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Planar graphs

Within the graph theory, one of oldest areas of research is the study
of planar and plane graphs (the beginnings date back to the half of
19th century in the connection with the Four Colour Problem).

Definition
A graph is called planar if there exists its drawing in the plane such
that none two edges (arcs) cross in this drawing; such a drawing is
called plane graph.

The family P of planar graphs is well explored; there are hundreds
of results concerning various colourings, hamiltonicity/longest
cycles, local properties etc.
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Generalizations of planar graphs

There are several conceptions that generalize the notion of
planarity:

embeddings into higher surfaces (orientable or nonorientable)

embeddings into other topological spaces (for example, book
embeddings)
the crossing number
the thickness of a graph
embeddings into plane which have constant number of
crossings per edge (k-planarity)
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1-planar graphs

Definition
A graph is called 1-planar if there exists its drawing in the plane
such that each edge is crossed at most once.

Example
The graph K6 and its drawings:
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This term was first introduced by G. Ringel in 1965 in the
connection with simultaneous colouring of vertices and faces of
plane graphs (which corresponds to vertex colouring of the
incidence/adjacency graph of vertices and faces of a plane graph;
such graphs are 1-planar):

Comparing to the family of planar graphs, the family P of 1-planar
graphs is still little explored (there are max. 30 papers).
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Characterization and algorithmic aspects
Planar graphs

Theorem (Kuratowski 1930)

A graph is planar if and only if it contains neither a subdivision of
K5 nor a subdivision of K3,3.

Theorem (Wagner 1937)

A graph is planar if and only if it contains neither a minor of K5

nor a minor of K3,3.

Theorem (Hopcroft, Tarjan 1974)

There is linear algorithm (in terms of order of a graph) for planarity
testing.
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Characterization and algorithmic aspects
1-planar graphs

Observation
The family of 1-planar graphs is not closed under edge
contractions; thus, one cannot consider a characterization of
1-planar graphs in terms of forbidden minors.

Observation
There exists infinitely many minimal non-1-planar graphs (V.
Korzhik, 2007); this shows the impossibility of a characterization of
1-planar graphs based on finite number of forbidden topological
minors (subdivisions).

Theorem (Mohar, Korzhik 2008)

The problem of recognition of 1-planar graphs is NP-complete.
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Maximal graphs

Definition
Let G be a graph family. A graph G ∈ G is maximal if G+ uv 6∈ G
for any two nonadjacent vertices u, v ∈ V (G).

- notation:
M(n,H) . . . maximal number of edges of a maximal n-vertex
graph G ∈ G
m(n,H) . . . minimal number of edges of a maximal n-vertex graph
G ∈ G
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Maximal graphs
Planar graphs

Lemma
M(1,P) = 0,
M(2,P) = 1,
M(n,P) = 3n− 6 for all n ≥ 3.
For all n ∈ N, m(n,P) = M(n,P).

Corollary

For each graph G ∈ P, δ(G) ≤ 5; the bound 5 is best possible.
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Maximal graphs
1-planar graphs

Theorem (Pach, Tóth 1997; Gärtner, Thiele, Ziegler)

M(n,P) = 4n− 8 for all n ≥ 12.

Corollary

For each graph G ∈ P, δ(G) ≤ 7; the bound 7 is best possible.
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Maximal graphs
1-planar graphs

? What are values for n ≤ 11 ?

Lemma (D.Hudák, T.M.)

M(n,P) =
(
n
2

)
for n ≤ 6,

M(7,P) = 19,
M(9,P) = 27,
M(n,P) = 4n− 8 for n ≥ 10 or n = 8.

Observation
Comparing to maximal planar graphs, n-vertex maximal 1-planar
graphs need not to have the same number of edges.

Lemma (D. Hudák,T.M.)

m(7,P) ≤ 18,
m(n,P) ≤ 4n− 9 for n = 3k, k ≥ 3.
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Maximal graphs
1-planar graphs

Observation
Maximal 1-planar drawings need not yield maximal 1-planar graphs:
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The girth
The girth of planar graphs

- notation:
g(G) . . . the girth of G (that is, the length of the shortest cycle in
G)
g(H) . . . sup

G∈H
g(G)

Pδ . . . the family of all planar graphs of minimum degree ≥ δ
Pδ . . . the family of all 1-planar graphs of minimum degree ≥ δ

Theorem
g(P1) = g(P2) = +∞,
g(P3) = 5,
g(P4) = g(P5) = 3.
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The girth
The girth of 1-planar graphs

Theorem (I.Fabrici, T.M. 2007)

g(P3) ≥ 7,
g(P5) = 4,
g(P6) = g(P7) = 3.

