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Introduction

Introduction

Regular maps are generalizations of Platonic solids (viewed as tessellations
of the sphere) to surfaces of higher genus.

Their formal study was initiated by Brahana in the 1920s and continued by
Coxeter and others decades later.

Regular maps on the sphere and the torus and other orientable surfaces of
small genus are now quite well understood. However, until recently, the
situation for surfaces of higher genus has been something of a mystery.

In particular, some long-standing questions have remained open, about the
genera of orientable surfaces carrying a regular map having no multiple
edges, or a regular map that is chiral (admitting no reflectional symmetry).

We will survey the recent substantial progress towards classification of
regular maps on a given surface.
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J. Širáň () Classification of regular maps on a given surface 2 / 22



Introduction

Introduction

Regular maps are generalizations of Platonic solids (viewed as tessellations
of the sphere) to surfaces of higher genus.

Their formal study was initiated by Brahana in the 1920s and continued by
Coxeter and others decades later.

Regular maps on the sphere and the torus and other orientable surfaces of
small genus are now quite well understood. However, until recently, the
situation for surfaces of higher genus has been something of a mystery.

In particular, some long-standing questions have remained open, about the
genera of orientable surfaces carrying a regular map having no multiple
edges, or a regular map that is chiral (admitting no reflectional symmetry).

We will survey the recent substantial progress towards classification of
regular maps on a given surface.
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Introduction

Surfaces:

orientable, genus g ≥ 0; non-orientable, genus h ≥ 1.

Map: Cellular embedding of a graph on a surface.

Map of type {m, k}: Vertex valence k, face length m.

Map automorphisms: viewed as permutations of darts, that is,
edges with direction.

A map M of type {m, k} is regular if and only if there is a k-fold rotation
r about a vertex and an m-fold rotation s about the centre of an incident
face, with the product rs being an involutory rotation around the midpoint
of an edge incident with the vertex and the face.

A regular map M is reflexible if it contains a non-trivial automorphism
fixing a dart.

Regular maps on non-orientable surfaces are automatically reflexible.

A regular map that is not reflexible is called chiral.
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J. Širáň () Classification of regular maps on a given surface 3 / 22



Introduction

Surfaces: orientable, genus g ≥ 0; non-orientable, genus h ≥ 1.

Map: Cellular embedding of a graph on a surface.

Map of type {m, k}: Vertex valence k, face length m.

Map automorphisms: viewed as permutations of darts, that is,
edges with direction.

A map M of type {m, k} is regular if and only if there is a k-fold rotation
r about a vertex and an m-fold rotation s about the centre of an incident
face, with the product rs being an involutory rotation around the midpoint
of an edge incident with the vertex and the face.

A regular map M is reflexible if it contains a non-trivial automorphism
fixing a dart.

Regular maps on non-orientable surfaces are automatically reflexible.

A regular map that is not reflexible is called chiral.
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J. Širáň () Classification of regular maps on a given surface 3 / 22



Introduction

Surfaces: orientable, genus g ≥ 0; non-orientable, genus h ≥ 1.

Map: Cellular embedding of a graph on a surface.

Map of type {m, k}: Vertex valence k, face length m.

Map automorphisms: viewed as permutations of darts, that is,
edges with direction.

A map M of type {m, k} is regular if and only if there is a k-fold rotation
r about a vertex and an m-fold rotation s about the centre of an incident
face, with the product rs being an involutory rotation around the midpoint
of an edge incident with the vertex and the face.

A regular map M is reflexible if it contains a non-trivial automorphism
fixing a dart.

Regular maps on non-orientable surfaces are automatically reflexible.

A regular map that is not reflexible is called chiral.
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Introduction

Example of a non-spherical regular map

The Petersen Graph on the projective plane, with its dual – K6:

Map elements:
faces, vertices,
edges, flags

Automorphisms:
• 10 visible
• 60 in total
regular on flags
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J. Širáň () Classification of regular maps on a given surface 4 / 22



Introduction

Example of a non-spherical regular map

The Petersen Graph on the projective plane, with its dual – K6:

Map elements:
faces, vertices,
edges, flags

Automorphisms:

• 10 visible
• 60 in total
regular on flags
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Introduction

M - a regular map on an orientable surface;

rotations r and s

By connectedness, r and s generate G = Auto(M), and

Auto(M) = 〈r , s| rk = sm = (rs)2 = . . . = 1〉
[Additional relators – non-contractible closed curves on the surface.]

