Perfect matchings in cubic graphs

Martin Škoviera

Comenius University, Bratislava

based on a joint work with Edita Máčajová
Workshop on Discrete Mathematics
Technische Universität Wien
November 20, 2008

Contents

- Part I: General aspects, conjectures on perfect matchings in cubic graphs
- Part II: Three perfect matchings with empty intersection

Perfect matchings in cubic graphs

Theorem (Petersen, 1891)
Every bridgeless cubic graphs contains a perfect matching.

Perfect matchings in cubic graphs

Theorem (Petersen, 1891)
Every bridgeless cubic graphs contains a perfect matching.

- A cubic graphs has two disjoint perfect matchings \Leftrightarrow 3-edge-colourable.

Perfect matchings in cubic graphs

Theorem (Petersen, 1891)
Every bridgeless cubic graphs contains a perfect matching.

- A cubic graphs has two disjoint perfect matchings \Leftrightarrow 3-edge-colourable.
- Every two perfect matchings in a non-3-edge-colourable graph have an edge in common.

Perfect matchings in cubic graphs - conjectures

Conjecture (Fan \& Raspaud, 1994)
F\&RC
Every bridgeless cubic graphs contains three perfect matchings with no edge in common.

Perfect matchings in cubic graphs - conjectures

Every bridgeless cubic graphs contains three perfect matchings with no edge in common.

Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings which together cover each edge exactly twice.

Six perfect matchings in the flower snark /5

Six perfect matchings in the flower snark /5

Six perfect matchings in the flower snark /5

Six perfect matchings in the flower snark /5

Six perfect matchings in the flower snark /5

Six perfect matchings in the flower snark /5

Six perfect matchings in the flower snark $/ 5$

Evidence for Fulkerson's conjecture

FC has been verified only for a few explicitly defined families of graphs

Evidence for Fulkerson's conjecture

FC has been verified only for a few explicitly defined families of graphs
Mathematical programming approach [Seymour, 1977]:

Evidence for Fulkerson's conjecture

FC has been verified only for a few explicitly defined families of graphs
Mathematical programming approach [Seymour, 1977]:

- Regard a perfect matching in G as a certain function $\phi: E(G) \rightarrow\{0,1\}$

Evidence for Fulkerson's conjecture

FC has been verified only for a few explicitly defined families of graphs
Mathematical programming approach [Seymour, 1977]:

- Regard a perfect matching in G as a certain function $\phi: E(G) \rightarrow\{0,1\}$
- FC \Leftrightarrow The constant function 2 can be expressed as a sum of several perfect-matching functions.

Evidence for Fulkerson's conjecture

FC has been verified only for a few explicitly defined families of graphs
Mathematical programming approach [Seymour, 1977]:

- Regard a perfect matching in G as a certain function $\phi: E(G) \rightarrow\{0,1\}$
- FC \Leftrightarrow The constant function 2 can be expressed as a sum of several perfect-matching functions.

Theorem (Seymour, 1977)
If subtraction is allowed, then the constant function $\mathbf{2}$ can be so obtained.

FC and the Cremona-Richmond configuration 153

Related conjectures

Conjecture (Weak Version of Fulkerson's Conjecture)

There exists a constant k such that every bridgeless cubic graphs contains a family of $3 k$ perfect matchings which together cover each edge exactly k-times.

Related conjectures

Conjecture (Weak Version of Fulkerson's Conjecture)

There exists a constant k such that every bridgeless cubic graphs contains a family of $3 k$ perfect matchings which together cover each edge exactly k-times.

Theorem (Edmonds 1965)

For every bridgeless cubic graph there exists a constant k and $3 k$ perfect matchings such that each edge is in edge is in k of them.

Related conjectures

Conjecture (Weak Version of Fulkerson's Conjecture)

There exists a constant k such that every bridgeless cubic graphs contains a family of $3 k$ perfect matchings which together cover each edge exactly k-times.

Theorem (Edmonds 1965)

For every bridgeless cubic graph there exists a constant k and $3 k$ perfect matchings such that each edge is in edge is in k of them.

