Antibandwidth of Hamming graphs

Štefan Dobrev Rastislav Královič Dana Pardubská Ľubomír Török Imrich Vrťo

Workshop on Discrete Mathematics Vienna, November 19-22, 2008

Antibandwidth problem

- Consists of placing the vertices of a graph on a line in consecutive integer points in such a way that the minimum difference of adjacent vertices is maximized.
- Just another labeling problem (from graph theory point of view)

Antibandwidth problem

• Example (linear)

Cyclic antibandwidth

• Example (cyclic)

- Introduced in connection with multiprocessor scheduling problems
- Dual problem to bandwidth problem
 Bandwidth = to find vertex ordering of a graph G s.t. the length of the longest edge is minimized.

Antibandwidth = to find vertex ordering of a graph G s.t. the length of the shortest edge is maximized.

• Radio frequency assignment problem N transmitters, N frequencies.

> Graph representation: transmitters = vertices, egdes = possible interference

Goal: to assign all frequencies to transmitters in a one-to-one manner s.t. interferencing transmitters have as different frequencies as possible.

• Enemy facility location problem

Graph representation: vertices = facilities, edges = hostility

Goal: to arrange facilities in a line (cycle, mesh,...) s.t. the critical (smallest) distance between two enemies is maximized

Coding theory

Host graph: n-dimensional hypercube Guest graph: complete graph K_p

Then $ab(K_p, Q_n) \ge A$ is equivalent to an existence of a code with minimal Hamming distance greater or equal to A.

- NP-complete (Leung, Vornberger)
- Polynomially solvable for the complements of
 - Interval
 - Arborescent comparability
 - Threshold

graphs.

(Donnely, Isaak, *Hamiltonian powers in ...* graphs)

• Trivial upper bound for connected graphs:

- Also interesting for disconnected graphs.
 - Exact values for graphs consisting of copies of simple graphs.

- Known results for:
 - Paths, cycles, special trees
 - complete and complete bipartite graphs
 - 2D, 3D and n-dimensional meshes
 - tori, hypercubes
- Cyclic antibandwidth
 - -Embedding into cycle

Raspaud, Schröder, Sýkora, Török, Vrťo:

Antibandwidth and Cyclic Antibandwidth of Meshes and Hypercubes

Calamoneri, Massini, Török, Vrťo:

Antibandwidth of complete k-ary trees

Török, Vrťo:

Antibandwidth of three-dimensional meshes Antibandwidth of d-dimensional meshes

Hamming graph

- Definition
 - Cartesian product of d complete graphs

 $K_{n_k}, k=1,2,...,d$, i.e. $\Pi_{k=1}^d K_{n_k}$

Hamming graph $K_3 \times K_4$

Hamming graph

Definition

- Vertices are d-tuples

 $(i_{1,}i_{2,}...,i_{d})$, $i_{k} \in 0, 1, 2, ..., n_{k} - 1$

- Two vertices $(i_1, i_2, ..., i_d)$ and $(j_1, j_2, ..., j_d)$ are adjacent iff the two d-tuples differ in precisely one coordinate

Work in progress

• Theorem

For $d \ge 2$, $2 \le n_1 \le n_2 \le \dots \le n_d$

$$ab(\Pi_{k=1}^{d}K_{n_{k}}) = n_{1}n_{2}...n_{d-1}, if n_{d-1} \neq n_{d}$$

$$ab(\Pi_{k=1}^{d}K_{n_{k}}) = n_{1}n_{2}...n_{d-1} - 1, if n_{d-1} = n_{d}, n_{d-2} \neq n_{d-1}$$

$$n_{1}n_{2}...n_{d-1} - min(n_{1}n_{2}...n_{d-2}, n_{q+1}...n_{d-1}) \leq ab(\Pi_{k=1}^{d}K_{n_{k}}) \leq n_{1}n_{2}...n_{d-1} - 1$$

where q is minimal index such that $q \le d-2$ and $n_q = n_d$

Labelling

-Case I.
$$n_{d-1} \neq n_d$$

$$f(i_1, i_2, \dots, i_d) = ((N_{d-1} + N_{d-1}/N_1)i_1 + (N_{d-1} + N_{d-1}/N_2)i_2 + (N_{d-1} + N_{d-1}/N_3)i_3 + \dots + (N_{d-1} + N_{d-1}/N_{d-1})i_{d-1} + N_{d-1}i_d) \mod N_d$$

 $N_{j} = \left| \Pi_{k=1}^{j} K_{n_{k}} \right|$, number of vertices of the product

- Example $K_2 \times K_3 \times K_4$ $f(i_1, i_2, i_3) = (9i_1 + 7i_2 + 6i_3) \mod 24$

• Example of labelling of $K_2 \times K_3 \times K_4$

6	13	20
15	22	5

12	19	2
21	4	11

18	1	8
3	10	17

Labelling

 $\begin{aligned} &-\operatorname{Case II.} \ n_{d-1} = n_d \quad, \text{ let q be minimal s.t.} \\ &q \leq d-1 \text{ and } n_q = n_d \\ &f(i_1, i_2, \dots, i_d) = ((N_{d-1} + N_{d-1}/N_1)i_1 \\ &+ (N_{d-1} + N_{d-1}/N_2)i_2 + \dots + (N_{d-1} + N_{d-1}/N_{q-1})i_{q-1} \\ &+ (N_{d-1} - N_{d-1}/N_q)i_q + \dots \\ &+ (N_{d-1} - N_{d-1}/N_{d-1})i_{d-1} + N_{d-1}i_d) \text{ mod } N_d \end{aligned}$

- Labelling
 - Case III. $n_{d-1} = n_d$, define the alternative labelling

$$\begin{split} f\left(i_{1},i_{2},\ldots,i_{d}\right) &= ((N_{d-1}-N_{0})i_{1} + (N_{d-1}-N_{1})i_{2} + \ldots \\ &+ (N_{d-1}-N_{d-2})i_{d-1} + N_{d-1}i_{d}) \textit{mod } N_{d} \end{split}$$

- Antibandwidth and cyclic antibandwidth have the same value
- Open problem

$$n^2 - n \le ab(K_n \times K_n \times K_n) \le n^2 - 1$$

• Conjecture

$$ab(K_n \times K_n \times K_n) = n^2 - n$$

The End

Thank You