Therefore, G is a quotient of the ordinary (k,m, 2)-triangle group

∆o(k,m, 2) =
〈
a, b, c | ak = bm = c2 = abc = 1

〉
under an epimorphism taking a to r and b to s.

The map M is reflexible if and only if the group G = Auto(M) admits an
automorphism of order two taking r to r−1 and s to s−1.

Conversely, given any epimorphism from ∆o(k,m, 2) to a finite group G
with torsion-free kernel, a regular map M on an orientable surface can be
constructed using (right) cosets of the images of 〈a〉, 〈b〉 and 〈c〉 as
vertices, faces and edges, with incidence given by non-empty intersection,
and then G acts regularly on the darts of M by (right) multiplication.
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Introduction

Regular maps in mathematics

Up to isomorphism and duality, 1-1 correspondence between:

regular orientable maps of type {m, k} with k ≥ m

groups 〈r , s| rk = sm = (rs)2 = . . . = 1〉
torsion-free normal subgroups of triangle groups ∆o(k,m, 2)

images M of smooth coverings U(m, k) → M

Maps, Riemann surfaces, and Galois theory:

A Riemann surface F is definable via a complex polynomial equation
F (x , y) = 0 with algebraic coefficients if and only if F = U/H, for some
normal subgroup H of a triangle group ∆o(k,m, 2).
[Weil 1950 – Belyj 1972]

The absolute Galois group can be studied
via its action on (regular) maps! [Grothendieck 1981]
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Introduction

Further motivation

Classification of regular maps on a given surface would therefore have
consequences in numerous branches of mathematics.

One more piece of motivation:

By a celebrated theorem of Hurwitz, for any g ≥ 2 the order of a finite
group acting as a group of conformal automorphisms of the Riemann
surface of genus g is bounded above by 84(g − 1).

A classical problem here is classification of the largest possible group of
automorphisms for any given orientable genus g ≥ 2. Accola showed that
this problem reduces to a large extent, for infinitely many genera, to the
classification of all regular maps on a surface of given genus.
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Classification of regular maps

Classification of regular maps

Classification of regular maps has been approached from three main
directions:

by automorphism groups

by underlying graphs

by supporting surfaces

Other approaches to the study of regular maps by a combination of
graph-theoretic, algebraic, and topological means:

constructions using suitable graphs, groups, or tools (coverings)

structural investigation (short cycles, representativity – planar width)

imposing additional algebraic structure – regular Cayley maps

research motivated by computer-aided results
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J. Širáň () Classification of regular maps on a given surface 8 / 22



Classification of regular maps

Classification of regular maps

Classification of regular maps has been approached from three main
directions:

by automorphism groups

by underlying graphs

by supporting surfaces

Other approaches to the study of regular maps by a combination of
graph-theoretic, algebraic, and topological means:

constructions using suitable graphs, groups, or tools (coverings)

structural investigation (short cycles, representativity – planar width)

imposing additional algebraic structure – regular Cayley maps

research motivated by computer-aided results
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Classification of regular maps

Classification by automorphism groups:

cyclic or dihedral automorphism groups – easy exercises

very hard for non-trivial classes of groups

orientaby regular maps with automorphism groups isomorphic to
PSL(2, q) and PGL(2, q) – Sah (1969)

Suzuki simple groups for maps of type {4, 5} – Jones (1993)

Ree simple groups for maps of type {3, 7} – Jones (1994)

Sah’s classification recently extended to nonorientable regular maps
and hypermaps with automorphism groups isomorphic to PSL(2, q)
and PGL(2, q) – Conder, Potočnik and JŠ (to appear)

clasification of nonorientable regular maps with almost-Sylow-cyclic
automorphism groups (groups in which every odd-order Sylow
subgroup is cyclic and every even-order Sylow subgroup has a cyclic
subgroup of index 2) – Conder, Potočnik and JŠ (submitted)
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clasification of nonorientable regular maps with almost-Sylow-cyclic
automorphism groups (groups in which every odd-order Sylow
subgroup is cyclic and every even-order Sylow subgroup has a cyclic
subgroup of index 2) – Conder, Potočnik and JŠ (submitted)
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Regular maps on a given surface

Regular maps on surfaces of low genus

Sphere:

Platonic maps (and ∞ of trivial maps)
Projective plane: Petersen, K4, duals (and ∞ of trivial maps)
Torus: Infinitely many nontrivial regular maps
Klein bottle: No regular map!