- $\exists k \forall G \exists 3 k$ PM s.t. every edge is in k PM ... ??? OPEN
- $\forall G \exists k \exists 3 k$ PM s.t. every edge is in k PM ... \checkmark YES

Covering all edges by perfect matchings

Covering all edges by perfect matchings

Conjecture (Berge)

Every bridgeless cubic graphs contains a family of five perfect matchings that together all the edges.

Covering all edges by perfect matchings

Conjecture (Berge)

Every bridgeless cubic graphs contains a family of five perfect matchings that together all the edges.

Berge's conjecture remains open even if 5 is replaced by any fixed k.

Covering as many edges as possible

Question. How many edges of a bridgeless cubic graph can be covered by k perfect matchings?

Covering as many edges as possible

Question. How many edges of a bridgeless cubic graph can be covered by k perfect matchings?
$m_{k}(G)$ - maximum number of edges in a cubic graph G covered by k perfect matchings

Covering as many edges as possible

Question. How many edges of a bridgeless cubic graph can be covered by k perfect matchings?
$m_{k}(G)$ - maximum number of edges in a cubic graph G covered by k perfect matchings

- $m_{1}(G)=\frac{1}{3}|E(G)|$

Covering as many edges as possible

Question. How many edges of a bridgeless cubic graph can be covered by k perfect matchings?
$m_{k}(G)$ - maximum number of edges in a cubic graph G covered by k perfect matchings

- $m_{1}(G)=\frac{1}{3}|E(G)|$
- $m_{2}(G) \geq \frac{3}{5}|E(G)| \quad$ [Kaiser, Král', Norine, 2005]

Covering as many edges as possible

Question. How many edges of a bridgeless cubic graph can be covered by k perfect matchings?
$m_{k}(G)$ - maximum number of edges in a cubic graph G covered by k perfect matchings

- $m_{1}(G)=\frac{1}{3}|E(G)|$
- $m_{2}(G) \geq \frac{3}{5}|E(G)| \quad$ [Kaiser, Král', Norine, 2005]
- $m_{3}(G) \geq \frac{27}{35}|E(G)| \quad$ [Kaiser, Král', Norine, 2005]

Covering as many edges as possible

Question. How many edges of a bridgeless cubic graph can be covered by k perfect matchings?
$m_{k}(G)$ - maximum number of edges in a cubic graph G covered by k perfect matchings

- $m_{1}(G)=\frac{1}{3}|E(G)|$
- $m_{2}(G) \geq \frac{3}{5}|E(G)| \quad$ [Kaiser, Král', Norine, 2005]
- $m_{3}(G) \geq \frac{27}{35}|E(G)| \quad$ [Kaiser, Král', Norine, 2005]
- Berge's Conjecture $\Rightarrow m_{5}(G)=1$

k-Perfect Matchings Conjectures

k-Perfect Matchings Conjectures

Fulkerson Conjecture (Berge, Fulkerson, 1971)
Every bridgeless cubic graphs contains a family of six perfect matchings which together cover every edge exactly twice.

k-Perfect Matchings Conjectures

Fulkerson Conjecture (Berge, Fulkerson, 1971)
Every bridgeless cubic graphs contains a family of six perfect matchings such that the intersection of any three of them is empty.

k-Perfect Matchings Conjectures k-PMC

Fulkerson Conjecture (Berge, Fulkerson, 1971)
Every bridgeless cubic graphs contains a family of six perfect matchings such that the intersection of any three of them is empty.

Conjecture (Fan \& Raspaud, 1994)
F\&RC
Every bridgeless cubic graphs contains three perfect matchings with empty intersection.

k-Perfect Matchings Conjectures k-PMC

Fulkerson Conjecture (Berge, Fulkerson, 1971)
Every bridgeless cubic graphs contains a family of six perfect matchings such that the intersection of any three of them is empty.

Conjecture (Fan \& Raspaud, 1994)
F\&RC
Every bridgeless cubic graphs contains three perfect matchings with empty intersection.
k-Perfect Matching Conjecture ($k=3,4,5,6$) k-PMC
Every bridgeless cubic graph contains a family of k perfect matchings such that the intersection of any three of them is empty.

k-Perfect Matchings Conjectures k-PMC

Fulkerson Conjecture (Berge, Fulkerson, 1971)
Every bridgeless cubic graphs contains a family of six perfect matchings such that the intersection of any three of them is empty.

