Matroids, minors and complexes

Tomáś Kaiser

Institute for Theoretical Computer Science
and Department of Mathematics
University of West Bohemia, Pilsen

Workshop on Discrete Mathematics, TU Wien, Nov 21, 2008

Complexes

Definition

A complex \mathcal{C} on E is a collection of subsets of E (faces) such that

$$
\text { if } \sigma \subset \tau \in \mathcal{C}, \text { then } \sigma \in \mathcal{C}
$$

Complexes include:

- independence complexes of graphs,
- matroids.

Independence complexes

Definition

The independence complex of a graph G is the complex on $V(G)$ whose faces are the independent sets of G.

Matroids

Definition

A complex \mathcal{M} on E is a matroid if for every $\sigma, \tau \in \mathcal{M}$ such that $|\sigma|<|\tau|$, there is $x \in \tau \backslash \sigma$ such that $\sigma+x$ is a face.

- independent set of $\mathcal{M}=$ face

Matroids

Definition

A complex \mathcal{M} on E is a matroid if for every $\sigma, \tau \in \mathcal{M}$ such that $|\sigma|<|\tau|$, there is $x \in \tau \backslash \sigma$ such that $\sigma+x$ is a face.

- independent set of $\mathcal{M}=$ face

Definition

The cycle matroid $\mathcal{M}(G)$ of a graph G : the matroid on $E(G)$ whose independent sets are the acyclic sets of edges.

Minors of graphs

Definition

A minor of a graph G : any graph that can be obtained from G by a series of vertex or edge deletions and edge contractions.

Two out of many theorems and problems concerning minors:

- Kuratowski Theorem: a graph is planar if and only if it contains no minor in $\left\{K_{5}, K_{3,3}\right\}$
- Tutte's 4-flow conjecture: every graph with no Petersen minor has a nowhere-zero 4-flow

Matroid minors

Definition

Let \mathcal{M} be a matroid on E and $X \subset E$. The deletion and contraction of e are the matroids

$$
\begin{aligned}
& \mathcal{M} \backslash e=\{I \subset E-\{e\}: I \in \mathcal{M}\} \\
& \mathcal{M} / e=\{I \subset E-\{e\}: I+e \in \mathcal{M}\} .
\end{aligned}
$$

A minor of \mathcal{M} : any matroid obtained by a sequence of contractions and deletions.
Some forbidden minor characterizations of Tutte:

Matroid minors

Definition

Let \mathcal{M} be a matroid on E and $X \subset E$. The deletion and contraction of e are the matroids

$$
\begin{aligned}
& \mathcal{M} \backslash e=\{I \subset E-\{e\}: I \in \mathcal{M}\} \\
& \mathcal{M} / e=\{I \subset E-\{e\}: I+e \in \mathcal{M}\} .
\end{aligned}
$$

A minor of \mathcal{M} : any matroid obtained by a sequence of contractions and deletions.
Some forbidden minor characterizations of Tutte:

- binary matroids: no $U_{2,4}$ minor
- regular matroids: no $U_{2,4}, F_{7}$ or F_{7}^{*} minor
- graphic matroids: no $U_{2,4}, F_{7}, F_{7}^{*}$,
 $M^{*}\left(K_{3,3}\right)$ or $M^{*}\left(K_{5}\right)$ minor

Complex minors

We may define deletion, contraction and minors for complexes in exactly the same way as for matroids:

$$
\begin{aligned}
& \mathcal{C} \backslash e=\{I \subset E-\{e\}: I \in \mathcal{C}\} \\
& \mathcal{C} / e=\{I \subset E-\{e\}: I+e \in \mathcal{C}\}
\end{aligned}
$$

- these correspond to 'induced subcomplexes' and 'links'
- caution: need to contract one element at a time, since $(\mathcal{C} / e) / f$ need not equal $\mathcal{C} /\{e, f\}$ (with the natural definition)

A characterization of matroids and independence complexes

$T_{i}=$ the complex on 3 points with i faces of size 2.
Theorem (TK 2006)
A complex is a matroid if and only if it contains no minor isomorphic to T_{1}.

A complex is an independence complex if and only if it contains no minor isomornhic to T_{3}

A characterization of matroids and independence complexes

$T_{i}=$ the complex on 3 points with i faces of size 2.
Theorem (TK 2006)
A complex is a matroid if and only if it contains no minor isomorphic to T_{1}.

Theorem (TK 2006)
A complex is an independence complex if and only if it contains no minor isomorphic to T_{3}.

A characterization of matroids and independence complexes

$T_{i}=$ the complex on 3 points with i faces of size 2.
Theorem (TK 2006)
A complex is a matroid if and only if it contains no minor isomorphic to T_{1}.

Theorem (TK 2006)
A complex is an independence complex if and only if it contains no minor isomorphic to T_{3}.

How about complexes with no T_{2} minor?

Decreasing functions

Definition

A function $f: 2^{E} \rightarrow \mathbb{N}$ is decreasing if for each pair of subsets $X \subset Y \subset E$,

$$
f(X) \geq \min \{f(Y),|X|\}
$$

Observation

Any decreasing f determines a complex $\mathcal{C}(f)$ on E whose faces are all the $\sigma \subseteq E$ such that $f(\sigma) \geq|\sigma|$.

Complexes with no T_{2}-minor

Definition

$f: 2^{E} \rightarrow \mathbb{N}$ is admissible if it is decreasing and for each $X, Y \subset E$,

$$
f(X \cup Y) \geq \min \{f(X), f(Y),|X \cap Y|+1\}
$$

Theorem

A complex \mathcal{C} on E has no T_{2}-minor if and only if there is an admissible $f: 2^{E} \rightarrow \mathbb{N}$ such that $\mathcal{C}=\mathcal{C}(f)$.

The matroid intersection theorem

- rank $\mathrm{r}_{\mathcal{M}}(X)$ of a set $X \subset E$ in a matroid \mathcal{M} on $E=$ the size of maximal independent sets contained in X

Theorem (Edmonds 1965)

Let \mathcal{M} and \mathcal{N} be matroids on E. They have a common independent set of size n if and only if

$$
r_{\mathcal{M}}(X)+r_{\mathcal{N}}(E-X) \geq n
$$

for all $X \subset E$.
Applications include
Tutte's and Nash-Williams' characterization of graphs wit
disjoint spanning trees,
Hall's theorem on perfect matchings in bipartite graphs.

The matroid intersection theorem

- rank $\mathrm{r}_{\mathcal{M}}(X)$ of a set $X \subset E$ in a matroid \mathcal{M} on $E=$ the size of maximal independent sets contained in X

Theorem (Edmonds 1965)

Let \mathcal{M} and \mathcal{N} be matroids on E. They have a common independent set of size n if and only if

$$
r_{\mathcal{M}}(X)+r_{\mathcal{N}}(E-X) \geq n
$$

for all $X \subset E$.
Applications include:

- Tutte's and Nash-Williams' characterization of graphs with k disjoint spanning trees,
- Hall's theorem on perfect matchings in bipartite graphs.

A complex intersection theorem?

- a recent result of Aharoni and Berger allows one to replace \mathcal{N} with an arbitrary complex and $\mathrm{r}_{\mathcal{N}}(X)$ with the 'topological connectivity' of the induced subcomplex on X
- the connectivity equals rank in the matroidal case
- the straightforward generalization to two complexes does not work (the RHS may be twice the actual dimension of the intersection)
- however, it can be shown to work if the two complexes do not contain a T_{2} minor

Matroid intersection and minors

Observation

Complexes that can be obtained as the intersections of two matroids on the same ground set form a minor-closed class.

- some complexes on 4 points:
and probably many more.

Matroid intersection and minors

Observation

Complexes that can be obtained as the intersections of two matroids on the same ground set form a minor-closed class.

Forbidden minors for being a matroid intersection include, e.g.:
■ 'odd cycles',

- some complexes on 4 points:

... and probably many more.

Some questions

Some questions:

- is there a forbidden minor characterization of matroid intersections?
- more specifically, which 1-dimensional complexes are matroid intersections?
- does the matroid intersection theorem have interesting analogues in other minor-closed classes?
- do some pronerties of hinary matroids extend to complexes without $U_{2,4}$ minors? - what can be said about T_{0}-free matroids? - matroid duality can be extended in a strainh fforward way to

Some questions

Some questions:

- is there a forbidden minor characterization of matroid intersections?
- more specifically, which 1-dimensional complexes are matroid intersections?
- does the matroid intersection theorem have interesting analogues in other minor-closed classes?

Some questions

Some questions:

- is there a forbidden minor characterization of matroid intersections?
- more specifically, which 1-dimensional complexes are matroid intersections?
- does the matroid intersection theorem have interesting analogues in other minor-closed classes?
- do some properties of binary matroids extend to complexes without $U_{2,4}$ minors?
- what can be said about T_{0}-free matroids?

Some questions

Some questions:

- is there a forbidden minor characterization of matroid intersections?
- more specifically, which 1-dimensional complexes are matroid intersections?
- does the matroid intersection theorem have interesting analogues in other minor-closed classes?
- do some properties of binary matroids extend to complexes without $U_{2,4}$ minors?
- what can be said about T_{0}-free matroids?
- matroid duality can be extended in a straightforward way to all complexes; which minor-closed classes are closed under duality?

Thank you for your attention.