Hurwitz Theorem - A consequence:
Every surface with a negative Euler characteristic
supports just a finite number of regular maps.

Beginning of a systematic treatment of the classification: Brahana 1922

orientable (nonorientable) surfaces up to genus 7 (8) – Brahana
(1922), Sherk (1959), Grek (1963,66), Garbe (1969,78), Coxeter
and Moser (1984), Scherwa (1985), Bergau and Garbe (1978,89)

computer-aided extension up to orientable genus 15 and
nonorientable genus 30 – Conder and Dobcsányi (2001)
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Regular maps on a given surface

Breakthrough in the classification problem

By (roughly) end of 20th century: Classification of regular maps was
available for a finite number of surfaces only.

Regular maps on nonorientable surfaces with χ = −p for p prime

Let ν(p) be the number of pairs (j , l) such that j and l are
odd, coprime, j > l ≥ 3, and (j − 1)(l − 1) = p + 1.

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005]

Let p be an odd prime and let n(p) be the number of regular maps with
χ = −p, up to isomorphism and duality. Then: n(3) = 4, n(7) = 3,
n(13) = 1, and for p 6= 7, 13, n(p) is equal to

0 if p ≡ 1 (mod 12)
1 if p ≡ 5 (mod 12)

ν(p) if p ≡ −5 (mod 12)
ν(p) + 1 if p ≡ −1 (mod 12).
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J. Širáň () Classification of regular maps on a given surface 11 / 22



Regular maps on a given surface

Breakthrough in the classification problem

By (roughly) end of 20th century: Classification of regular maps was
available for a finite number of surfaces only.

Regular maps on nonorientable surfaces with χ = −p for p prime

Let ν(p) be the number of pairs (j , l) such that j and l are
odd, coprime, j > l ≥ 3, and (j − 1)(l − 1) = p + 1.

Theorem. [A. Breda, R. Nedela, J. Širáň, Trans. Amer. Math. Soc. 2005]
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Regular maps on a given surface

Proof strategy

A number of steps in the proof of the result of Breda-Nedela-Š depend
on the primality of −χ.

Oddness of −χ implies that the Sylow 2-subgroups of G are dihedral.
This enables one to use the powerful result of Gorenstein and Walter:

If G is a group with a dihedral Sylow 2-subgroup and if O(G ) is the
(unique) maximal normal subgroup of G of odd order, then G/O(G )
is isomorphic to either

(a) a Sylow 2-subgroup of G, or

(b) the alternating group A7, or

(c) a subgroup of Aut(PSL(2, q)) containing PSL(2, q), q odd.

We then derive enough information to identify O(G ) and then G itself.
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Regular maps on a given surface

State-of-the-art around 2006

Classification of regular maps of non-orientable genus p + 2, p prime:

Breda, Nedela and Š 05

An independent proof, extended to cover classification of regular
hypermaps of genus p + 2:
Jones 03

Classification of regular maps of orientable genus p + 1
with ‘large’ automorphism groups (of order greater than 6(g − 1)):
Belolipetsky and Jones 05
involves three families of chiral maps

Classification of small cases carried over to g ≤ 100 h ≤ 200 with the
help of more powerful computational methods:
Conder 07

The new list of M. Conder has generated a number of open questions.
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J. Širáň () Classification of regular maps on a given surface 13 / 22



Regular maps on a given surface

State-of-the-art around 2006

Classification of regular maps of non-orientable genus p + 2, p prime:
Breda, Nedela and Š 05
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An independent proof, extended to cover classification of regular
hypermaps of genus p + 2:
Jones 03

Classification of regular maps of orientable genus p + 1
with ‘large’ automorphism groups (of order greater than 6(g − 1)):
Belolipetsky and Jones 05
involves three families of chiral maps

Classification of small cases carried over to g ≤ 100 h ≤ 200 with the
help of more powerful computational methods:
Conder 07

The new list of M. Conder has generated a number of open questions.
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Regular maps on a given surface

Gaps in the genus spectra and degeneracy

Well known: For every g > 0 there exists a reflexible regular map on an
orientable surface of genus g – e.g., of type {4g , 4g}.