Conjecture (Fan \& Raspaud, 1994)
3-PMC
Every bridgeless cubic graphs contains three perfect matchings with empty intersection.
k-Perfect Matching Conjecture ($k=3,4,5,6$) k-PMC
Every bridgeless cubic graph contains a family of k perfect matchings such that the intersection of any three of them is empty.

k-Perfect Matchings Conjectures k-PMC

Fulkerson Conjecture (Berge, Fulkerson, 1971)
Every bridgeless cubic graphs contains a family of six perfect matchings such that the intersection of any three of them is empty.

Conjecture (Fan \& Raspaud, 1994)
3-PMC
Every bridgeless cubic graphs contains three perfect matchings with empty intersection.
k-Perfect Matching Conjecture ($k=3,4,5,6$) k-PMC
Every bridgeless cubic graph contains a family of k perfect matchings such that the intersection of any three of them is empty.
FC = 6-PMC

k-Perfect Matchings Conjectures k-PMC

Fulkerson Conjecture (Berge, Fulkerson, 1971)
Every bridgeless cubic graphs contains a family of six perfect matchings such that the intersection of any three of them is empty.

Conjecture (Fan \& Raspaud, 1994)
3-PMC
Every bridgeless cubic graphs contains three perfect matchings with empty intersection.
k-Perfect Matching Conjecture ($k=3,4,5,6$) k-PMC
Every bridgeless cubic graph contains a family of k perfect matchings such that the intersection of any three of them is empty.

$$
\mathrm{FC}=6-\mathrm{PMC} \Leftrightarrow 5-\mathrm{PMC}
$$

k-Perfect Matchings Conjectures k-PMC

Fulkerson Conjecture (Berge, Fulkerson, 1971)
Every bridgeless cubic graphs contains a family of six perfect matchings such that the intersection of any three of them is empty.

Conjecture (Fan \& Raspaud, 1994)
3-PMC
Every bridgeless cubic graphs contains three perfect matchings with empty intersection.
k-Perfect Matching Conjecture ($k=3,4,5,6$) k-PMC
Every bridgeless cubic graph contains a family of k perfect matchings such that the intersection of any three of them is empty.

$$
\mathrm{FC}=6-\mathrm{PMC} \Leftrightarrow 5-\mathrm{PMC} \Rightarrow 4-\mathrm{PMC}
$$

k-Perfect Matchings Conjectures k-PMC

Fulkerson Conjecture (Berge, Fulkerson, 1971)
Every bridgeless cubic graphs contains a family of six perfect matchings such that the intersection of any three of them is empty.

Conjecture (Fan \& Raspaud, 1994)
3-PMC
Every bridgeless cubic graphs contains three perfect matchings with empty intersection.
k-Perfect Matching Conjecture ($k=3,4,5,6$)
Every bridgeless cubic graph contains a family of k perfect matchings such that the intersection of any three of them is empty.

$$
\mathrm{FC}=6-\mathrm{PMC} \Leftrightarrow 5-\mathrm{PMC} \Rightarrow 4-\mathrm{PMC} \Rightarrow 3-\mathrm{PMC}=\mathrm{F} \& \mathrm{RC}
$$

Fano colourings of cubic graphs

Fano colourings of cubic graphs

Fano colouring - proper edge-colouring of a cubic graph

- colours - points of the Fano plane
- around each vertex the colours form a line

Fano colourings of cubic graphs

Fano colouring - proper edge-colouring of a cubic graph

- colours - points of the Fano plane
- around each vertex the colours form a line
F_{i}-colouring - colouring using at most i lines of the Fano plane

F_{5}-colouring of the Petersen graph

F_{i}-colourings

Theorem (Máčajová \& S., 2005)

Every bridgeless cubic graph admits a F_{6}-colouring.

