A Removal Lemma for linear equations

(joint work with Daniel Král'¹ and Oriol Serra ²)

1: Charles University, Prague 2: DMA IV, Universitat Politècnica de Catalunya, Barcelona

> Workshop on Discrete Mathematics Technische Universität Wien, Vienna, November 2008

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Structure

Introduction: The Removal Lemma for Groups Statement Removal Lemma for non-necessarily Abelian groups

2 Extension to systems of equations over finite fields

Statement Sketch of the proof Comparative and other results Applications

Structure

Introduction: The Removal Lemma for Groups Statement Removal Lemma for non-necessarily Abelian groups

2 Extension to systems of equations over finite fields

Statement Sketch of the proof Comparative and other results Applications Theorem (Removal Lemma for Groups, Green 2005) Let **G** be a finite Abelian group of order N. Let $m \ge 3$ be an integer, and let X_1, \ldots, X_m be subsets of G. If there is $o(N^{m-1})$ solutions to the equation $x_1 + \cdots + x_m = 0$ with $x_i \in X_i$, then we may remove o(N) elements from each X_i so as to leave sets X'_i , such that there is no solutions to $x'_1 + \cdots + x'_m = 0$ with $x'_i \in X'_i$ for all i.

Green's proof uses a Szemerédi Regularity Lemma–like for Abelian groups.

Theorem (Removal Lemma for Groups, Green 2005) Let **G** be a finite Abelian group of order N. Let $m \ge 3$ be an integer, and let X_1, \ldots, X_m be subsets of G. If there is $o(N^{m-1})$ solutions to the equation $x_1 + \cdots + x_m = 0$ with $x_i \in X_i$, then we may remove o(N) elements from each X_i so as to leave sets X'_i , such that there is no solutions to $x'_1 + \cdots + x'_m = 0$ with $x'_i \in X'_i$ for all i.

Green's proof uses a Szemerédi Regularity Lemma–like for Abelian groups.

Statement: Removal Lemma for Graphs

Lemma (Removal Lemma for Graphs, Füredi/Rödl observation on the Rusza-Szemerédi 1976)

Let H be a graph on h vertices. Let G be a graph on n vertices. If the number of copies of $H \subset G$ is $o(n^h)$ then there exists a set $E' \subset E(G)$ with $|E'| = o(n^2)$ such that $G \setminus E'$ is H-free.

The proof uses the Szemerédi Regularity Lemma.

Statement: edge-colored Removal Lemma

Lemma (Removal Lemma for edge-colored graphs)

Let H a graph with its edges colored with c colors. If G contains less than $o(n^h)$ copies of H (the colors of edges in the copy and H must be the same), then there exists a set E' of at most $o(n^2)$ edges such that $G \setminus E'$ is H-free.

Removal La. edge-colored graphs \implies Green's result any group.

Structure

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction: The Removal Lemma for Groups Statement Removal Lemma for non-necessarily Abelian group

2 Extension to systems of equations over finite fields

Statement Sketch of the proof Comparative and other results Applications

Systems of equations over finite fields

Using similar ideas:

Hypergraph Removal Lemma ⇒ Removal Lemma Linear Systems

Theorem (removal lemma for systems of equations)

Let $\mathbf{G} = \mathbb{F}_q$ be a finite field of order $q = p^n$, p prime. Let X_1, \ldots, X_m be subsets of \mathbb{F}_q . Let S be a system of k equations over m variables Ax = b. Suppose that there are $o(q^{m-k})$ solutions to S with $x_i \in X_i$ for all i.

Then, there exist sets X'_1, \ldots, X'_m with $|X_i \setminus X'_i| = o(q)$ such that there is no solution to the system S with $x_i \in X'_i$ for all i.

Result independently proved by Shapira.

Removal Lemma for Hypergraphs, edge-colored version

Lemma (Removal Lemma for edge-colored hypergraphs, Austin & Tao, 2008+)

Let H be a k-uniform hypergraph on h vertices, edges colored with c colors.

If a k-uniform hypergraph G, edges colored with c colors, contains less than $o(n^h)$ copies of H (the colors of edges in the copy and Hmust be the same),

then there exists a set E' of at most $o(n^k)$ hyperedges such that $G \setminus E'$ is H-free.

Other **sufficient versions** can be proved using the **Hypergraph Regularity Method** proved by Nagel, Rödl, Schacht, Skokan and Gowers.