No ‘gaps’ in the genus spectrum of orientable surfaces carrying reflexible
regular maps. However, their underlying graphs are highly degenerate.

There is no analogous family for non-orientable surfaces. In fact, by the
result of Breda, Nedela, Š there are no regular maps on surfaces of genus
p + 2 for all primes p ≡ 1 mod 12 and p 6= 13.

On the other hand, Conder and Everitt proved that non-orientable surfaces
of more than 75 per cent of all genera carry some regular map.)

Similar questions about the genus spectra of:

regular but chiral orientable maps,

surfaces supporting only degenerate regular maps.

J. Širáň () Classification of regular maps on a given surface 14 / 22



Regular maps on a given surface

Gaps in the genus spectra and degeneracy

Well known: For every g > 0 there exists a reflexible regular map on an
orientable surface of genus g

– e.g., of type {4g , 4g}.

No ‘gaps’ in the genus spectrum of orientable surfaces carrying reflexible
regular maps. However, their underlying graphs are highly degenerate.

There is no analogous family for non-orientable surfaces. In fact, by the
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J. Širáň () Classification of regular maps on a given surface 14 / 22



Regular maps on a given surface

Gaps in the genus spectra and degeneracy

Well known: For every g > 0 there exists a reflexible regular map on an
orientable surface of genus g – e.g., of type {4g , 4g}.

No ‘gaps’ in the genus spectrum of orientable surfaces carrying reflexible
regular maps. However, their underlying graphs are highly degenerate.

There is no analogous family for non-orientable surfaces. In fact, by the
result of Breda, Nedela, Š there are no regular maps on surfaces of genus
p + 2 for all primes p ≡ 1 mod 12 and p 6= 13.

On the other hand, Conder and Everitt proved that non-orientable surfaces
of more than 75 per cent of all genera carry some regular map.)

Similar questions about the genus spectra of:

regular but chiral orientable maps,

surfaces supporting only degenerate regular maps.
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result of Breda, Nedela, Š there are no regular maps on surfaces of genus
p + 2 for all primes p ≡ 1 mod 12 and p 6= 13.

On the other hand, Conder and Everitt proved that non-orientable surfaces
of more than 75 per cent of all genera carry some regular map.)

Similar questions about the genus spectra of:

regular but chiral orientable maps,

surfaces supporting only degenerate regular maps.
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Regular maps on a given surface

Regular maps on a given surface – two extreme cases

Let G be the automorphism groups of a regular orientable map of type
{m, k} of genus g . Euler’s formula gives:

|G |(km − 2k − 2m) = 4km(g − 1)

Two extreme cases:

g − 1 divides |G |;
g − 1 and |G | are relatively prime.

Similarly, if G is the automorphism groups of a reflexible regular map of
type {m, k} of Euler characteristic χ (recall: χ = 2− 2g or χ = 2− h):

|G |(km − 2k − 2m) = 4km(−χ)

and the two extreme cases are

χ divides |G |;
χ and |G | are relatively prime.
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J. Širáň () Classification of regular maps on a given surface 15 / 22



Regular maps on a given surface

Regular maps on a given surface – two extreme cases

Let G be the automorphism groups of a regular orientable map of type
{m, k} of genus g . Euler’s formula gives:

|G |(km − 2k − 2m) = 4km(g − 1)

Two extreme cases:

g − 1 divides |G |;

g − 1 and |G | are relatively prime.