Recently, R. Soták constructed a 1-planar graph of minimum
degree 4 and girth 5.

We conjecture g(P3) = 7 and g(P4) = 5.
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Colourability
Planar graphs

Out of dozens of result on colourings of planar graphs (vertex,
edge, acyclic, cyclic, diagonal, list), recall several classical ones:

Theorem (Appel, Haken 1977)

Every planar graph is 4-colourable.

Theorem (Grötzsch 1958)

Every triangle-free planar graph is 3-colourable.

Theorem (Borodin 1979)

Every planar graph is acyclically 5-colourable.
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Colourability
Planar graphs

Observation (Vizing)

For each ∆ ≤ 5 there exists a planar graph G with ∆(G) = ∆ and
with edge chromatic number equal to ∆ + 1 (that is, G is class two
graph).

Theorem (Sanders, Zhao 2001)

Each planar graph G with ∆(G) ≥ 7 has edge chromatic number
equal to ∆(G) (is of class one).
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Coourability
1-planar graphs

Theorem (Borodin 1984)

Each 1-planar graph is 6-colourable.

Theorem (Fabrici, Madaras 2007)

Each 1-planar graph of girth at least 5 is 5-colourable.

Theorem (Borodin, Kostočka, Raspaud, Sopena 2001)

Each 1-planar graphs is acyclically 20-colourable.

Other colourings (and other questions concerning standard vertex
colouring) for 1-planar graphs were not studied yet.
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Local structure

In research of local structure, we consider an approach (known as
theory of light graphs) based on the study of existence of specific
subgraphs whose vertices have "small" degrees.

Formally, for given family G of plane graphs and a plane graph H,
we test the validity of the following statement:

Each graph G ∈ G that contains H as a subgraph, contains also a
subgraph K ∼= H such that each vertex of K has (in G) degree at
most ϕ(H,G) < +∞.

(the number ϕ(H,G) does not depend on G; for certain G, H need
not exist)
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Local structure
Planar graphs

Theorem (A. Kotzig 1955)

Each 3-connected graph G ∈ P contains an edge such that the sum
of degrees of its endvertices is at most 13; moreover, if G ∈ P4,
then G contains an edge such that the sum of degrees of its
endvertices is at most 11. The bounds 13 and 11 are best possible.

Theorem (I. Fabrici, S. Jendroľ 1997)

Each 3-connected graph G ∈ P which contains a k-vertex path,
contains also a k-vertex path such that each vertex of this path has
degree (in G) at most 5k. The bound 5k is best possible.

Theorem (Borodin 1989)

Each graph G ∈ P5 contains a 3-cycle such that sum of degrees of
its vertices is at most 17. The bound 17 is best possible.
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Local structure
1-planar graphs

Theorem (I. Fabrici, T.M. 2007)

Each 3-connected graph G ∈ P contains an edge such that degrees
of its endvertices are at most 20. The bound 20 is best possible.

Theorem (I. Fabrici, T.M. 2007)

Each graph G ∈ P6 contains
a 3-cycle with all vertices of degree at most 10; the bound 10
is sharp,
a 3-star with all vertices of degree at most 15,
a 4-star with all vertices of degree at most 23.
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Local structure
1-planar graphs

Theorem (I. Fabrici, T.M. 2007)

Each graph G ∈ P7 contains
a 5-star with all vertices of degree at most 11,
a 6-star with all vertices of degree at most 15.

Theorem (D. Hudák, T.M.)

Each graph G ∈ P7 contains
a (7, 7)-edge,
a graph K4 with all vertices of degree at most 13,
a graph K∗2,3 (K2,3 with extra edge in smaller bipartition) with
all vertices of degree at most 13,
a 5-cycle with all vertices of degree at most 9.
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Local structure
1-planar graphs

Theorem (D. Hudák, T.M. 2008)

Each graph G ∈ P5 of girth 4 contains
a (5,≤ 6)-edge,
a 4-cycle with all vertices of degree at most 9,
a 4-star with all vertices of degree at most 11.

Here, the assumption on girth 4 is essential – if G ∈ P5, then there
is no finite bound for degrees of vertices of C4 ⊆ G or K1,4 ⊆ G
which is independent on G. In other words, for any m there exists a
graph Gm ∈ P5 such that each 4-cycle C4 ⊆ Gm contains a vertex
of degree at least m (similarly for 4-star).
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Thanks for your attention :-)
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