On the acyclic edge-colouring of graphs

Edita Máčajová and Ján Mazák

Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

November 20, 2008

Edita Máčajová (Bratislava)

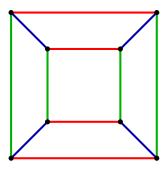
Acyclic edge-colouring

November 20, 2008 1 / 9

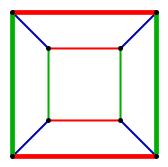
- proper *k*-edge-colouring
- acyclic *k*-edge-colouring
 - proper k-edge-colouring
 - no 2-coloured cycle

< 67 ▶

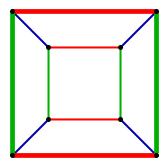
- proper *k*-edge-colouring
- acyclic *k*-edge-colouring
 - proper k-edge-colouring
 - no 2-coloured cycle

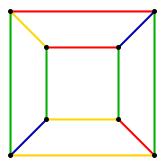


- proper *k*-edge-colouring
- acyclic *k*-edge-colouring
 - proper k-edge-colouring
 - no 2-coloured cycle



- proper *k*-edge-colouring
- acyclic *k*-edge-colouring
 - proper k-edge-colouring
 - no 2-coloured cycle





• chromatic index $\chi'(G)$ of a graph G

< 67 ▶

э

- chromatic index $\chi'(G)$ of a graph G
- acyclic chromatic index a'(G) of a graph G the least k such that G has an acyclic k-edge-colouring

- chromatic index $\chi'(G)$ of a graph G
- acyclic chromatic index a'(G) of a graph G the least k such that G has an acyclic k-edge-colouring
- $a'(G) \ge \chi'(G)$ for every G

- chromatic index $\chi'(G)$ of a graph G
- acyclic chromatic index a'(G) of a graph G the least k such that G has an acyclic k-edge-colouring
- $a'(G) \ge \chi'(G)$ for every G
- CHROMATIC INDEX: Vizing's theorem $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$

- chromatic index $\chi'(G)$ of a graph G
- acyclic chromatic index a'(G) of a graph G the least k such that G has an acyclic k-edge-colouring
- $a'(G) \ge \chi'(G)$ for every G
- CHROMATIC INDEX: Vizing's theorem $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$
- ACYCLIC CHROMATIC INDEX:
 - Alon, McDiarmid, Reed 1991: $a'(G) \leq 60\Delta(G)$
 - Molloy, Reed 1998: a'(G) ≤ 16∆(G)
 - Conjecture Alon, Sudakov, Zaks 2001: $\Delta(G) \leq a'(G) \leq \Delta(G) + 2$

Conjecture [Alon, Sudakov, Zaks 2001]

 $\Delta(G) \leq a'(G) \leq \Delta(G) + 2$

47 ▶

Conjecture [Alon, Sudakov, Zaks 2001]

 $\Delta(G) \leq a'(G) \leq \Delta(G) + 2$

- Alon, Sudakov, Zaks, 2001: true for almost all Δ -regular graphs
- Muthu, Narayanan, Subramanian, 2005: a'(G) ≤ 4.52∆ for any G of girth at least 220
- Muthu, Narayanan, Subramanian, 2006: true for grid-like graphs
- Muthu, Narayanan, Subramanian, 2007: true for outer-planar graphs
- Nešetřil, Wormald, 2005: $a'(G) = \Delta + 1$ for almost every Δ -regular graph G

• [Burnstein, 1979] if $\Delta(G) \leq 4$, then $a(G) \leq 5$

< 4 P→

э

- [Burnstein, 1979] if $\Delta(G) \leq 4$, then $a(G) \leq 5$
- if $\Delta(G) \leq 3$, then $a'(G) \leq 5$

3

< 4 ₽ > <

- [Burnstein, 1979] if $\Delta(G) \leq 4$, then $a(G) \leq 5$
- if $\Delta(G) \leq 3$, then $a'(G) \leq 5$
- [Basavaraju, Chandran, 2008] if Δ(G) = 3 and G is non-regular connected, then a'(G) ≤ 4

- [Burnstein, 1979] if $\Delta(G) \leq 4$, then $a(G) \leq 5$
- if $\Delta(G) \leq 3$, then $a'(G) \leq 5$
- [Basavaraju, Chandran, 2008] if Δ(G) = 3 and G is non-regular connected, then a'(G) ≤ 4

Theorem (E.M., Mazák, 2008)

G subcubic connected,

•
$$a'(G) \le 4$$
 unless $G = K_4$ or $G = K_{3,3}$

•
$$a'(K_4) = a'(K_{3,3}) = 5$$

- [Burnstein, 1979] if $\Delta(G) \leq 4$, then $a(G) \leq 5$
- if $\Delta(G) \leq 3$, then $a'(G) \leq 5$
- [Basavaraju, Chandran, 2008] if Δ(G) = 3 and G is non-regular connected, then a'(G) ≤ 4

Theorem (E.M., Mazák, 2008)

G subcubic connected,

•
$$a'(G) \leq 4$$
 unless $G = K_4$ or $G = K_{3,3}$

•
$$a'(K_4) = a'(K_{3,3}) = 5$$

Corollary [E.M., Mazák, 2008]