Similarly, if G is the automorphism groups of a reflexible regular map of
type {m, k} of Euler characteristic χ (recall: χ = 2− 2g or χ = 2− h):

|G |(km − 2k − 2m) = 4km(−χ)

and the two extreme cases are

χ divides |G |;
χ and |G | are relatively prime.
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Regular maps on a given surface

Summary of results of Conder-Š-Tucker

The case when g − 1 divides |Auto(M)|

We have classified all regular orientable maps M of genus g > 1 such that
g − 1 is a prime dividing |Auto(M)|.

• Three infinite families of (chiral) maps (Belolipetsky-Jones)

The case when g − 1 and |Auto(M)| are relatively prime

We have taken a major step forward by producing a classification of all
regular orientable maps M of genus g for which g − 1 and |Auto(M)|
are relatively prime.

• Seven infinite families of maps

As a consequence of these, we have obtained a complete classification of
all regular orientable maps of genus p + 1 where p is prime.
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The case when g − 1 divides |Auto(M)|

We have classified all regular orientable maps M of genus g > 1 such that
g − 1 is a prime dividing |Auto(M)|.

• Three infinite families of (chiral) maps (Belolipetsky-Jones)

The case when g − 1 and |Auto(M)| are relatively prime

We have taken a major step forward by producing a classification of all
regular orientable maps M of genus g for which g − 1 and |Auto(M)|
are relatively prime.

• Seven infinite families of maps

As a consequence of these, we have obtained a complete classification of
all regular orientable maps of genus p + 1 where p is prime.
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Regular maps on a given surface

Specific corollaries include:

(1) If p is a prime such that p − 1 is not divisible by 3, 5 or 8, then every
regular orientable map of genus g = p + 1 is reflexible;

(2) If M is a regular but chiral map of genus g = p + 1, where p is prime,
and p − 1 is not divisible by 5 or 8, then either M or its dual has
multiple edges;

(3) If M is a reflexible regular map of orientable genus g = p + 1, where
p is prime and p > 13, then either M or its dual has multiple edges,
and if p ≡ 1 mod 6, then both M and its dual have multiple edges.

Infinitely many gaps in the spectrum of chiral regular maps and in the
spectrum of reflexible regular orientable maps with simple underlying
graphs.

Another consequence: A new proof of the classification result of Breda,
Nedela, Š for regular maps on surfaces of genus p + 2 for odd primes p.

Also: Characterization of regular maps of Euler characteristic −2p.
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J. Širáň () Classification of regular maps on a given surface 17 / 22



Regular maps on a given surface

Specific corollaries include:

(1) If p is a prime such that p − 1 is not divisible by 3, 5 or 8, then every
regular orientable map of genus g = p + 1 is reflexible;

(2) If M is a regular but chiral map of genus g = p + 1, where p is prime,
and p − 1 is not divisible by 5 or 8, then either M or its dual has
multiple edges;

(3) If M is a reflexible regular map of orientable genus g = p + 1, where
p is prime and p > 13, then either M or its dual has multiple edges,
and if p ≡ 1 mod 6, then both M and its dual have multiple edges.

Infinitely many gaps in the spectrum of chiral regular maps and in the
spectrum of reflexible regular orientable maps with simple underlying
graphs.

Another consequence: A new proof of the classification result of Breda,
Nedela, Š for regular maps on surfaces of genus p + 2 for odd primes p.

Also: Characterization of regular maps of Euler characteristic −2p.
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J. Širáň () Classification of regular maps on a given surface 17 / 22



Classification for characteristic -3p

Regular maps of Euler characteristic −3p

A (k,m, 2)-group is any group with presentation

〈(x , y , z), (yz)k = (zx)m = . . . = 1〉
where, as usual, exponents are true orders.

The Euler characteristic of a finite (k,m, 2)-group G is

|G |(1/2k + 1/2m − 1/4), which is χ of the corresponding regular map.

It turns out that all (k,m, 2)-groups with χ = −3p have ‘reasonably’
bounded order for p large enough:

Proposition. Let G be a (k,m, 2)-group with χ = −3p. If p > 53, then
km − 2k − 2m = tp and |G | = 12km/t for some t ∈ {2, 4, 12}.