F_{i}-colourings

Theorem (Máčajová \& S., 2005)
Every bridgeless cubic graph admits a F_{6}-colouring.

```
4-Line Conjecture (Máčajová \& S., 2005)

Every bridgeless cubic graph admits an \(F_{4}\)-colouring.
\(F_{i}\)-colourings

Theorem (Máčajová \& S., 2005)
Every bridgeless cubic graph admits a \(F_{6}\)-colouring.

\section*{4-Line Conjecture (Máčajová \& S., 2005)}

Every bridgeless cubic graph admits an \(F_{4}\)-colouring.

Theorem (Máčajová \& S., 2005)
F\&RC=3-PMC is equivalent to the 4-Line Conjecture.

\section*{\(F_{5}\)-colourings}
\(\mathrm{FC}=6-\mathrm{PMC} \Leftrightarrow 5-\mathrm{PMC} \Rightarrow 4-P M C \Rightarrow 3-P M C=F \& R C\) \(\mathrm{F} \& \mathrm{RC} \Leftrightarrow \mathrm{F}_{4} \mathrm{C} \Rightarrow \mathrm{F}_{5} \mathrm{C} \Rightarrow \mathrm{F}_{6} \mathrm{C} \equiv\) TRUE

\section*{\(F_{5}\)-colourings}
\(\mathrm{FC}=6-\mathrm{PMC} \Leftrightarrow 5-\mathrm{PMC} \Rightarrow 4-P M C \Rightarrow 3-P M C=F \& R C\)
\[
\mathrm{F} \& \mathrm{RC} \Leftrightarrow F_{4} \mathrm{C} \Rightarrow F_{5} \mathrm{C} \Rightarrow F_{6} \mathrm{C} \equiv \mathrm{TRUE}
\]

Theorem (Kaiser, Raspaud, 2007)
Every bridgeless cubic graph of oddness \(\leq 2\) admits an \(F_{5}\)-colouring.

\section*{F4-colourings: Theorem}

Theorem (Máčajová \& S., 2008+)
Every bridgeless cubic graph of oddness \(\leq 2\) admits an \(F_{4}\)-colouring.
Equivalently:
Every bridgeless cubic graph of oddness \(\leq 2\) has three perfect matchings with no edge in common.

\section*{Proof of Theorem}
I. \(G\) has oddness \(0 \ldots \checkmark\)

\section*{Proof of Theorem}
I. \(G\) has oddness \(0 \ldots \checkmark\)
II. Let \(G\) have oddness 2

\section*{Proof of Theorem}
I. \(G\) has oddness \(0 \ldots \checkmark\)
II. Let \(G\) have oddness 2
\(\triangleright\) C ... 2-factor with two odd circuits

\section*{Proof of Theorem}
I. \(G\) has oddness \(0 \ldots \checkmark\)
II. Let \(G\) have oddness 2
\(\triangleright\) C ... 2-factor with two odd circuits
\(\triangleright F=G-C\) perfect matching of \(G\)

\section*{Proof of Theorem}
I. \(G\) has oddness \(0 \ldots \checkmark\)
II. Let \(G\) have oddness 2
\(\triangleright\) C ... 2-factor with two odd circuits
\(\triangleright F=G-C\) perfect matching of \(G\)
\(\triangleright\) M ... perfect matching in the set of even circuits of \(C\)

\section*{Proof of Theorem}
I. \(G\) has oddness \(0 \ldots \checkmark\)
II. Let \(G\) have oddness 2
\(\triangleright\) C ... 2-factor with two odd circuits
\(\triangleright F=G-C\) perfect matching of \(G\)
\(\triangleright\) M ... perfect matching in the set of even circuits of \(C\)

Call the triple \(\mathcal{M}=(G, F, M)\) a mesh

\section*{Proof: meshes}

\section*{Proof: meshes}


\section*{Proof: meshes}


\section*{Proof: meshes}
mesh \(\cong\) partial 3-edge-colouring - non-coloured edges are red


\section*{Proof: chains}

\section*{Proof: chains}

Let \(\mathcal{M}=(G, F, M)\) be a mesh on \(G\).

\section*{Proof: chains}

Let \(\mathcal{M}=(G, F, M)\) be a mesh on \(G\).
- chain in \(\mathcal{M} \ldots M\)-alternating path or circuit

\section*{Proof: chains}

Let \(\mathcal{M}=(G, F, M)\) be a mesh on \(G\).
- chain in \(\mathcal{M} \ldots M\)-alternating path or circuit
- transversal chain ... connects \(\mathrm{O}_{1}\) to \(\mathrm{O}_{2}\)

\section*{Proof: chains}

Let \(\mathcal{M}=(G, F, M)\) be a mesh on \(G\).
