Antibandwidth of Hamming graphs

Štefan Dobrev

Rastislav Královič
Dana Pardubská
L'ubomír Török Imrich Vrt'o

Workshop on Discrete Mathematics
Vienna, November 19-22, 2008

Antibandwidth problem

- Consists of placing the vertices of a graph on a line in consecutive integer points in such a way that the minimum difference of adjacent vertices is maximized.
- Just another labeling problem (from graph theory point of view)

Antibandwidth problem

- Example (linear)

Cyclic antibandwidth

- Example (cyclic)

Motivation

- Introduced in connection with multiprocessor scheduling problems
- Dual problem to bandwidth problem

Bandwidth $=$ to find vertex ordering of a graph G s.t. the length of the longest edge is minimized.

Antibandwidth = to find vertex ordering of a graph G s.t. the length of the shortest edge is maximized.

Motivation

- Radio frequency assignment problem

N transmitters, N frequencies.

Graph representation: transmitters = vertices, egdes = possible interference

Goal: to assign all frequencies to transmitters in a one-to-one manner s.t. interferencing transmitters have as different frequencies as possible.

Motivation

- Enemy facility location problem

Graph representation: vertices = facilities, edges = hostility

Goal: to arrange facilities in a line (cycle, mesh,...) s.t. the critical (smallest) distance between two enemies is maximized

Motivation

- Coding theory

Host graph: n-dimensional hypercube
Guest graph: complete graph K_{p}
Then $a b\left(K_{p}, Q_{n}\right) \geq A$ is equivalent to an existence of a code with minimal Hamming distance greater or equal to A.

Previous results

- NP-complete (Leung, Vornberger)
- Polynomially solvable for the complements of
- Interval
- Arborescent comparability
- Threshold
graphs.
(Donnely, Isaak, Hamiltonian powers in ... graphs)

Previous results

- Trivial upper bound for connected graphs:

$$
a b(G) \leq\left\lfloor\frac{n}{2}\right\rfloor
$$

Previous results

- Also interesting for disconnected graphs.
- Exact values for graphs consisting of copies of simple graphs.

Bandwidth:

Antibandwidth:

Previous results

- Known results for:
- Paths, cycles, special trees
- complete and complete bipartite graphs
-2D, 3D and n-dimensional meshes
- tori, hypercubes
- Cyclic antibandwidth
-Embedding into cycle

Previous results

Raspaud, Schröder, Sýkora, Török, Vrt’o:
Antibandwidth and Cyclic Antibandwidth of Meshes and Hypercubes
Calamoneri, Massini, Török, Vrto:
Antibandwidth of complete k-ary trees
Török, Vrt’o:
Antibandwidth of three-dimensional meshes
Antibandwidth of d-dimensional meshes

Hamming graph

- Definition
- Cartesian product of d complete graphs

$$
K_{n_{k}}, k=1,2, \ldots, d \text {, i.e. } \Pi_{k=1}^{d} K_{n_{k}}
$$

Hamming graph ${ }_{K_{3} \times K_{4}}$

Hamming graph

- Definition
- Vertices are d-tuples

$$
\left(i_{1}, i_{2}, \ldots, i_{d}\right), i_{k} \in 0,1,2, \ldots, n_{k}-1
$$

- Two vertices $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$ and $\left(j_{1}, j_{2}, \ldots, j_{d}\right)$ are adjacent iff the two d-tuples differ in precisely one coordinate

Results

- Work in progress
- Theorem

$$
\begin{aligned}
& \text { For } d \geq 2 \\
& 2 \leq n_{1} \leq n_{2} \leq \ldots \leq n_{d} \\
& \operatorname{ab}\left(\Pi_{k=1}^{d} K_{n_{k}}\right)=n_{1} n_{2} \ldots n_{d-1}, \text { if } n_{d-1} \neq n_{d} \\
& \operatorname{ab}\left(\Pi_{k=1}^{d} K_{n_{k}}\right)=n_{1} n_{2} \ldots n_{d-1}-1, \text { if } n_{d-1}=n_{d}, n_{d-2} \neq n_{d-1} \\
& n_{1} n_{2} \ldots n_{d-1}-\min \left(n_{1} n_{2} \ldots n_{d-2}, n_{q+1} \ldots n_{d-1}\right) \leq a b\left(\Pi_{k=1}^{d} K_{n_{k}}\right) \leq n_{1} n_{2} \ldots n_{d-1}-1
\end{aligned}
$$

where q is minimal index such that $q \leq d-2$ and $n_{q}=n_{d}$

Results

- Labelling
- Case I. $n_{d-1} \neq n_{d}$

$$
\begin{aligned}
f\left(i_{1}, i_{2}, \ldots, i_{d}\right) & =\left(\left(N_{d-1}+N_{d-1} / N_{1}\right) i_{1}\right. \\
& +\left(N_{d-1}+N_{d-1} / N_{2}\right) i_{2}+\left(N_{d-1}+N_{d-1} / N_{3}\right) i_{3}+\ldots \\
& \left.+\left(N_{d-1}+N_{d-1} / N_{d-1}\right) i_{d-1}+N_{d-1} i_{d}\right) \bmod N_{d}
\end{aligned}
$$

$N_{j}=\left|\Pi_{k=1}^{j} K_{n_{k}}\right|$, number of vertices of the product

- Example $K_{2} \times K_{3} \times K_{4}$

$$
f\left(i_{1}, i_{2}, i_{3}\right)=\left(9 \mathrm{i}_{1}+7 \mathrm{i}_{2}+6 \mathrm{i}_{3}\right) \bmod 24
$$

Results

- Example of labelling of $K_{2} \times K_{3} \times K_{4}$

0	7	14
9	16	23
6	13	20
15	22	5
12	19	2
21	4	11
18	1	8
3	10	17

Results

- Labelling
- Case II. $n_{d-1}=n_{d}$, let q be minimal s.t.

$$
q \leq d-1 \text { and } n_{q}=n_{d}
$$

$$
\begin{aligned}
f\left(i_{1}, i_{2}, \ldots, i_{d}\right) & =\left(\left(N_{d-1}+N_{d-1} / N_{1}\right) i_{1}\right. \\
& +\left(N_{d-1}+N_{d-1} / N_{2}\right) i_{2}+\ldots+\left(N_{d-1}+N_{d-1} / N_{q-1}\right) i_{q-1} \\
& +\left(N_{d-1}-N_{d-1} / N_{q}\right) i_{q}+\ldots \\
& \left.+\left(N_{d-1}-N_{d-1} / N_{d-1}\right) i_{d-1}+N_{d-1} i_{d}\right) \bmod N_{d}
\end{aligned}
$$

Results

- Labelling
- Case III. $n_{d-1}=n_{d} \quad$, define the alternative labelling

$$
\begin{aligned}
f\left(i_{1}, i_{2}, \ldots, i_{d}\right) & =\left(\left(N_{d-1}-N_{0}\right) i_{1}+\left(N_{d-1}-N_{1}\right) i_{2}+\ldots\right. \\
& \left.+\left(N_{d-1}-N_{d-2}\right) i_{d-1}+N_{d-1} i_{d}\right) \bmod N_{d}
\end{aligned}
$$

Results

- Antibandwidth and cyclic antibandwidth have the same value
- Open problem

$$
n^{2}-n \leq a b\left(K_{n} \times K_{n} \times K_{n}\right) \leq n^{2}-1
$$

- Conjecture

$$
a b\left(K_{n} \times K_{n} \times K_{n}\right)=n^{2}-n
$$

The End

Thank You