The proof uses Gorenstein-Walter and arguments showing that regular
maps with χ = −3 do not have normal p-covers. Easy: t ≤ 12. Longer
arguments are needed to exclude t ∈ {1, 3, 6, 8}.
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Classification for characteristic -3p

The hard cases

If groups with χ = −3p were almost Sylow-cyclic, meaning cyclicity of
all odd-order Sylow subgroups and dihedrality of the even-order ones, we
could use the Conder-Potočnik-Š classification (with some extra work).
Unfortunately, in many of our cases the Sylow 3-subgroups are not cyclic.

HC1: t = 2, that is, G is a (k,m, 2)-group of order 6km.

From Gorenstein-Walter the case G/O ∼= PGL(2, 7) as a (7, 8, 2)-group
survives... but G fails to be almost Sylow-cyclic if 3 divides |O|.

HC2: t = 4, that is, G is a (k,m, 2)-group of order 3km.

In this case the Gorenstein-Walter survivor is G/O ∼= S2, a Sylow
2-subgroup of G . But here the Sylow 3-subgroups are not cyclic.
Method: Reductions modulo a minimal odd-order normal subgroup.

t = 12, that is, (k,m, 2)-groups of order km: Easy! (Done before, BNŠ.)
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could use the Conder-Potočnik-Š classification (with some extra work).
Unfortunately, in many of our cases the Sylow 3-subgroups are not cyclic.

HC1: t = 2, that is, G is a (k,m, 2)-group of order 6km.

From Gorenstein-Walter the case G/O ∼= PGL(2, 7) as a (7, 8, 2)-group
survives... but G fails to be almost Sylow-cyclic if 3 divides |O|.

HC2: t = 4, that is, G is a (k,m, 2)-group of order 3km.

In this case the Gorenstein-Walter survivor is G/O ∼= S2, a Sylow
2-subgroup of G . But here the Sylow 3-subgroups are not cyclic.
Method: Reductions modulo a minimal odd-order normal subgroup.

t = 12, that is, (k,m, 2)-groups of order km: Easy! (Done before, BNŠ.)
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The result

The result

Theorem. Up to isomorphism and duality, any regular map with χ = −3p,
p > 53, belongs to one of the following families, listed by the groups G:

(a) If p ≡ −8 (mod 21) and p 6≡ −8 (mod 49), then G is a
((p + 8)/3, 8, 2)-group isomorphic to one of the two extensions of
Z(p+8)/21 by PGL(2, 7) of order 16(p + 8); letting n = (p + 8)/21 we have

〈(x , y , z), r7n = s8 = (rs)2 = [x , r7] = xr2s2r7i+1 = 1〉, 7i ≡ −3 (mod n)
〈(x , y , z), r7n = s8 = (rs)2 = [x , r7] = xsr3s3r7i+1 = 1〉, 7i ≡ 2 (mod n).

(b) If p ≡ 1 (mod 4), then G is either one of the (2j , 2l , 2)-groups Gj ,l

〈(x , y , z), r2j = s2l = (rs)2 = (rs−1)2 = 1〉 ∼= Dj × Dl of order 4jl , where
j ≥ l ≥ 3, both j , l are odd, (j , l) ≤ 3, (j − 1)(l − 1) = 3p + 1, and
j ≡ l 6≡ 1 (mod 3), or one of the (6, 2l , 2)-groups Gl with presentation

〈(x , y , z), r6 = s2l = (rs)2 = r2s2r2s−2 = 1〉 ∼= (D3 × Dl).Z3

of order 36l , where l ≡ 2 (mod 4) and 2l − 3 = p.
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J. Širáň () Classification of regular maps on a given surface 20 / 22



The result

The result

Theorem. Up to isomorphism and duality, any regular map with χ = −3p,
p > 53, belongs to one of the following families, listed by the groups G:

(a) If p ≡ −8 (mod 21) and p 6≡ −8 (mod 49), then G is a
((p + 8)/3, 8, 2)-group isomorphic to one of the two extensions of
Z(p+8)/21 by PGL(2, 7) of order 16(p + 8); letting n = (p + 8)/21 we have

〈(x , y , z), r7n = s8 = (rs)2 = [x , r7] = xr2s2r7i+1 = 1〉, 7i ≡ −3 (mod n)
〈(x , y , z), r7n = s8 = (rs)2 = [x , r7] = xsr3s3r7i+1 = 1〉, 7i ≡ 2 (mod n).