G cubic connected, $G \neq K_4$ and $G \neq K_{3,3}$, then a'(G) = 4

Theorem (E.M., Mazák, 2008)

G subcubic connected,

•
$$a'(G) \leq 4$$
 unless $G = K_4$ or $G = K_{3,3}$

•
$$a'(K_4) = a'(K_{3,3}) = 5$$

Theorem (E.M., Mazák, 2008)

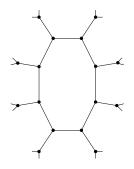
G subcubic connected,

•
$$a'(G) \leq 4$$
 unless $G = K_4$ or $G = K_{3,3}$

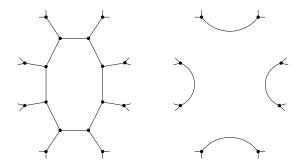
•
$$a'(K_4) = a'(K_{3,3}) = 5$$

PROOF.

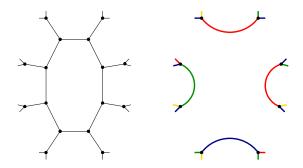
- by induction on the number of vertices of G
- \bullet the proof splits into several cases depending on δ and the girth
- $\rightarrow\,$ Sketch of the induction step for $\delta=3$ and even girth $g\geq 6$



э



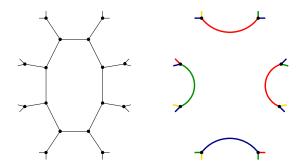
• reduction \rightarrow graph with no component isomorphic to K_4 or $K_{3,3}$



• reduction \rightarrow graph with no component isomorphic to K_4 or $K_{3,3}$

• by the induction hypothesis

 $a'(G') \leq$ 4 ... acyclic 4-edge-colouring φ' of G'

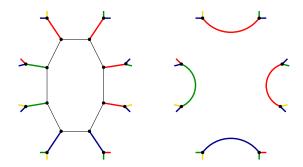


• reduction \rightarrow graph with no component isomorphic to K_4 or $K_{3,3}$

• by the induction hypothesis

 $a'(G') \leq$ 4 ... acyclic 4-edge-colouring arphi' of G'

ightarrow acyclic 4-edge-colouring arphi of ${\it G}$

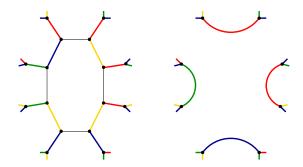


• reduction \rightarrow graph with no component isomorphic to K_4 or $K_{3,3}$

• by the induction hypothesis

 $a'(G') \leq$ 4 ... acyclic 4-edge-colouring arphi' of G'

ightarrow acyclic 4-edge-colouring arphi of G

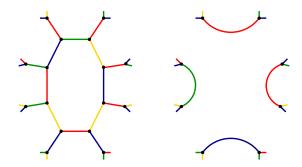


• reduction \rightarrow graph with no component isomorphic to K_4 or $K_{3,3}$

• by the induction hypothesis

 $a'(G') \leq$ 4 ... acyclic 4-edge-colouring arphi' of G'

 $\rightarrow\,$ acyclic 4-edge-colouring φ of G

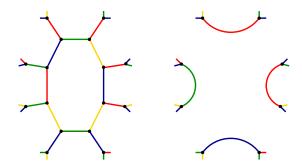


• reduction \rightarrow graph with no component isomorphic to K_4 or $K_{3,3}$

• by the induction hypothesis

 $a'(G') \leq$ 4 ... acyclic 4-edge-colouring arphi' of G'

 $\rightarrow\,$ acyclic 4-edge-colouring φ of G



• reduction \rightarrow graph with no component isomorphic to K_4 or $K_{3,3}$

• by the induction hypothesis

 $a'(G') \leq$ 4 ... acyclic 4-edge-colouring arphi' of G'

 $\rightarrow\,$ acyclic 4-edge-colouring φ of G

G cubic connected, $G \neq K_4$ and $G \neq K_{3,3}$, then a'(G) = 4

< 4 → <

3 🕨 🔺

3

G cubic connected, $G \neq K_4$ and $G \neq K_{3,3}$, then a'(G) = 4

PROOF.

• clearly $3 \le a'(G)$ and by the Theorem $a'(G) \le 4$

</₽> < ∃ > <

G cubic connected, $G \neq K_4$ and $G \neq K_{3,3}$, then a'(G) = 4

PROOF.

- clearly $3 \le a'(G)$ and by the Theorem $a'(G) \le 4$
- suppose a'(G) = 3

3

< /₽ > < E > <

G cubic connected, $G \neq K_4$ and $G \neq K_{3,3}$, then a'(G) = 4

PROOF.

- clearly $3 \le a'(G)$ and by the Theorem $a'(G) \le 4$
- suppose a'(G) = 3

 $\rightarrow\,$ every colour is present at every vertex

G cubic connected, $G \neq K_4$ and $G \neq K_{3,3}$, then a'(G) = 4

PROOF.

- clearly $3 \le a'(G)$ and by the Theorem $a'(G) \le 4$
- suppose a'(G) = 3
 - $\rightarrow\,$ every colour is present at every vertex
 - \rightarrow edges of any colour form a perfect matching of G
 - \rightarrow any two colours induce a 2-factor of G

Thank you!

2