Circular Chromatic Index of Blanuša Snarks

Ján Mazák

Department of Computer Science Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

Workshop on Discrete Mathematics November 2008

▲ 伊 ▶ → ● 三

Outline

Circular colourings of graphs

- Circular colourings
- Properties of circular colourings

2 Circular chromatic index of snarks

- Girth Conjecture
- Blanuša snarks
- Recent conjectures
- Lower bound for snarks of given order

Circular colourings Properties of circular colourings

Definition

A *circular* r-*edge-colouring* is a mapping $c : E(G) \rightarrow [0, r)$ such that for any two adjacent edges e and f we have

$$1 \leq |\boldsymbol{c}(\boldsymbol{e}) - \boldsymbol{c}(\boldsymbol{f})| \leq r - 1.$$

Definition

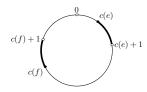
The circular chromatic index is

 $\chi'_{c}(G) = \inf \{r \mid G \text{ has circular } r \text{-edge-colouring} \}.$

< D > < B > < B >

Circular colourings Properties of circular colourings

Why circular?



Circular colouring: colour corresponds to a unit-length arc on a circle with length *r*.

イロト イポト イヨト イヨト

Definition (Vince)

A (p, q)-edge-colouring is a mapping $c: E(G) \rightarrow \{0, 1, \dots, p-1\}$ such that for any two adjacent edges *e* and *f* we have

$$q \leq |c(e) - c(f)| \leq p - q.$$

э

Properties of circular edge-colourings

- The infimum is always attained and is rational.
- Sufficient to consider $p \leq |E(G)|$ and $q \leq |V(G)|/2$.
- $\chi'(G) = \lceil \chi'_{c}(G) \rceil$
- NP-complete for cubic graphs.

・聞き ・言を ・

Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

Snarks and their properties

Definition

Snarks – bridgeless cubic graphs which are not 3-edge-colourable.

- Vizing: 3 or 4 colours
- $\chi_{c}^{\prime} \in (3, 11/3]$ for a snark

 $\chi_c' > 7/2$ for the Petersen graph only?

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

Known Values

- Flower snarks
 - $\chi_{c}'(F_{3}) = 3.5$

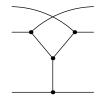
•
$$\chi'_{c}(F_{5}) = 3.4$$

•
$$\chi'_c(F_{2k+1}) = 3.\overline{3}$$
 for $k \ge 3$

Goldberg snarks

•
$$\chi_c'(G_3) = 3.\overline{3}$$

•
$$\chi_c'(G_{2k+1}) = 3.25$$
 for $k \ge 2$



イロト イポト イヨト イヨト

э

Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

Girth Conjecture (Jaeger and Swart)

There are no snarks with girth g > 6.

Theorem (Kochol 1996)

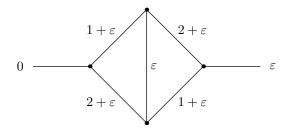
There exist snarks with arbitrarily high girth.

Theorem (Kaiser, Kráľ, Škrekovski 2003)

For every $\varepsilon > 0$ there exist g such that every snark G with girth at least g has $\chi'_c(G) \leq 3 + \varepsilon$.

▲ @ ▶ ▲ ⊇ ▶

Classes with index converging to 3 can be constructed by inserting diamonds into edges of any snark.



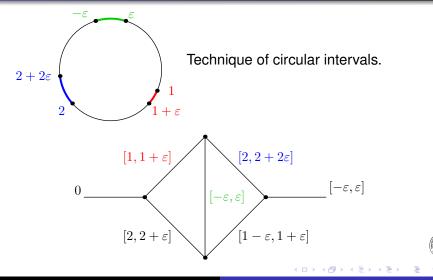
No equivalent of Parity Lemma works.

・ 同 ト ・ 王

.⊒ →

Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

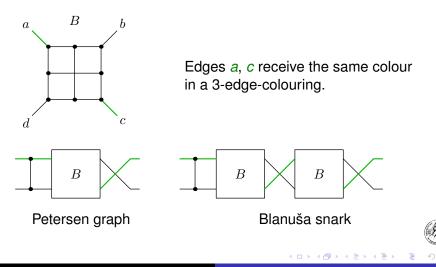
Lower bound for a diamond



Ján Mazák Circular Chromatic Index

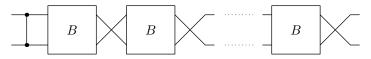
Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

Building blocks of Blanuša snarks



Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

Generalized type 1 Blanuša snarks



Graph B_m^1 with *m* copies of block *B*.

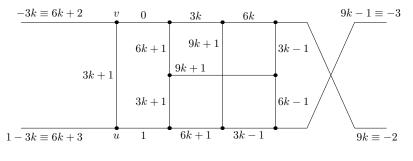
$$\chi_c'(B_m^1)=3+rac{2}{3m}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

Upper bound

(9m + 2, 3m)-edge-colouring of B_m^1

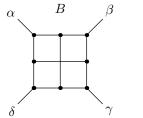


э

イロト イポト イヨト イヨト

Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

Lower bound



$$\begin{aligned} |\alpha - \gamma| &\leq \mathbf{2}\varepsilon \\ |\alpha - \gamma| + |\beta - \delta| &\leq \mathbf{3}\varepsilon \end{aligned}$$

For *m* blocks:

 $2 \leq \text{total change of colour} \leq 3m\varepsilon$.

$$\chi_c'(B_m^1) = 3 + \varepsilon \ge 3 + \frac{2}{3m}$$

ъ

イロト イポト イヨト イヨト

Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

ndices of generalized Blanuša snarks are
$$\left\{3+\frac{1}{n}; n \geq 2\right\}$$
.

Conjecture

Circular chromatic index of a snark belongs to $\left\{3+\frac{2}{k}; k \geq 3\right\}$.

ъ

イロト イポト イヨト イヨト

Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

Conjecture (Zhu 2006)

There is no infinite increasing sequence of indices of snarks.

Theorem (Lukoťka, M.)

For any rational number $r \in [3, 3 + 1/3]$ there exist a snark with circular chromatic index r.

ヘロト ヘヨト ヘヨト

Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

Lower bound for snarks of given order

Theorem (Mačaj, M.)

Let G be a snark on 2k vertices with girth at least 5. Then

$$\chi_c'(G) \geq 3 + \frac{2.5}{k}.$$

For the generalized type 1 Blanuša snark of order 2k we have

$$\chi'_{c} = \mathbf{3} + \frac{\mathbf{2}.\overline{\mathbf{6}}}{k}.$$

Girth Conjecture Blanuša snarks Recent conjectures Lower bound for snarks of given order

Thank you for your attention.

æ

イロン イロン イヨン イヨン