(b) If p ≡ 1 (mod 4), then G is either one of the (2j , 2l , 2)-groups Gj ,l

〈(x , y , z), r2j = s2l = (rs)2 = (rs−1)2 = 1〉 ∼= Dj × Dl of order 4jl , where
j ≥ l ≥ 3, both j , l are odd, (j , l) ≤ 3, (j − 1)(l − 1) = 3p + 1, and
j ≡ l 6≡ 1 (mod 3), or one of the (6, 2l , 2)-groups Gl with presentation

〈(x , y , z), r6 = s2l = (rs)2 = r2s2r2s−2 = 1〉 ∼= (D3 × Dl).Z3

of order 36l , where l ≡ 2 (mod 4) and 2l − 3 = p.
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The result

Methods

Combinatorial group theory in conjunction with classical theorems:

Schur-Zassenhaus: If N is a normal subgroup of the finite group G, such
that the order |N| and the index |G :N| are coprime, then G contains a
subgroup of order |G :N|, and any two such subgroups are conjugate in G.

Schur: IfZ (G ) has finite index m in G, then the commutator subgroup G ′

is finite and the order of every element of G ′ divides m.

Ito: If the group G is expressible as AB where A and B are abelian
subgroups of G, then the commutator subgroup G ′ is abelian.

Suzuki and Wong: Let G be a finite, non-solvable, almost Sylow-cyclic
group. Then G has an index-2-subgroup G0

∼= H × L, where H ∼= Zu o Zv ,
and L ∼= SL(2, q) or PSL(2, q) for some prime q > 3, with u, v and |L|
being pairwise relatively prime.

... and, of course, the Gorenstein-Walter theorem ...
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J. Širáň () Classification of regular maps on a given surface 21 / 22



Directions of further research

Directions of future research

Almost-Sylow-cyclicity of our groups failed for Sylow 3-subgroups –
but these were Abelian. Is this perhaps worth pursuing?

Extension of the classification for regular maps on surfaces of Euler
characteristic equal to small negative multiples of a prime?

How about −χ = pp′ with prime p > p′ > 3? Advantage if ‘gap’ at
characteristic −p′ ... but the number of G-W ‘survivors’ increases.

Prime powers? Conder, Potočnik and Š:

Up to isomorphism and duality, the complete list of automorphism groups
of regular maps with χ = −p2, p an odd prime, is:

p = 3, G ∼= 〈(x , y , z), r6 = s6 = sr2s2y = 1〉, |G | = 108

p = 3, G ∼= 〈(x , y , z), r6 = s4 = (rs−1)3x = 1〉, |G | = 216

p = 7, G ∼= PSL(2, 13), |G | = 1092, with presentation

〈(x , y , z), r13 = s3 = rs−1r2s−1r2sr−1sr−1z = r−5s−1r5sr−4sy = 1〉
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Up to isomorphism and duality, the complete list of automorphism groups
of regular maps with χ = −p2, p an odd prime, is:

p = 3, G ∼= 〈(x , y , z), r6 = s6 = sr2s2y = 1〉, |G | = 108

p = 3, G ∼= 〈(x , y , z), r6 = s4 = (rs−1)3x = 1〉, |G | = 216

p = 7, G ∼= PSL(2, 13), |G | = 1092, with presentation

〈(x , y , z), r13 = s3 = rs−1r2s−1r2sr−1sr−1z = r−5s−1r5sr−4sy = 1〉
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J. Širáň () Classification of regular maps on a given surface 22 / 22



Directions of further research

Directions of future research

Almost-Sylow-cyclicity of our groups failed for Sylow 3-subgroups –
but these were Abelian. Is this perhaps worth pursuing?

Extension of the classification for regular maps on surfaces of Euler
characteristic equal to small negative multiples of a prime?

How about −χ = pp′ with prime p > p′ > 3? Advantage if ‘gap’ at
characteristic −p′ ... but the number of G-W ‘survivors’ increases.

Prime powers? Conder, Potočnik and Š:
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