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Covering codes

(a, b)-codes

Definition

For integers a and b, an (a, b)-code is a set of vertices such that
vertices in the code have exactly a neighbors in the code and all
other vertices have exactly b neighbors in the code.

M.A. Axenovich, On multiple coverings of the infinite rectangular
grid with balls of constant radius, Discrete Math. 268 (2003),
31-48.

P. Dorbec, S. Gravier and M. Mollard, Weighted codes in Lee
metrics, submited.
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An example (of (1,3)-code)




Covering codes

Covering codes

Click to LOOK INSlE)EI

G.Cohen, I. Honkala, S. Lytsin and A. Lobstein, Covering codes,
Elsevier, Amsterdam, 1997.
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Sierpiniski graphs

Sierpinski graphs

The graph S(n, k) (n, k > 1) is defined on the vertex set
{1,2,...,k}", two different vertices u = (i1, i, ..., ip) and
v = (j1,/2,--.,Jn) being adjacent if and only if u ~ v. The relation

~ is defined as follows: u ~ v if there exists an h € {1,2,...,n}
such that

@ ip=j;, fort=1,..., h—1,

® ipn # jn; and

@ ir=jpand jy=ipfort=h+1,... n
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Sierpiniski graphs

Examples

o}
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S(3,3)
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Sierpiniski graphs

Examples

Figure: 5(4,3)
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Sierpiniski graphs

Some references

Introduced in...

S. Klavzar and U. Milutinovi¢, Graphs S(n, k) and a variant of the
Tower of Hanoi problem, Czechoslovak Math. J. 47(122) (1997),
95-104.
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Sierpiniski graphs

Motivation comes from topological theory of Fractals and

Universal spaces...

S. L. Lipscomb anRd J. C. Perry, Lipscomb’s L(A) space
fractalized in Hilbert's />(A) space, Proc. Amer. Math. Soc. 115
(1992), 1157-1165.

U. Milutinovié¢, Completeness of the Lipscomb space, Glas. Mat.
Ser. 111 27(47) (1992), 343-364.

and the fact that
S(n, 3) is isomorphic to the Tower of Hanoi graph (with n disks).
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Sierpiniski graphs

Sierpinski graphs or KlavZar-Milutinovi¢ graphs

4

S. L. Lipscomb, Fractals and Universal Spaces in Dimension
Theory (Springer Monographs in Mathematics), Springer-Verlag,
Berlin, 2009.
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Sierpiniski graphs

Some more references

@ S. Gravier, S. KlavZar and M. Mollard, Codes and
L(2,1)-labelings in Sierpiniski graphs, Taiwanese J. Math. 9
(2005), 671-681.

@ S. Klavzar, Coloring Sierpinski graphs and Sierpinski gasket
graphs, Taiwanese J. Math. 12 (2008), 513-522.

e S. Klavzar and M. Jakovac, Vertex-, edge-, and total-colorings
of Sierpinski-like graphs, to appear in Discrete Math.

e S. Klavzar, U. Milutinovi¢ and C. Petr, 1-perfect codes in
Sierpinski graphs, Bull. Austral. Math. Soc. 66 (2002),
369-384.

@ S. Klavzar and B. Mohar, Crossing numbers of Sierpinski-like
graphs, J. Graph Theory 50 (2005), 186-198.

Covering codes in Sierpiriski graphs




Sierpiniski graphs

One more basic definiton and the main observation

Two types of vertices

A vertex of the form (ii...i) of S(n, k) is called an extreme
vertex, the other vertices are called inner.

The extreme vertices of S(n, k) are of degree k — 1 while the
degree of the inner vertices is k.

Note that there k extreme vertices and that |S(n, k)| = k".
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Sierpiniski graphs

The main observation

Every vertex of S(n, k) lies in a unique maximal k-clique (complete
subgraph of size k).

More precisely

Extremal verices are simplicial vertices (their neighborhood induces
complete subgraph), and closed neighborhoods of inner vertices
induce complete graphs + an additional edge.
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Sierpiniski graphs
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Results

Easy observation

Codes in Sierpiniski graphs S(1, k) = complete graphs are clear,
therefore from now on we always assume that n > 2.
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Results

Some necessary conditions

Lemma

Let C be an (a, b)-code in S(n, k) then a < k or b= 0.

Lemma

Let C be an (a, b)-code in S(n, k) and Ky its clique. Then
‘CﬂKk’ <a+1 and]CﬁKk| >b—1.

Lemma

Let C be an (a, b)-code of S(n, k). Then a < b.

An immediate consequence of Lemmas 2 and 3 gives that the only
possible (a, b)-codes are for b=a,a+ 1 or a+ 2.
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Results

Divisibility condition

Let C be an (a, b)-code of S(n, k) with d extremal vertices in C.
Then
|C|-(k—a+b)=0bk"+d.

Let C be an (a, b)-code of S(n, k) without extremal vertices. Then
(k —a+ b)|bk".

Covering codes in Sierpinski graphs



Results

Handshaking Lemma gives...

If a and k are odd then there is no (a, a)-code in S(n, k).

From the divisibility condition it follows:

If an (a, a + 2)-code exists in S(n, k), then n =2 and k = 2a + 1.
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Existence results

Suppose there exist (a, b)-code in S(2, k) that does not include
any of the extreme vertices, then there also exists (a, b)-code in
S(n, k) for all n > 3.
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Results
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S(3,3) S(2,4)
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(a, a)-codes in S(n, k)

An (a, a)-code of S(n, k), n > 2, a < k, exist if and only if:
(i) ais even or

(ii) a is odd and k is even.

Let C be an (a,a)-code in S(n, k). Then |C| =a- k"1,
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(a, a)-codes in S(2, k)

An (a, a + 2)-code exists in S(n, k) for n =2 and k =2a+ 1.

Use (an arbitrary) Eulerian tour of K, and include alternatively
vertices from the tour into the code.
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Let C be an (a,a+ 2)-code in S(n, k), where n =2 and
k=2a+1. Then |C|=(a+1)- k.
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Near codes

C is a near code if the condition from the definition of (a, b)-code
is fulfilled for all inner vertices.

In this case extreme vertices miss at most one neighbor from the
code.

We denote by e extremal vertices in the near code and o extremal
vertices in its complementary. Furthermore, we add the subscript
for a vertex of weight 0 and + for weight 1.
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Special near codes

@ SO" is a near code with the additional conditions n is odd and
there are a + 1 extreme vertices o, and the k — a — 1 others
are o,.

@ WO" is a near code with the additional conditions n is odd
and there are a extreme vertices e and the k — a others are
O+

@ SE" is a near code with the additional conditions n is even and
there are a extreme vertices o, and the k — a others are o,.

@ WE" is a near code with the additional conditions n is even
and there are a + 1 extreme vertices o4 and the k —a—1
others are o,
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Let n>2, a> 0 and k > a be integers. The near codes of S(n, k)
are precisely SO" and WO" if n is odd and SE" and WE" if n is

even.

Covering codes in Sierpinski graphs



Results

(a,a + 1)-codes in S(n, k)

Corollary

Graphs S(n, k) admits a (a, a + 1)-code if and only if n is odd and
0<a<k-—1.

Corollary

Let C be an (a,a+ 1)-code in S(n, k), where n is an odd number.
Then |C|=(a+1)- kkj_rll

A\
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Main result

The existing (a, b)-codes in S(n, k) satisfy 0 < a < k and they are
of three different types:

(i) An (a,a)-code in S(n, k) for n > 2 and k is even or a is even
and k is odd.

(i) An (a,a+ 1)-code in S(n, k) for k odd.
(iii) An (a,a+ 2)-code in S(n, k) for n =2 and k = 2a+ 1.
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Problems

Uniqueness of (a, b)-codes

Are all (a, b)-codes in Sierpinski graphs (up to the automorphisms)
unique?

Another fractal type constructions
might be interesting to study different graph parameters.
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Problems

THANK YOU! J
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