- chain in \(\mathcal{M} \ldots\)-. Malternating path or circuit
- transversal chain ... connects \(O_{1}\) to \(O_{2}\) (otherwise local)

\section*{Proof: chains}

Let \(\mathcal{M}=(G, F, M)\) be a mesh on \(G\).
- chain in \(\mathcal{M} \ldots\)-. M-alternating path or circuit
- transversal chain ... connects \(O_{1}\) to \(O_{2}\) (otherwise local)
- independent chains ... do not share an edge of \(F\)

\section*{Proof: chains}

Let \(\mathcal{M}=(G, F, M)\) be a mesh on \(G\).
- chain in \(\mathcal{M}\)... M-alternating path or circuit
- transversal chain ... connects \(\mathrm{O}_{1}\) to \(\mathrm{O}_{2}\) (otherwise local)
- independent chains ... do not share an edge of \(F\)

Observations: \((F \cup M)\)-chains

\section*{Proof: chains}

Let \(\mathcal{M}=(G, F, M)\) be a mesh on \(G\).
- chain in \(\mathcal{M} \ldots M\)-alternating path or circuit
- transversal chain ... connects \(O_{1}\) to \(O_{2}\) (otherwise local)
- independent chains ... do not share an edge of \(F\)

Observations: \((F \cup M)\)-chains
- Every connected component of \(F \cup M\) is a chain;

\section*{Proof: chains}

Let \(\mathcal{M}=(G, F, M)\) be a mesh on \(G\).
- chain in \(\mathcal{M} \ldots M\)-alternating path or circuit
- transversal chain ... connects \(O_{1}\) to \(O_{2}\) (otherwise local)
- independent chains ... do not share an edge of \(F\)

Observations: \((F \cup M)\)-chains
- Every connected component of \(F \cup M\) is a chain;
- by parity, at least one is transversal;

\section*{Proof: chains}

Let \(\mathcal{M}=(G, F, M)\) be a mesh on \(G\).
- chain in \(\mathcal{M} \ldots M\)-alternating path or circuit
- transversal chain ... connects \(O_{1}\) to \(O_{2}\) (otherwise local)
- independent chains ... do not share an edge of \(F\)

Observations: \((F \cup M)\)-chains
- Every connected component of \(F \cup M\) is a chain;
- by parity, at least one is transversal;
- different components are independent chains.

\section*{Sufficient condition}

\section*{Sufficient condition}

\section*{Proposition}

If a mesh \(\mathcal{M}=(G, F, M)\) has two independent transversal chains, then \(G\) contains two perfect matchings \(F_{1}\) and \(F_{2}\) such that \(F_{1} \cap F_{2} \cap F=\emptyset\).

\section*{Sufficient condition}

\section*{Proposition}

If a mesh \(\mathcal{M}=(G, F, M)\) has two independent transversal chains, then \(G\) contains two perfect matchings \(F_{1}\) and \(F_{2}\) such that \(F_{1} \cap F_{2} \cap F=\emptyset\).

Call a mesh good if it contains two independent transversal chains. Aim: To prove that every mesh is good.

\section*{Sufficient condition}

\section*{Proposition}

If a mesh \(\mathcal{M}=(G, F, M)\) has two independent transversal chains, then \(G\) contains two perfect matchings \(F_{1}\) and \(F_{2}\) such that \(F_{1} \cap F_{2} \cap F=\emptyset\).

Call a mesh good if it contains two independent transversal chains. Aim: To prove that every mesh is good.


\section*{Sufficient condition}

\section*{Proposition}

If a mesh \(\mathcal{M}=(G, F, M)\) has two independent transversal chains, then \(G\) contains two perfect matchings \(F_{1}\) and \(F_{2}\) such that \(F_{1} \cap F_{2} \cap F=\emptyset\).

Call a mesh good if it contains two independent transversal chains. Aim: To prove that every mesh is good.


\section*{Necessary condition: I. Reduction}

Necessary condition: dissolving a circuit of \(C=G-F\)

—_ \(F\)-edges
