Classification and enumeration of discrete group actions on Riemann surfaces of small genera

Ján Karabáš,
(joint work with R. Nedela and A. Breda d'Azevedo)
SRI, Matej Bel University, Banská Bystrica
Mathematical Institute, Slovak Academy of Sciences
University of Aveiro

Background

Motivation:

study of algebraic curves, map theory, group theory, chemistry, crystallography, physics...
General proposition:
Every finite group acts as an automorphism group of a surface (Greenberg).
Problem:
Given class \mathbf{R} of Riemann surfaces with genus $g \geq 2$, describe the class \mathbf{G} of finite groups s. $\mathrm{t} . \mathrm{G} \in \mathbf{G}$ acts as a group of orientation-preserving automorphisms of a surface $\mathcal{S} \in \mathbf{R}$.
In the words of Greenberg:
Study all orientation-preserving self-homeomorphisms of surfaces from \mathbf{R}.

History:
Riemann, Hurwitz, Klein, Schwarts, Wiman...,
...Singermann, Jones, Conder, Mednykh, Nedela...

Glossary

Riemann-Hurwitz equation $\left(\mathcal{S}_{g} \rightarrow \mathcal{S}_{\gamma}\right)$
relates genera of a surface and its cover with an orbifold and automorphism group

$$
2 g-2=|\mathrm{G}|\left(2 \gamma-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right) ; \forall i: m_{i} \geq 2 \in \mathbb{Z}
$$

Universal cover $\widetilde{M} \quad$ is a tesselation of elliptic $(g=0)$, Euclidean $(g=1)$ or hyperbolic ($g \geq 2$) plane;
Fuchsian group $\mathrm{F} \quad$ is a discrete group with the presentation

$$
\left\langle x_{1}, \ldots, x_{r}, a_{1}, b_{1}, \ldots, a_{\gamma}, b_{\gamma} \mid x^{m_{1}}=\ldots=x_{r}^{m_{r}}=\prod_{i=1}^{\gamma}\left[a_{i}, b_{i}\right] \prod_{j=1}^{r} x_{j}=1\right\rangle ;
$$

Quotient \bar{M}
Quotient surface \mathcal{S}_{γ}
is an one-vertex map on the surface \mathcal{S}_{γ} is an orbifold with the signature

$$
\left[\gamma ; m_{1}, m_{2}, \ldots, m_{r}\right]
$$

where orbifold is as surface of genus γ with r points (branch-points) chosen, endowed with indexes $m_{1}, \ldots m_{r}$.

Combinatorial approach

(1) An automorphism (orientation-preserving) of a vertex-transitive map M extends to a self-homeomorphism φ of the surface \mathcal{S}
(2) Every finite group of automorphisms of a surface S is a group of automorphisms of a (Cayley) vertex-transitive map on S
(3) It is sufficient to study the class of vertex-transitive maps on \mathbf{R} instead of surfaces over \mathbf{R} - "dimension reduction" of the problem;
(9) Lots of results and techniques of map theory, group theory are known. Techniques are more convenient to use (especially for me:)), the software can help (GAP, Magma...).

Core idea

Theorem

Let M be a vertex-transitive map of genus g and let $\mathrm{G} \leq \operatorname{Aut}^{+}(M)$ be a vertex-transitive subgroup. Let $\bar{M}=M / \mathrm{G}$ be its one-vertex quotient on an orbifold $\mathcal{O}\left(\gamma ; m_{1}, m_{2} \ldots, m_{r}\right)$. Then there exist a torsion-free normal subgroup $K \triangleleft \mathrm{~F} \cong \operatorname{Aut}^{+}(\widetilde{M}) \cong \pi_{1}(\mathcal{O})$ of genus g such that $\mathrm{G} \cong \mathrm{F} / K$ and $M \cong \widetilde{M} / K$. In particular, the index $[\mathrm{F}: K]$ is given by Riemann-Hurwitz equation relating M and \bar{M}.

