fields, Varnavides version)
Let $k \geq \operatorname{exponent}\left(\mathbb{F}_{q}\right)$.
If $|X|=\Omega(q)$
then it contains $\Omega\left(q^{2}\right)$ arithmetic progressions of length k.

Thanks for your attention!

