Cayley maps on tori

Ondrej Šuch
Slovak Academy of Sciences
ondrej.such@gmail.com

November 20, 2008

Tilings of the plane

(a) a regular tiling

(b) a semi-regular tiling

Objects of interest

semiregular tiling \mathcal{T} with plane $\mathbf{R}^{2} \longleftarrow$ Cayley/vertex transitive action of wallpaper group Γ
torus $\mathbf{R}^{2} / \Lambda \longleftarrow \quad$ a map \mathcal{T} / Λ with Cayley/vertex

Outline

Review of history

New results

Isomorphism problem for quotients of extensions of p3

Open problems

Group theory

- Burnside (1911)
- ...
- Hayakawa, Kuribayashi, Kuribayashi(1999)

Group theory

- Burnside (1911)
- ...
- ...
- Hayakawa, Kuribayashi, Kuribayashi(1999)
- Coxeter-Moser
- list of toric groups
- worked with regular tilings of \mathbf{R}^{2}

Graph theory

- Thomassen, Babai (1991)
- proof of Babai's conjecture
- topological description of vertex transitive graphs on torus and Klein bottle
- almost all vertex transitive graphs are vertex transitive maps
- Gross, Tucker
- an indirect description of groups
- e.g. $\left\langle x, y: x, y: x^{3}=y^{2}=[x, y]^{3}=1, \ldots\right\rangle$ where the subgroup $\langle x, y x y\rangle$ has index 2

Outline

Review of history

New results

Isomorphism problem for quotients of extensions of p3

Open problems

Actions of wallpaper groups on semiregular tilings

We obtain the complete list of pairs (Γ, \mathcal{T}) where Γ is a wallpaper group that acts on a semiregular tiling \mathcal{T}.

Lists of groups

There are 29 parametric families of toric groups

- 5 arise from 5 wallpaper groups preserving orientation (p1,p2, p3, p4, p6)
- 2 families arise from each of the remaining 12 wallpaper groups

Vertex transitive implies Cayley

Theorem If M is a vertex transitive map on torus then it admits a Cayley map structure.

Vertex transitive implies Cayley

Theorem If M is a vertex transitive map on torus then it admits a Cayley map structure.

NOT true for other surfaces (of negative Euler characteristic).

Summary

- 11 semiregular (Archimedean) tilings
- 17 wallpaper groups
- 42 different pairings of wallpaper group and semiregular tiling

Summary

- 11 semiregular (Archimedean) tilings
- 17 wallpaper groups
- 42 different pairings of wallpaper group and semiregular tiling
- 5 parametrized families of orientation preserving groups
- 22 parametrized families of orientation reversing groups

Summary

- 11 semiregular (Archimedean) tilings
- 17 wallpaper groups
- 42 different pairings of wallpaper group and semiregular tiling
- 5 parametrized families of orientation preserving groups
- 22 parametrized families of orientation reversing groups
- 17 parametrized families of Cayley maps on torus

Outline

Review of history

New results

Isomorphism problem for quotients of extensions of p3

Open problems

Subgroup structure

Finite quotients

Let X, Y be two equal length translations at angle 120 degrees.

Finite quotients

Let X, Y be two equal length translations at angle 120 degrees.

- p3 and p6 yield one two-parameter family each

$$
\Gamma /\left(X^{b} Y^{c}\right)
$$

Finite quotients

Let X, Y be two equal length translations at angle 120 degrees.

- p3 and p6 yield one two-parameter family each

$$
\Gamma /\left(X^{b} Y^{c}\right)
$$

- $\mathbf{p 3 m 1}, \mathrm{p} 31 \mathrm{~m}, \mathrm{p} 6 \mathrm{~m}$ yield two families each

$$
\begin{array}{r}
\Gamma /\left(X^{a}\right) \\
\Gamma /\left(X^{2 a} Y^{a}\right)
\end{array}
$$

Isomorphism problem

What is the intersection of families of groups:

- $\mathbf{p 3} \mathbf{(} b, c), \quad \mathbf{p 6}(b, c)$
- $\mathbf{p 3 1 m} \mathbf{m}_{1}(a), \quad \mathbf{p 3 1 m} \mathbf{m}_{3}(a)$
- p3m1 $\mathbf{1}_{1}(a), \quad \mathbf{p} 3 \boldsymbol{m} 1_{3}(a)$
- $\mathbf{p 6 m} \mathbf{m}_{1}(a), \quad \mathbf{p 6 m} \mathbf{m}_{3}(a)$

Isomorphism problem

What is the intersection of families of groups:

- $\mathbf{p 3}(b, c), \quad \mathbf{p 6}(b, c)$
- $\mathbf{p 3 1 m} \mathbf{m}_{1}(a), \quad \mathbf{p 3 1 m} \mathbf{m}_{3}(a)$
- p3m1 $\mathbf{1}_{1}(a), \quad \mathbf{p 3 m 1} \mathbf{1}_{3}(a)$
- $\mathbf{p 6} \mathbf{m}_{1}(a), \quad \mathbf{p 6 m} \mathbf{m}_{3}(a)$

Theorem The only intersections are

- $\mathbf{p 6}(2,1)=\mathbf{p 3 1 m} \mathbf{m}_{3}(1)$
- p6(3, 0) $=\mathbf{p 3 m 1} \mathbf{1}_{1}(3)$

Isomorphism problem

What is the intersection of families of groups:

- p3(b, c), p6(b,c)
- $\mathbf{p 3 1 m} \mathbf{m}_{1}(a), \quad \mathbf{p 3 1 m} \mathbf{m}_{3}(a)$
- p3m1 $\mathbf{1}_{1}(a), \quad \mathbf{p 3 m 1} \mathbf{1}_{3}(a)$
- $\mathbf{p 6 m} \mathbf{m}_{1}(a), \quad \mathbf{p 6 m} \mathbf{m}_{3}(a)$

Theorem The only intersections are

- $\mathbf{p 6}(2,1)=\mathbf{p 3 1 m} \mathbf{m}_{3}(1)$
- p6(3,0) $=\mathbf{p 3 m 1} \mathbf{1}_{1}(3)$
- $\mathbf{p 3}(b, c)=\mathbf{p 3}\left(b^{\prime}, c^{\prime}\right), \mathbf{p} 6(b, c)=\mathbf{p 6}\left(b^{\prime}, c^{\prime}\right)$ when the ideals $(b+c \omega)$ and $\left(b^{\prime}+c^{\prime} \omega\right)$ are equal (in $\mathbf{Z}[\omega]$)

Isomorphism problem

What is the intersection of families of groups:

- $\mathbf{p 3} \mathbf{(} b, c), \quad \mathbf{p 6}(b, c)$
- $\mathbf{p 3 1 m}_{1}(a), \quad \mathbf{p 3 1 m} \mathbf{m}_{3}(a)$
- p3m1 $\mathbf{1}_{1}(a), \quad \mathbf{p 3 m 1} \mathbf{1}_{3}(a)$
- $\mathbf{p 6 m} \mathbf{m}_{1}(a), \quad \mathbf{p 6 m} \mathbf{m}_{3}(a)$

Theorem The only intersections are

- $\mathbf{p 6}(2,1)=\mathbf{p 3 1} \mathbf{m}_{3}(1)$
- p6(3, 0) $=\mathbf{p 3 m 1} \mathbf{1}_{1}(3)$
- $\mathbf{p 3}(b, c)=\mathbf{p 3}\left(b^{\prime}, c^{\prime}\right), \mathbf{p} 6(b, c)=\mathbf{p} \mathbf{(}\left(b^{\prime}, c^{\prime}\right)$ when the ideals $(b+c \omega)$ and $\left(b^{\prime}+c^{\prime} \omega\right)$ are equal (in $\mathbf{Z}[\omega]$)
- $\mathbf{p 3 m 1} \mathbf{1}_{1}(a)=\mathbf{p 3 1} \mathbf{m}_{1}(a)$ for a not divisible by 3.

Actions on hexagonal tiling

(e) action of $\mathbf{p 3 m} \mathbf{1}$

(f) action of p31m

Actions on truncated hexagonal tiling

(g) action of p3m1

(h) action of p31m

Actions on small rhombitrihexagonal tiling

(i) action of $\mathbf{p 3 m} \mathbf{1}$

(j) action of p31m

Outline

Review of history

New results

Isomorphism problem for quotients of extensions of p3

Open problems

Group isomorphisms

Open question to find intersection of various families:

$$
\begin{aligned}
\mathbf{p 2}(2,2 k, 2) & =\mathbf{p m g}_{1}(k, 2), \\
\mathbf{p g g}_{1}(2 k+1,2 l) & =\mathbf{p m g}_{1}(2 l, 2 k+1), \\
\mathbf{p 3 m 1}_{1}(a) & =\mathbf{p 3 1 m}_{1}(a), \quad \text { if } 3 \text { 犺 }
\end{aligned}
$$

Graphs vs. maps

Find all vertex transitive graphs on torus and Klein bottle that are not vertex transitive maps. Do they admit Cayley structure?