Algorithm: Solving Riemann-Hurwitz equation (numerically)

Rieman-Hurwitz equation again

$$
2 g-2=|\mathrm{G}|\left(2 \gamma-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right) ; \forall i: m_{i} \geq 2 \in \mathbb{Z}
$$

At first we solve it numerically.
We have to observe and meet the following criteria:
(1) $\gamma \leq g$,
(2) $r \leq 2 g+2$,
(3) $\forall i:|\mathrm{G}| \equiv 0 \bmod m_{i}$,
(9) $|\mathrm{G}| \leq 84(g-1)$.

Now we can formulate an algorithm which determines all possible numeric solutions of RHE for given genus. The solutions obtained by (brute-force) computation are tuples

$$
\left[g, \gamma,|\mathrm{G}|,\left\{m_{1}, \ldots, m_{r}\right\}\right] .
$$

Note that

$$
\left(\gamma ;\left\{m_{1}, \ldots, m_{r}\right\}\right)
$$

is known as orbifold signature of the orbifold \mathcal{O} which the quotient \bar{M} is embedded in.

Algorithm: Setting the presentation of $\pi_{1}(\mathcal{O})$

Canonical quotient

(1) quotient $\operatorname{map} \bar{M}$ is a buquet of r loops,
(2) every loop is the boundary of a face containing exactly one branch-point with respective branch-index m_{i},
(3) outer face of the map is an r-gon containing no branch-point.

Examples

Algorithm: Setting the presentation of $\pi_{1}(\mathcal{O})$ (continued)

We adapt the classical concept of voltage-assignments by Gross and Tucker to use it for maps on orbifolds.

Presentations

$$
\left\langle x, y, z, w \mid x^{2}=y^{2}=z^{3}=w^{3}=x y z w=1\right\rangle
$$

$\left\langle x, y, a, b \mid x^{3}=y^{3}=[a, b] x y=1\right\rangle$

What about non-canonical quotients?

Algorithm: Setting quotients (up to isomorphism)

Observations:
(1) $|\mathrm{F}: K|=|\mathrm{G}|$,
(2) $K \unlhd \mathrm{~F}$,
(3) $\mathrm{F} \rightarrow \mathrm{G}$ is order preserving, i.e.

- no generator of F is sent to identity,
- no relation of F is collapsed.

The problem reduces to classification of order-preserving, torsion-free normal subgroups (subgroups of genus g) of F , where F ranges through all admissible signatures.
Low-index subgroups procedure is the tool of first choice. We adapted one implementation by P. Dobcsányi.
Finally we use GAP to check whether $\mathrm{F} \rightarrow \mathrm{G}$ is order-preserving and reveal the structure description of G;

We want more: How every kernel does look like?