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$

<□ > < @ > < E > < E > E のQ @

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$

Build a convenient graph

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$$

Build a convenient graph

$$-g_1+g_2 = x_1$$

$$-g_2 + g_3 = x_2$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$$

Build a convenient graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$

Build a convenient graph

Equivalence solutions \leftrightarrow subgraphs

$$\begin{array}{rcl} -g_1 + g_2 & = x_1 \\ & -g_2 + g_3 & = x_2 \\ & -g_3 + g_4 & = x_3 \\ & -g_4 + g_5 & = x_4 \\ & -g_5 + g_6 = x_5 \\ g_1 & -g_6 = x_6 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$

Build a convenient graph

Equivalence solutions \leftrightarrow subgraphs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$

Build a convenient graph Equivalence solutions \leftrightarrow subgraphs

Apply Rem. La. edge-colored graphs

$$-g_1+g_2 = x_1$$

$$-g_2+g_3 = x_2$$

- $-g_3+g_4 = x_3$
 - $-g_4+g_5 = x_4$

 $-g_5+g_6=x_5$

 $g_1 - g_6 = x_6$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ─ □ ─ つへで

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$

Build a convenient graph Equivalence solutions ↔ subgraphs Apply Rem. La. edge-colored graphs Use the Pidgeonhole principle

$-g_1 + g_2$		$= x_1$
$-g_{2}+g_{3}$		$= x_2$
- g ₃	$+g_4$	$= x_3$
	$-g_4 + g_5$	$= x_4$
	$-g_{5}$	$+ g_6 = x_5$
g 1		$-g_6 = x_6$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$

$$\left(\begin{array}{ccccccc} -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & 0 & 0 & -1 \end{array}\right) \cdot \left(\begin{array}{c} g_1 \\ g_2 \\ g_3 \\ g_4 \\ g_5 \\ g_6 \end{array}\right) = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{array}\right)$$

Proof Removal La.: various equations

System:

Representation:

$$\begin{pmatrix} -1 & 1/2 & -1 & 0 & 0 & 0 \\ 0 & -1 & -2 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & 2 \\ 1 & 0 & 0 & 0 & -1 & -1 \\ 0 & -1/2 & 0 & 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} g_1 \\ g_2 \\ g_3 \\ g_4 \\ g_5 \\ g_6 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix}$$

General systems of equations: requires some adaptation.

Differences with Shapira's proof

Shapira's construction:

• $O(m^2)$ -uniform hypergraphs.

Our proof:

• k + 1-uniform hypergraphs.

Differences with Shapira's proof

Shapira's construction:

- $O(m^2)$ -uniform hypergraphs.
- "Structured": some edges comes from the elements in x_i ∈ X_i for i > k. The apparition of the other edges in the subgraph means that some equations are fullilled.

Our proof:

- k + 1-uniform hypergraphs.
- All edges treated equally: the sewing are made thanks to the structure of the solution space.

Differences with Shapira's proof

Shapira's construction:

- $O(m^2)$ -uniform hypergraphs.
- "Structured": some edges comes from the elements in x_i ∈ X_i for i > k. The apparition of the other edges in the subgraph means that some equations are fullilled.
- Relies more on the matrix of the system.

Our proof:

- k + 1-uniform hypergraphs.
- All edges treated equally: the sewing are made thanks to the structure of the solution space.

• Relies on the relations between the columns of A.

Related results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Candela:

• Same result if any $k \times k$ submatrix of A is non-singular. Similar construction.

Szegedy:

• Proved a general framework. Symmetry Preserving Removal Lemma.

Consequences: Szemerédi Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let A be a $k \times m$. Let Ax = 0 be a system of equations with $x_i \in X \subset \mathbb{F}_q$. Denote by A_i a column of A.

Consequences: Szemerédi Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let A be a $k \times m$. Let Ax = 0 be a system of equations with $x_i \in X \subset \mathbb{F}_q$. Denote by A_i a column of A.

Corollary

If
$$\sum_{i=1}^{m} A_i = 0$$
 and $|X| = \Omega(q)$,
then the number of solutions is $\Omega(q^{m-k})$.

Consequences: Szemerédi Theorem

Let A be a $k \times m$. Let Ax = 0 be a system of equations with $x_i \in X \subset \mathbb{F}_q$. Denote by A_i a column of A.

Corollary

If
$$\sum_{i=1}^{m} A_i = 0$$
 and $|X| = \Omega(q)$,
then the number of solutions is $\Omega(q^{m-k})$.

Corollary (Szemerédi Thm. finite fields, Varnavides version) Let $k \ge exponent(\mathbb{F}_q)$. If $|X| = \Omega(q)$ then it contains $\Omega(q^2)$ arithmetic progressions of length k.

Thanks for your attention!

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで