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Background

Motivation:
study of algebraic curves, map theory, group theory, chemistry,
crystallography, physics. . .

General proposition:
Every finite group acts as an automorphism group of a surface
(Greenberg).

Problem:
Given class R of Riemann surfaces with genus g ≥ 2, describe the
class G of finite groups s. t. G ∈ G acts as a group of
orientation-preserving automorphisms of a surface S ∈ R.

In the words of Greenberg:
Study all orientation-preserving self-homeomorphisms of surfaces
from R.

History:
Riemann, Hurwitz, Klein, Schwarts, Wiman. . . ,
. . . Singermann, Jones, Conder, Mednykh, Nedela. . .
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Glossary

Riemann-Hurwitz relates genera of a surface and its cover with an orbifold
equation(Sg → Sγ) and automorphism group

2g − 2 = |G|
�
2γ − 2 +

Pr
i=1

�
1− 1

mi

��
; ∀i : mi ≥ 2 ∈ Z;

Universal cover fM is a tesselation of elliptic (g = 0), Euclidean (g = 1)
or hyperbolic (g ≥ 2) plane;

Fuchsian group F is a discrete group with the presentation

〈x1, . . . , xr, a1, b1, . . . , aγ , bγ | xm1 = . . . = xmr
r =

Qγ
i=1[ai, bi]

Qr
j=1 xj = 1〉;

Quotient M̄ is an one-vertex map on the surface Sγ

Quotient surface Sγ is an orbifold with the signature

[γ;m1, m2, . . . , mr],

where orbifold is as surface of genus γ with r points
(branch-points) chosen, endowed with indexes m1, . . . mr.
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Combinatorial approach

1 An automorphism (orientation-preserving) of a vertex-transitive map M extends
to a self-homeomorphism ϕ of the surface S

2 Every finite group of automorphisms of a surface S is a group of automorphisms
of a (Cayley) vertex-transitive map on S

3 It is sufficient to study the class of vertex-transitive maps on R instead of
surfaces over R – ”dimension reduction” of the problem;

4 Lots of results and techniques of map theory, group theory are known.
Techniques are more convenient to use (especially for me:)), the software can
help (GAP, Magma. . . ).
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Core idea

Theorem

Let M be a vertex-transitive map of genus g and let G ≤ Aut+(M) be a
vertex-transitive subgroup. Let M̄ =M/G be its one-vertex quotient on an orbifold
O(γ;m1, m2 . . . , mr). Then there exist a torsion-free normal subgroup
K C F ∼= Aut+(fM) ∼= π1(O) of genus g such that G ∼= F/K and M ∼= fM/K. In
particular, the index [ F : K] is given by Riemann-Hurwitz equation relating M and M̄ .

fM ↪→ eS
U

��

K

%%LLLLLLLLLL

M ↪→ Sg

Gyyrrrrrrrrrr

M̄ ↪→ Sγ
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Algorithm: Solving Riemann-Hurwitz equation (numerically)

Rieman-Hurwitz equation again

2g − 2 = |G|
 
2γ − 2 +

rX
i=1

�
1−

1

mi

�!
; ∀i : mi ≥ 2 ∈ Z;

At first we solve it numerically.
We have to observe and meet the following criteria:
1 γ ≤ g,
2 r ≤ 2g + 2,
3 ∀i : |G| ≡ 0 mod mi,
4 |G| ≤ 84(g − 1).
Now we can formulate an algorithm which determines all possible numeric solutions of
RHE for given genus. The solutions obtained by (brute-force) computation are tuples

[g, γ, |G|, {m1, . . . , mr}].

Note that
(γ; {m1, . . . , mr})

is known as orbifold signature of the orbifold O which the quotient M̄ is embedded in.
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Algorithm: Setting the presentation of π1(O)

Canonical quotient
1 quotient map M̄ is a buquet of r loops,
2 every loop is the boundary of a face containing exactly one branch-point with
respective branch-index mi,

3 outer face of the map is an r-gon containing no branch-point.

Examples
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Algorithm: Setting the presentation of π1(O) (continued)

We adapt the classical concept of voltage-assignments by Gross and Tucker to use it
for maps on orbifolds.

Presentations

〈x, y, z, w | x2 = y2 = z3 = w3 = xyzw = 1〉 〈x, y, a, b | x3 = y3 = [a, b]xy = 1〉

What about non-canonical quotients?

Ján Karabáš, (joint work with R. Nedela and A. Breda d’Azevedo) Classification and enumeration. . .



Algorithm: Setting quotients (up to isomorphism)

Observations:
1 |F : K| = |G|,
2 K E F,
3 F→ G is order preserving, i.e.

no generator of F is sent to identity,
no relation of F is collapsed.

The problem reduces to classification of order-preserving, torsion-free normal
subgroups (subgroups of genus g) of F, where F ranges through all admissible
signatures.

Low-index subgroups procedure is the tool of first choice. We adapted one
implementation by P. Dobcsányi.

Finally we use GAP to check whether F→ G is order-preserving and reveal the
structure description of G;

We want more: How every kernel does look like?

Ján Karabáš, (joint work with R. Nedela and A. Breda d’Azevedo) Classification and enumeration. . .



Example: Genus 2 quotients

G # K’s Orbifold G # K’s Orbifold
C2 1 O(0; 26) C10 1 O(0; 2, 5, 10)
C2 1 O(1; 22) C2 × C6 1 O(0; 2, 62)
C3 3 O(0; 34) C3 o C4 1 O(0; 3, 42)
C4 1 O(0; 22, 42) D12 3 O(0; 23, 3)
C2 × C2 10 O(0; 25) C8 o C2 1 O(0; 2, 4, 8)
C5 3 O(0; 53) C2 n (C22 × C3) 1 O(0; 2, 4, 6)
C6 1 O(0; 3, 62) SL2(3) 1 O(0; 3, 3, 4)
C6 2 O(0; 22, 32) GL2(3) 1 O(0; 2, 3, 8)
D6 1 O(0; 22, 32)
C8 1 O(0; 2, 82)
Q8 1 O(0; 43)
D8 3 O(0; 23, 4)

Ján Karabáš, (joint work with R. Nedela and A. Breda d’Azevedo) Classification and enumeration. . .



Classification up to isomorphisms of groups

Former results:

1991 Broughton – genera g = 2, g = 3;

1997 Bogopolski – genus g = 4;

1990 Kuribayashi and Kimura – genus g = 5;

2008 J.K. and R.N. – genera g = 2 . . . 15.

Census

g # coverings bound for |G|
2 21 48 (Klein)
3 49 168* (Klein)
4 63 120 (Gordan)
5 92 192 (Wiman)
6 87 150 (Wiman, |G| < 420)
7 147 504*

8 108 336
9 260 320
10 225 432
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Generalized Archimedean solids (maps)

A map M is Archimedean (of genus g) if the following holds:
1 Underlying surface S of M is orientable of genus g (≥ 0),
2 Aut+(M) acts transitively on vertices of M ,
3 Underlying graph is simple,
4 Face-width r(M) ≥ 3.
From (2) and (3) – Mader =⇒ M is 3-connected
From (3) and (4) – Jendrol’ and Voss =⇒ M is polyhedral

Classification ”by hand”

g = 0 5 Platonic solids, 13 other maps, ∞-many prisms,
g = 1 ∞-many maps of 10 local types (Grünbaum),
g ≥ 2 finitely many Archimedean solids; [K. and N. up to genus 5].
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Concluding remarks and suggestions

1 one-vertex quotients on orientable surfaces with empty boundary – classification
of vertex-transitive maps on orientable surfaces up to genus g (K. & N., g = 2:
13, g = 3: 123, g = 4: 136, g = 5: 397 polyhedral ones);

2 analyse of kernels of order-preserving epimorphisms – study of outer
automorphisms of Fuchsian groups (special cases studied by G. Jones, A.
Breda. . . );

3 every non-orientable map have orientable double cover, so we can classify
non-orientable compact surfaces with empty boundary (partial results archieved);

4 general problem of coverings of spaces. The numerical conditions reads as follows

2g + k − 2 = |G|

0@2γ + k′ − 2 +
rX

i=1

�
1−

1

mi

�
+
1

2

k′X
i=1

hiX
j=1

�
1−

1

nij

�1A .

5 we can focus to special quotients to help the enumerations of special classes
coverings (cyclic case – N. & Mednykh, K. – actions up to g = 30); what about
Abelian case?

6 theory of maps on orbifolds (enumeration and classification problems solved on
”solid ground”)
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