— \(M\)-edges
-.-----....--.-...... \(\quad(Z-M)\)-edges

Necessary condition: dissolving a circuit of \(C=G-F\)


\section*{Reduction: dissolving a circuit of \(C=G-F\)}

We obtain a transformation
\[
G \rightarrow G^{\prime} \quad F \rightarrow F^{\prime} \quad M \rightarrow M^{\prime}
\]

\section*{Reduction: dissolving a circuit of \(C=G-F\)}

We obtain a transformation
\[
G \rightarrow G^{\prime} \quad F \rightarrow F^{\prime} \quad M \rightarrow M^{\prime}
\]
\(\mathcal{M}=(G, F, M) \rightarrow \mathcal{M}^{\prime}=\left(G^{\prime}, F^{\prime}, M^{\prime}\right)\)

\section*{Reduction: dissolving a circuit of \(C=G-F\)}

We obtain a transformation
\(G \rightarrow G^{\prime} \quad F \rightarrow F^{\prime} \quad M \rightarrow M^{\prime}\)
\(\mathcal{M}=(G, F, M) \rightarrow \mathcal{M}^{\prime}=\left(G^{\prime}, F^{\prime}, M^{\prime}\right)\)
Definition. The resulting mesh \(\mathcal{M}^{\prime}\) is said to be a reduction of \(\mathcal{M}\).

\section*{Reduction: dissolving a circuit of \(C=G-F\)}

We obtain a transformation
\(G \rightarrow G^{\prime} \quad F \rightarrow F^{\prime} \quad M \rightarrow M^{\prime}\)
\(\mathcal{M}=(G, F, M) \rightarrow \mathcal{M}^{\prime}=\left(G^{\prime}, F^{\prime}, M^{\prime}\right)\)
Definition. The resulting mesh \(\mathcal{M}^{\prime}\) is said to be a reduction of \(\mathcal{M}\).

Claim
If a reduction \(\mathcal{M}^{\prime}\) of \(\mathcal{M}\) is good, then \(\mathcal{M}\) is good.

\section*{Reduction: dissolving a circuit of \(C=G-F\)}

We obtain a transformation
\(G \rightarrow G^{\prime} \quad F \rightarrow F^{\prime} \quad M \rightarrow M^{\prime}\)
\(\mathcal{M}=(G, F, M) \rightarrow \mathcal{M}^{\prime}=\left(G^{\prime}, F^{\prime}, M^{\prime}\right)\)
Definition. The resulting mesh \(\mathcal{M}^{\prime}\) is said to be a reduction of \(\mathcal{M}\).

Claim
If a reduction \(\mathcal{M}^{\prime}\) of \(\mathcal{M}\) is good, then \(\mathcal{M}\) is good.

\section*{Corollary}

It is enough to deal with primitive meshes.

\section*{Primitive meshes}


\section*{Primitive meshes}


\section*{Primitive meshes}


\section*{Primitive meshes}


\section*{Primitive meshes: linear ordering of circuits}

\section*{Proposition}

Let \(\mathcal{M}\) be a primitive mesh. Then there exists a unique linear ordering " \(\preceq\) " on the set of circuits of \(C=G-F\) such that

\section*{Primitive meshes: linear ordering of circuits}

\section*{Proposition}

Let \(\mathcal{M}\) be a primitive mesh. Then there exists a unique linear ordering
" \(\preceq\) " on the set of circuits of \(C=G-F\) such that
(1) \(O_{1}\) and \(O_{2}\) are the smallest and the largest element, respectively;

\section*{Primitive meshes: linear ordering of circuits}

\section*{Proposition}

Let \(\mathcal{M}\) be a primitive mesh. Then there exists a unique linear ordering " \(\preceq\) " on the set of circuits of \(C=G-F\) such that
(1) \(O_{1}\) and \(O_{2}\) are the smallest and the largest element, respectively;
(2) each circuit \(Z \prec O_{2}\) is joined to its successor by some F-edge;

\section*{Primitive meshes: linear ordering of circuits}

\section*{Proposition}

Let \(\mathcal{M}\) be a primitive mesh. Then there exists a unique linear ordering
" \(\preceq\) " on the set of circuits of \(C=G-F\) such that
(1) \(O_{1}\) and \(O_{2}\) are the smallest and the largest element, respectively;
(2) each circuit \(Z \prec O_{2}\) is joined to its successor by some F-edge; and
(3) each circuit of \(C\) is avoided by at most one F-edge.

\section*{Primitive meshes: linear ordering of circuits}

\section*{Proposition}

Let \(\mathcal{M}\) be a primitive mesh. Then there exists a unique linear ordering
" \(\preceq\) " on the set of circuits of \(C=G-F\) such that
(1) \(O_{1}\) and \(O_{2}\) are the smallest and the largest element, respectively;
(2) each circuit \(Z \prec O_{2}\) is joined to its successor by some F-edge; and
(3) each circuit of \(C\) is avoided by at most one F-edge.

Furthermore, this ordering is independent of the choice of \(M\).

\section*{\((F \cup M)\)-chains in primitive meshes}

\section*{Proposition}
(1) Every transversal \((F \cup M)\)-chain is almost increasing - it may return to the predecessor circuit, but not further back.

\section*{\((F \cup M)\)-chains in primitive meshes}

\section*{Proposition}
(1) Every transversal \((F \cup M)\)-chain is almost increasing - it may return to the predecessor circuit, but not further back.

_- transversal chain

\section*{\((F \cup M)\)-chains in primitive meshes}

\section*{Proposition}
(1) Every transversal \((F \cup M)\)-chain is almost increasing - it may return to the predecessor circuit, but not further back.


\section*{\((F \cup M)\)-chains in primitive meshes}

\section*{Proposition}
(1) Every transversal \((F \cup M)\)-chain is almost increasing - it may return to the predecessor circuit, but not further back.

(2) Every local \((F \cup M)\)-chain intersects only two consecutive circuits.

Necessary condition: II. Construction of chains - transfer

Necessary condition: II. Construction of chains - transfer

—— M-edges
\(\longrightarrow\) chain \(P\)

Necessary condition: II. Construction of chains - transfer

__ M-edges
_chain \(P\)
—— \(\Omega(e, P ; Z)\)

\section*{Multiple transfers: tubes}
\[
Y=U_{0} \quad U_{1} \quad U_{2}
\]

\[
U_{n}=Z
\]

\(\mathbf{K}=\left(K_{U} ; Y \preceq U \preceq Z\right) \quad f=\omega(e, \mathbf{K})\)
\(\longrightarrow \Omega(e, \mathbf{K})\)

\section*{Smoothing}


\section*{Smoothing: Case 1}


\section*{Smoothing: Case 1}


\section*{Smoothing: Case 2}


\section*{Smoothing: Case 2}


\section*{Smoothing: Case 2}


\section*{Final construction: transfer graph}


\section*{Final construction: transfer graph}

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
black edge \\
white edge \\
black or white edge
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{Final construction: transfer graph}

\section*{Proposition}

The transfer graph contains two internally disjoint increasing \(O_{1}-O_{1}\)-paths which together use at most one white edge from each class.

These two paths give rise to two independent transversal chains.

\section*{Final construction: transfer graph}

\section*{Proposition}

The transfer graph contains two internally disjoint increasing \(\mathrm{O}_{1}-\mathrm{O}_{1}\)-paths which together use at most one white edge from each class.
These two paths give rise to two independent transversal chains.

\section*{Corollary}

Every mesh on a bridgeless cubic graph is good.

\section*{Open problems}
(1) Higher oddness?

\section*{Open problems}
(1) Higher oddness?
(2) Other classes of cubic graphs?

\section*{Open problems}
(1) Higher oddness?
(2) Other classes of cubic graphs?
(3) Fulkerson Conjecture for oddness two?

\section*{Thank you!}```