Example: Genus 2 quotients

G	$\# K$'s	Orbifold	G	\# ${ }^{\prime}$'s	Orbifold
C_{2}	1	$\mathcal{O}\left(0 ; 2^{6}\right)$	C_{10}	1	$\mathcal{O}(0 ; 2,5,10)$
C_{2}	1	$\mathcal{O}\left(1 ; 2^{2}\right)$	$C_{2} \times C_{6}$	1	$\mathcal{O}\left(0 ; 2,6^{2}\right)$
C_{3}	3	$\mathcal{O}\left(0 ; 3^{4}\right)$	$C_{3} \rtimes C_{4}$	1	$\mathcal{O}\left(0 ; 3,4^{2}\right)$
C_{4}	1	$\mathcal{O}\left(0 ; 2^{2}, 4^{2}\right)$	D_{12}	3	$\mathcal{O}\left(0 ; 2^{3}, 3\right)$
$C_{2} \times C_{2}$	10	$\mathcal{O}\left(0 ; 2^{5}\right)$	$C_{8} \rtimes C_{2}$	1	$\mathcal{O}(0 ; 2,4,8)$
C_{5}	3	$\mathcal{O}\left(0 ; 5^{3}\right)$	$C_{2} \ltimes\left(C_{2}^{2} \times C_{3}\right)$	1	$\mathcal{O}(0 ; 2,4,6)$
C_{6}	1	$\mathcal{O}\left(0 ; 3,6^{2}\right)$	$\mathrm{SL}_{2}(3)$	1	$\mathcal{O}(0 ; 3,3,4)$
C_{6}	2	$\mathcal{O}\left(0 ; 2^{2}, 3^{2}\right)$	$\mathrm{GL}_{2}(3)$	1	$\mathcal{O}(0 ; 2,3,8)$
D_{6}	1	$\mathcal{O}\left(0 ; 2^{2}, 3^{2}\right)$			
C_{8}	1	$\mathcal{O}\left(0 ; 2,8^{2}\right)$			
Q_{8}	1	$\mathcal{O}\left(0 ; 4^{3}\right)$			
D_{8}	3	$\mathcal{O}\left(0 ; 2^{3}, 4\right)$			

Classification up to isomorphisms of groups

Former results:

$$
\begin{aligned}
& 1991 \text { Broughton - genera } g=2, g=3 \text {; } \\
& 1997 \text { Bogopolski - genus } g=4 \text {; } \\
& 1990 \text { Kuribayashi and Kimura - genus } g=5 \text {; } \\
& 2008 \text { J.K. and R.N. - genera } g=2 \ldots 15 \text {. }
\end{aligned}
$$

Census

g	\# coverings	bound for $\|\mathrm{G}\|$	
2	21	48	(Klein)
3	49	168^{*}	(Klein)
4	63	120	(Gordan)
5	92	192	(Wiman)
6	87	150	(Wiman, $\|\mathrm{G}\|<420$)
7	147	504^{*}	
8	108	336	
9	260	320	
10	225	432	

Generalized Archimedean solids (maps)

A map M is Archimedean (of genus g) if the following holds:
(1) Underlying surface \mathcal{S} of M is orientable of genus $g(\geq 0)$,
(2) $\mathrm{Aut}^{+}(M)$ acts transitively on vertices of M,
(3) Underlying graph is simple,
(9) Face-width $r(M) \geq 3$.

From (2) and (3) - Mader $\Longrightarrow M$ is 3-connected
From (3) and (4) - Jendrol' and Voss $\Longrightarrow M$ is polyhedral
Classification "by hand"
$g=05$ Platonic solids, 13 other maps, ∞-many prisms,
$g=1 \infty$-many maps of 10 local types (Grünbaum),
$g \geq 2$ finitely many Archimedean solids; [K. and N . up to genus 5].

Concluding remarks and suggestions

(1) one-vertex quotients on orientable surfaces with empty boundary - classification of vertex-transitive maps on orientable surfaces up to genus g (K. \& N., $g=2$: $13, g=3: 123, g=4: 136, g=5: 397$ polyhedral ones);
(2) analyse of kernels of order-preserving epimorphisms - study of outer automorphisms of Fuchsian groups (special cases studied by G. Jones, A. Breda...);
(3) every non-orientable map have orientable double cover, so we can classify non-orientable compact surfaces with empty boundary (partial results archieved);
(1) general problem of coverings of spaces. The numerical conditions reads as follows

$$
2 g+k-2=|\mathrm{G}|\left(2 \gamma+k^{\prime}-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)+\frac{1}{2} \sum_{i=1}^{k^{\prime}} \sum_{j=1}^{h_{i}}\left(1-\frac{1}{n_{i j}}\right)\right) .
$$

(0) we can focus to special quotients to help the enumerations of special classes coverings (cyclic case - N. \& Mednykh, K. - actions up to $g=30$); what about Abelian case?
(0) theory of maps on orbifolds (enumeration and classification problems solved on "solid ground")

